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Our objective is to do as well as the best constant play in retrospect. 

Sequential Decision-Making via Online Learning 
At time  :

1. Make play  

2. Receive loss function   from an 

adversarial environment 

3. Pay 

The loss of online 
learner plays

The loss of a 
constant play u

The best 
constant play



Challenges of Real-world Online Learning 
Real-world online learning has: Our algorithms support: 



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.

Real-world online learning has: Our algorithms support: 



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown 
delays

via a novel delay-as-optimism 
reduction.



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown 
delays

via a novel delay-as-optimism 
reduction.



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown 
delays

via a novel delay-as-optimism 
reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown 
delays

via a novel delay-as-optimism 
reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.

The first optimal regret bound for general 
optimistic and delayed FTRL (and OMD).



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.


❌ Real-time operational use

e.g., continuous forecasting. 

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown 
delays

via a novel delay-as-optimism 
reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.


❌ Real-time operational use

e.g., continuous forecasting. 

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown delays

via a novel delay-as-optimism reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.


✔  Hyper-parameter free

with hint learning and no tuning


 



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for first 
is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.


❌ Real-time operational use

e.g., continuous forecasting.


❌ Short regret horizons 

e.g., weekly plays for a year period.

 

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown delays

via a novel delay-as-optimism reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.


✔  Hyper-parameter free

with hint learning and no tuning


 



Challenges of Real-world Online Learning 

❌ Delayed feedback 

e.g., several plays before feedback for first 
is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.


❌ Real-time operational use

e.g., continuous forecasting.


❌ Short regret horizons 

e.g., weekly plays for a year period.

 

Real-world online learning has: Our algorithms support: 

✔ Unbounded or unknown delays

via a novel delay-as-optimism reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.


✔  Hyper-parameter free

with hint learning and no tuning


✔ Non-replicated design 

where a single learner observes      every 
loss.



Delayed and Optimistic Online Learning

❌ Delayed feedback 

e.g., several plays before feedback for 
first is received.


❌ Predictable/non-adversarial 
structure

e.g., contextual or side information.


❌ Real-time operational use

e.g., continuous forecasting. 


❌ Short regret horizons 

e.g., weekly plays for a year 
period.

Real-world online learning has: Our algorithms support: 

✔ Unbounded delays

via a novel delay-as-optimism reduction.


✔  Optimistic hints 

via a novel analysis of optimistic 
learning the reveals increased 
robustness to hint errors.


✔  Hyper-parameter free 

via self-tuned or tuning-free algorithms


✔ Non-replicated design 

where a single learner observes 
every loss.

DORM

Delayed Optimistic Regret Matching


DORM+ 

Delayed Optimistic Regret Matching+


AdaHedgeD 

Delayed Adaptive Hedge 



What: Predicting the spatial distribution of temperature and precipitation 
2 – 6 weeks out, w/applications in agriculture and energy [1].

Objective: Ensemble input models by playing weights:


Results: Using delayed and optimistic learners, we achieve negative 
regret in 3 of 4 subseasonal forecasting tasks.


State-of-the-art Subseasonal Forecasting

MultiLLR

“Zero-Regret”

Performance of the 

Best Input Model

T = 26

Positive regret


[1] White et al., 2017, Meteorological Applications.


Negative regret
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Python implementation: https://github.com/
geflaspohler/poold

Code: Paper:

https://github.com/geflaspohler/poold
https://github.com/geflaspohler/poold
https://github.com/geflaspohler/poold

