

A Verisk Business

Online Learning with Optimism and Delay

<u>Genevieve Flaspohler^{1,2}</u>, Francesco Orabona³, Judah Cohen⁴,

Soukayna Mouatadid⁵, Miruna Oprescu⁷, Paulo Orenstein⁶, and Lester Mackey⁷

MIT¹, Woods Hole Oceanographic Institution², Boston University³,

Atmospheric and Environmental Research⁴, University of Toronto⁵, IMPA⁶, Microsoft Research⁷

stituto de Matemática Pura e Aplicada

Sequential Decision-Making via Online Learning

- At time t:
- 1. Make play $\mathbf{w}_t \in \mathbf{W}$
- 2. Receive loss function ℓ_t from an adversarial environment
- 3. Pay $\ell_t(\mathbf{w}_t)$

Our objective is to do as well as the best constant play in retrospect.

$$\begin{array}{l} \operatorname{Regret}_{T} = \sup_{\mathbf{u} \in \mathbf{U}} \sum_{t=1}^{T} \frac{\ell_t(\mathbf{w}_t) - \ell_t(\mathbf{u})}{The \ \text{best } \underline{\mathbf{u}} \in \mathbf{U}} \sum_{t=1}^{T} \frac{\ell_t(\mathbf{w}_t) - \ell_t(\mathbf{u})}{The \ \text{loss of online}} \end{array}$$

The loce of a

Real-world online learning has:

Our algorithms support:

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Our algorithms support:

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Our algorithms support:

✓ Unbounded or unknown delays

Learning with delay is a special case of learning with optimism.

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

Our algorithms support:

Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

Our algorithms support:

✓ Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Optimistic hints

via a novel analysis of optimistic Theorem 5 (ODFTRL regret). If ψ is nonnegative, then, for all $\mathbf{u} \in \mathbf{W}$, the ODFTRL iterates \mathbf{w}_t satisfy

 $\operatorname{Regret}_{T}(\mathbf{u}) \leq \lambda \psi(\mathbf{u}) + \frac{1}{\lambda} \sum_{t=1}^{T} \mathbf{b}_{t,F} \quad for$ $\mathbf{b}_{t,F} \triangleq \operatorname{huber}(\|\mathbf{h}_{t} - \sum_{s=t-D}^{t} \mathbf{g}_{s}\|_{*}, \|\mathbf{g}_{t}\|_{*}).$

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

Our algorithms support:

✓ Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Optimistic hints

via a novel analysis of optimistic Theorem 5 (ODFTRL regret). If ψ is nonnegative, then, for all $\mathbf{u} \in \mathbf{W}$, the ODFTRL iterates \mathbf{w}_t satisfy

 $\operatorname{Regret}_{T}(\mathbf{u}) \leq \lambda \psi(\mathbf{u}) + \frac{1}{\lambda} \sum_{t=1}^{T} \mathbf{b}_{t,F} \quad for$ $\mathbf{b}_{t,F} \triangleq \operatorname{huber}(\|\mathbf{h}_{t} - \sum_{s=t-D}^{t} \mathbf{g}_{s}\|_{*}, \|\mathbf{g}_{t}\|_{*}).$

The first optimal regret bound for general optimistic and delayed FTRL (and OMD).

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

X Real-time operational use

e.g., continuous forecasting.

Our algorithms support:

Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Optimistic hints

via a novel analysis of optimistic learning the reveals increased robustness to hint errors.

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

X Real-time operational use

e.g., continuous forecasting.

Our algorithms support:

 \checkmark Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Optimistic hints

via a novel analysis of optimistic learning the reveals increased <u>robustness to hint errors</u>.

Hyper-parameter free

with hint learning and no tuning

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

X Real-time operational use

e.g., continuous forecasting.

X Short regret horizons

e.g., weekly plays for a year period.

Our algorithms support:

✓ Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Optimistic hints

via a novel analysis of optimistic learning the reveals increased <u>robustness to hint errors</u>.

Hyper-parameter free

with hint learning and no tuning

Real-world online learning has:

X Delayed feedback

e.g., several plays before feedback for first is received.

Predictable/non-adversarial structure

e.g., contextual or side information.

