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Sequential Decision-Making via Online Learning

At time ?:
1. Make play Wi € W

2. Receive loss functionf@ from an
adversarial environment

3. Pay ft(Wt)

Our objective is to do as well as the best constant play in retrospect.

The loss of a
constant play u

RegretT — Sup th Wt — gt( )

ucU

t=1 The loss of online
learner plays
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Theorem 5 (ODFTRL regret). If 1 is nonnegative, then,
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Theorem 5 (ODFTRL regret). If 1 is nonnegative, then,
for allu € W, the ODFTRL iterates w, satisfy

Regrety(u) < Mp(u) + + Zthl b r for
b; r = huber(||h; — Zz:t_p gsll+ llgtll«)-

The first optimal regret bound for general
optimistic and delayed FTRL (and OMD).
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v/ Non-replicated design

where a single learner observes  every
loss.




Delayed and Optimistic Online Learning

DORM

Delayed Optimistic Regret Matching

DORM+

Delayed Optimistic Regret Matching+

Delayed Adaptive Hedge




Cumulative Regret

State-of-the-art Subseasonal Forecasting

What: Predicting the spatial distribution of temperature and precipitation
2 - 6 weeks out, w/applications in_agriculture and energy [1].

Objective: Ensemble input models by playing weights:y,, < A

Local Boosting CFSv2++ Climatology++

Results: Using delayed and optimistic learners, we achieve negative
regret in 3 of 4 subseasonal forecasting tasks.

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 19.486) —— DORM+ (RMSE: 19.600)
° (RMSE: 19.710) <
i < “Zero-Regret”
0 Performance of the
10 Best Input Model
15 4 Negative regret

T= 2'6 [1] White et al., 2017, Meteorological Applications.
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