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Abstract
We develop a subseasonal forecasting toolkit of
accurate and highly scalable benchmarks that
outperform both the United States operational
Climate Forecasting System (CFSv2) and state-
of-the-art learning methods from the literature.
Our new learned benchmarks include (a) Clima-
tology++, an enhanced form of climatology us-
ing knowledge of only the day of the year; (b)
CFSv2++, a learned correction for CFSv2; and (c)
Persistence++, an augmented persistence model
that combines lagged measurements with CFSv2
forecasts. These methods alone improve upon
CFSv2 accuracy by 9% for US precipitation and
6% for US temperature over 2011-2020. En-
sembling our benchmarks with diverse forecast-
ing methods leads to even further gains. Over-
all, we find that augmenting classical forecast-
ing approaches with learned corrections yields
an effective, low-cost strategy for building next-
generation subseasonal forecasting models.

1. Introduction
It is estimated that 2.7 trillion dollars of the US economy is
sensitive to the impacts of weather and climate [1]. Improv-
ing our forecasting skill is of interest to all sectors of the
economy. Recently, seasonal climate forecasts have become
an important aspect of policy and decision-making and are
utilized in a broad range of applications [2].

While purely physics-based numerical weather prediction
dominates the landscape of short-term weather forecast-
ing [3–6], such deterministic methods have a limited skillful
(i.e., accurate) forecast horizon due to the chaotic nature of
weather [7]. In addition, the utility of longer-lead subsea-
sonal and seasonal outlooks, which depend on both local
weather and global climate influences, is still limited by
skill in dynamical forecasting methods [8].

Learning techniques from machine learning and statistics
have been leveraged in subseasonal forecasting [9–18].
While progress has been made in applying black-box tech-
niques to traditional meteorological models, we show that

applying select learning techniques leads to a scalable
toolkit of models that can outperform current operational
weather benchmarks as well as state-of-the-art learning mod-
els. This suggests building on classical models is a simple
and scalable strategy for better subseasonal forecasting.

2. Forecasting Tasks
To evaluate the performance of subseasonal climate models,
we consider forecasts of two variables: average temperature
(◦C) and accumulated precipitation (mm) over a two-week
period. These variables are forecasted at two time hori-
zons: 15-28 days ahead (weeks 3-4) and 29-42 days ahead
(weeks 5-6). The geographical region for these predictions
is the contiguous US, delimited by latitudes 25N to 50N
and longitudes 125W to 67W, at a 1◦ by 1◦ resolution. The
contiguous US has a total of G = 862 grid points.

These specific time frames and geographical region are used
by the USBR and NOAA for their subseasonal decision
making [11]. These forecasting tasks were motivated by
the Subseasonal Forecast Rodeos I and II [19], year-long
real-time competitions sponsored by USBR and NOAA to
advance the state of subseasonal weather forecasting.

In the experiments below, models are trained with data up to
3-4 or 5-6 weeks before the 2-week target period. The test
set is taken as the years 2011-2020. Hyperparameters are
picked using the three years previous to the target period.
We evaluate both decade and year-long performance.

Forecasts are evaluated using root mean squared error
(RMSE). For each date d, the RMSE is defined as

rmsed =

√√√√ 1

G

G∑
g=1

(ŷd,g − yd,g)2. (1)

where yd,g (respectively, ŷd,g) denotes the ground-truth mea-
surement (respectively, predicted value) for grid point g and
the two-week period starting on date d. Over a given set of
dates, the error is given by the average RMSE.

3. Dataset
The features available to our models and baselines are col-
lected in the SUBSEASONALCLIMATEUSA dataset. The ge-
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ographical region is the continental USA at a 1◦×1◦ spatial
resolution, encompassing years 1980-2020. The variables
included are: temperature, precipitation, sea surface tem-
perature, sea ice concentration, multivariate ENSO index,
Madden-Julian oscillation, relative humidity, geopotential
heights and CFSv2. Variables are averaged over two-week
periods. This dataset is an improved and upgraded version
of the dataset introduced in [11].

4. Methods
4.1. Baselines

For all four tasks considered, we use three baseline models.

Climatology is the standard baseline for subseasonal fore-
casting, given by the average of the variable of interest for a
specific grid point, day and month over the years 1981-2010.

CFSv2 (Climate Forecasting System version 2) is one of
the main operational physics-based model capable of sub-
seasonal weather prediction, run by the National Centers
for Environmental Prediction (NCEP) [20]. It is the main
numerical weather prediction model baseline in the paper.

Persistence is a traditional forecasting model that predicts
the most recently observed two-week target value [18], so
the current weather information “persists” into the future.

4.2. Toolkit models

We enhance each of the baseline models by leveraging sim-
ple and effective statistical and machine learning techniques.

Climatology++ uses knowledge only of the day of the year:
for a given target date, it predicts the vector of temperatures
(respectively, precipitations) that minimizes mean RMSE
(respectively, MSE) over the past 26 years and all days in an
adaptively selected window around the target day of year.