X Real-time operational use

e.g., continuous forecasting.

X Short regret horizons

e.g., weekly plays for a year period.

Our algorithms support:

 \checkmark Unbounded or unknown delays

via a novel delay-as-optimism reduction.

Optimistic hints

via a novel analysis of optimistic learning the reveals increased <u>robustness to hint errors</u>.

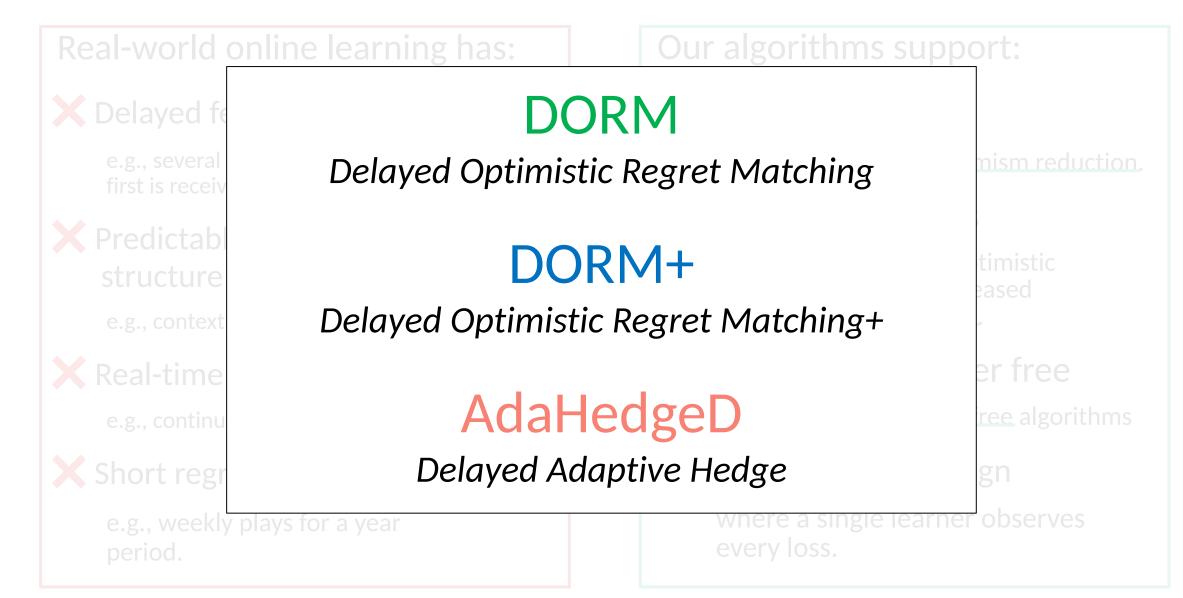
Hyper-parameter free

with hint learning and no tuning

\checkmark Non-replicated design

where a single learner observes every loss.

Delayed and Optimistic Online Learning

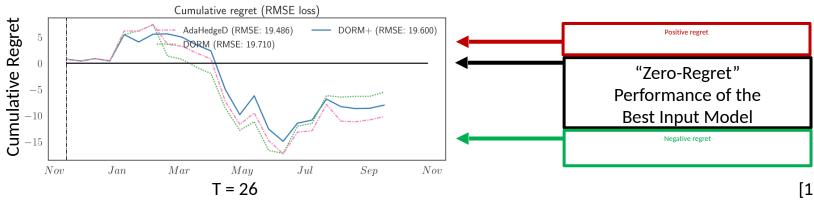


State-of-the-art Subseasonal Forecasting

What: Predicting the spatial distribution of temperature and precipitation 2 – 6 weeks out, w/applications in <u>agriculture and energy</u> [1].

Objective: Ensemble input models by playing weights: $\mathbf{w}_t \in \Delta$

Results: Using delayed and optimistic learners, we achieve negative regret in 3 of 4 subseasonal forecasting tasks.



[1] White et al., 2017, Meteorological Applications.

A Verisk Business

Online Learning with Optimism and Delay

<u>Genevieve Flaspohler</u>, Francesco Orabona, Judah Cohen, Soukayna Mouatadid, Miruna Oprescu, Paulo Orenstein, and Lester Mackey