CFSv2++ averages CFSv2 forecasts over a range of is-
suance dates and lead times and then debiases the ensemble
prediction for each grid cell and target date using an adap-
tively selected window around the target day of year.

Persistence++ fits least squares regression per grid point to
combine lagged measurement forecasts (of 29 and 58 days
for 3-4 week tasks, and 43 and 86 for 5-6 week tasks) with
a CFSv2 ensemble forecast, optimally combining numerical
weather forecasts with recent weather trends.

4.3. Learning models

We also consider seven state-of-the-art learning models.

AutoKNN, as described in [11], is a weighted local linear re-
gression with features derived from historical measurements
of the target variable (temperature or precipitation).

MultiLLR, proposed in [11], is a local linear regression
model with multitask feature selection. For a target date and
grid point, it subsets the data to within 8 weeks of the target
date and fits a backward stepwise linear regression to pick
the best features, based on RMSE, over dates with the same
month-day combination.

Prophet is an additive regression model for univariate time-
series forecasting [21]. It captures seasonality by incorporat-
ing weekly and yearly seasonal trends on top of a piecewise
linear or logistic growth curve. This model is one of the win-
ning solutions in the Subseasonal Forecast Rodeo II [19].

LocalBoosting is a boosting model based on CatBoost [22].
For each grid point, it uses as features the values of all
the weather variables in the SUBSEASONALCLIMATEUSA
dataset on a geographic region around the grid point, thus
allowing it to use neighboring spatial information.

N-BEATS [23] is a neural network based model, inspired
by the ResNet [24]. It successively residualizes the data
against current predictions, allowing it to capture ever more
complicated patterns. N-BEATS is trained on the univariate
time series at each grid point.

Informer [25] is a transformer-based deep model [26]
which has attained great performance on short-range
weather forecasting. It processes very long patterns, and
uses sparse connections to overcome computational bottle-
necks. Informer is a multivariate time-series model, so a
single model is trained for all grid points.

Salient 2.0 is based on Salient [27], the winning solution
for the Subseasonal Forecast Rodeo I [19]. It consists of an
ensemble of feed-forward fully-connected neural networks,
trained on sea surface temperature (SST) data. Salient 2.0
uses 50 randomly-initialized networks trained on SST, mul-
tivariate ENSO and MJO data and selects 10 networks based
on a new data split strategy described in Section 2.

4.4. Ensembling

Ensembling is a powerful technique for subseasonal weather
forecasting [11; 28]. We consider two ways of ensembling:
Uniform Emsemble and Online Ensemble, each of which
uses a set of six base models: Climatology++, CFSv2++,
Persistence++, LocalBoosting, MultiLLR and Salient 2.0.

Uniform Ensemble, inspired by methods in use in the
weather community, simply takes uniform averages over
the predictions of a set of models.

Online Ensemble runs a follow-the regularized-leader on-
line learning algorithm over the base models for the valida-
tion period to produce a weight for each model, and finally
outputs the weighted average of predictions [29]. The result
is an adaptive convex combination of different base models.
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Figure 1. Relative percentage improvement of toolkit models over their traditional counterpart in terms of RMSE, for temperature and
precipitation, 3-4 and 5-6 weeks ahead, over 2011-2020. Toolkit models are consistently better than their classical versions.

Table 1. Percentage improvement over debiased CFSv2 RMSE for 2011-2020 in the US.
TOOLKIT LEARNING ENSEMBLES

CLIM++ CFSV2++ PERS++ AKNN LBOOST INFORM. MLLR N-BEATS PROPHET SAL. 2.0 UNIFORM ONLINE

TEMP. 3-4W 1.60 5.49 5.60 0.51 −1.18 −40.58 2.04 −47.33 0.71 −9.28 6.07 6.23
TEMP. 5-6W 3.90 6.16 5.51 2.26 −1.28 −65.27 1.24 −53.55 2.83 −4.98 6.64 6.79
PRECIP. 3-4W 9.03 8.53 8.78 7.90 7.53 0.83 7.29 −18.97 8.59 3.17 9.63 9.69
PRECIP. 5-6W 8.85 8.34 8.17 7.62 7.17 0.49 6.94 −20.95 8.40 2.96 9.33 9.27

Climatology++ (+1.60%) CFSv2++ (+5.49%) Persistence++ (+5.60%) Salient 2.0 (-9.28%) Prophet (+0.71%) Online Ensemble (+6.23%)
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Figure 2. Percentage improvement over debiased CFSv2 RMSE for temperature and precipitation, weeks 3-4 in the US over 2011-2020.
Models display different levels of improvement over different geographical regions in the contiguous US.
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Figure 3. Average model bias for temperature and precipitation, weeks 3-4 in the US, over 2011-2020. From the top row, most models
show a cold bias in the south, while Salient exhibits a strong warm bias in the north. Models show wet biases, except for Salient.
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Table 2. Percentage improvement over debiased CFSv2 RMSE for
2011-2020 in the US for classical models vs toolkit. The CFSv2
column refers to the raw CFSv2 prior to debiasing.

CLIM CLIM++ CFSV2 CFSV2++ PERS PERS++
TEMP. 3-4W -0.29 1.60 -14.17 5.49 -110.83 5.60
TEMP. 5-6W 1.97 3.90 -15.37 6.16 -172.76 5.51
PRECIP. 3-4W 7.96 9.03 -4.57 8.53 -28.03 8.78
PRECIP. 5-6W 7.79 8.85 -4.83 8.34 -31.51 8.17

5. Results
In this section, we evaluate our individual models as well
as the ensemble models over the the period 2011-2020. We
find that the enhancements made to the toolkit models lead
to better performance relative to the traditional weather
models they are based on, as well as state-of-the-art learning
alternatives. Also, most models show heterogeneous levels
of accuracy in both time and space, motivating the idea of
developing a suite of models. Finally, we show that properly
ensembling can yield substantial gains.

To highlight the improvement of individual toolkit models
over their traditional counterparts, Figure 1 shows the yearly
relative percentage improvement of the toolkit models (Cli-
matology++, CFSv2++, and Persistence++) relative to the
baselines (Climatology, CFSv2, and Persistence) for each
model 1. Climatology++, CFSv2++, and Persistence++
consistently outperform Climatology, CFSv2, and Persis-
tence, respectively, on all four tasks considered. Table 2
gives a more detailed comparison over 2011-2020: while
the baselines were oftentimes worse than CFSv2 in terms of
RMSE, all the toolkit models managed to overcome these
shortcomings to give consistently better performances. The
result is particularly noticeable for Persistence++, show-
ing that the addition of numerical weather forecasting and
well-chosen target lags can significantly improve prediction.

Furthermore, Table 1 shows that the toolkit models generally
outperform modern learning models. In fact, the only ones
able to overcome the worst of the toolkit models were Multi-
LLR (for temperature) and Prophet (for precipitation), both
of which involve few degrees of freedom. Thus, it seems
that the flexibility of boosting and deep learning methods
seem of limited use in the subseasonal setting.

Given the different approaches taken by the toolkit models,
one may wonder if they are each able to capture different
but complementary signals. One way to test this is to look
at the individual data points for which each algorithm per-
forms well. Figure 1 shows that the performance of models

1The percentage improvement axis in Figure 1 was clipped at
zero, in order to highlight the positive percentage change RMSE
over debiased CFSv2. For all four models presented, the minimum
percentage improvement was less than or equal to −1.5%.

often varies over time, and Figure 2, which displays the
percentage improvement in RMSE per grid cell, shows that
performance also varies over space. Generally, the data
supports the notion that these models are capturing slightly
different signals.

Further, another instance of performance heterogeneity can
be seen in Figure 3, which shows spatial patterns of average
model bias. The average bias maps for temperature show
a cold bias over the southern half of the US for Climatol-
ogy++, Persistence++, Salient 2.0 and Online Ensemble,
whereas Salient 2.0 shows an additional warm bias in the
center north. For precipitation, all models, save for Salient
2.0, show wet biases in the western half of the US and dry
biases in the eastern half, while Salient 2.0 displays a strong
dry bias over the US that is pronounced in the eastern half.

Thus, considering how models are able to capture different
signals, we turn to the question of combining such signals.
Table 1 shows that, indeed, our highest-performing models
are both ensembles. Note that even the simple averaging
strategy of Uniform Ensemble is enough to drastically in-
crease the performance of the final model. On the other
hand, the more thoughtful hinting strategy employed by
Online Ensemble is able to better combine the individual
model predictions. In particular, Figure 1 shows that the
performance of Online Ensemble is generally stronger than
that of the Uniform Ensemble on all tasks. This remains
useful even despite the glaring shortcomings of Salient 2.0
in the precipitation forecasting: adding it to the online en-
semble actually improved performance for both 3-4 week
and 5-6 week lead times.

6. Conclusion
In this work, we developed a toolkit of accurate and scalable
benchmark models for sub-seasonal forecasting of tempera-
ture and precipitation in the US by applying simple statisti-
cal tools to classical subseasonal weather forecasting mod-
els. The toolkit models displayed better performance versus
their classical counterpart as well as state-of-the-art learn-
ing alternatives. We also showed that prediction accuracy
can vary significantly in time and space, and that no single
model seems to dominate the subseasonal landscape. With
this in mind, we showed that ensembling heterogeneous
models was one way to improve predictions; in particular,
by considering ensembling as an online learning problem
lead to significant gains.

Overall, we found that these simple strategies for combining
physics and data-driven models lead to powerful yet scal-
able subseasonal forecasting models. We anticipate these
insights and improvements will benefit both researchers
and practicioners in benchmarking as well as creating next-
generation subseasonal forecasting models.
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