Winsorized Importance Sampling

Paulo Orenstein February 8, 2019

Stanford University

troduction Winsorized IS Theoretical Guarantees Empirical Performance Conclusion

Introduction

Let f(x) be an arbitrary function, p(x), q(x) probability densities. Suppose we are interested in

$$\theta = \mathbb{E}_p[f(X)] = \int_{\mathbb{R}} f(x)p(x)dx.$$

Introduction Winsorized IS Theoretical Guarantees Empirical Performance Conclusio

Introduction

Let f(x) be an arbitrary function, p(x), q(x) probability densities. Suppose we are interested in

$$\theta = \mathbb{E}_{\rho}[f(X)] = \int_{\mathbb{R}} f(x)p(x)dx.$$

▶ Assume we can only sample from *q*, which is called the *sampling distribution*; *p* is the *target distribution*.

Let f(x) be an arbitrary function, p(x), q(x) probability densities. Suppose we are interested in

$$\theta = \mathbb{E}_p[f(X)] = \int_{\mathbb{R}} f(x)p(x)dx.$$

- Assume we can only sample from q, which is called the sampling distribution; p is the target distribution.
- \triangleright The importance sampling estimator for θ is

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n f(X_i) \frac{p(X_i)}{q(X_i)}, \qquad X_i \sim q.$$

▶ The importance sampling (IS) estimator is unbiased:

$$\hat{\theta}_n \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}\left[f(x)\frac{p(X)}{q(X)}\right] = \int f(x)\frac{p(x)}{q(x)}q(x)dx = \int f(x)p(x)dx = \theta,$$

as long as q(x) > 0 whenever $f(x)p(x) \neq 0$.

▶ The importance sampling (IS) estimator is unbiased:

$$\hat{\theta}_n \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}\left[f(x)\frac{p(X)}{q(X)}\right] = \int f(x)\frac{p(x)}{q(x)}q(x)dx = \int f(x)p(x)dx = \theta,$$

as long as q(x) > 0 whenever $f(x)p(x) \neq 0$.

▶ But it can have huge or even infinite variance, leading to terrible estimates.

▶ The importance sampling (IS) estimator is unbiased:

$$\hat{\theta}_n \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}\left[f(x)\frac{p(X)}{q(X)}\right] = \int f(x)\frac{p(x)}{q(x)}q(x)dx = \int f(x)p(x)dx = \theta,$$

as long as q(x) > 0 whenever $f(x)p(x) \neq 0$.

- ▶ But it can have huge or even infinite variance, leading to terrible estimates.
- Can we control the variance of the terms

$$Y_i = f(X_i) \frac{p(X_i)}{q(X_i)}$$

by sacrificing some small amount of bias?

uction Winsorized IS Theoretical Guarantees Empirical Performance Conclusio

Winsorizing

► Can we improve on the IS estimator by winsorizing, or capping, the weights?

Winsorized IS Theoretical Guarantees Empirical Performance Conclu

Winsorizing

- ► Can we improve on the IS estimator by winsorizing, or capping, the weights?
- \triangleright Denote the random variables winsorized at levels -M and M by

$$Y_i^M = \max(-M, \min(Y_i, M)).$$

Winsorizing

- Can we improve on the IS estimator by winsorizing, or capping, the weights?
- \triangleright Denote the random variables winsorized at levels -M and M by

$$Y_i^M = \max(-M, \min(Y_i, M)).$$

▶ Define the *winsorized importance sampling estimator* at level *M* as

$$\hat{\theta}_n^M = \frac{1}{n} \sum_{i=1}^n Y_i^M.$$

Winsorizing

- ► Can we improve on the IS estimator by winsorizing, or capping, the weights?
- Denote the random variables winsorized at levels -M and M by

$$Y_i^M = \max(-M, \min(Y_i, M)).$$

Define the winsorized importance sampling estimator at level M as

$$\hat{\theta}_n^M = \frac{1}{n} \sum_{i=1}^n Y_i^M.$$

Picking the right threshold level M is crucial.

Winsorizing

Can we improve on the IS estimator by winsorizing, or capping, the weights?

▶ Denote the random variables winsorized at levels −M and M by

$$Y_i^M = \max(-M, \min(Y_i, M)).$$

▶ Define the *winsorized importance sampling estimator* at level *M* as

$$\hat{\theta}_n^M = \frac{1}{n} \sum_{i=1}^n Y_i^M.$$

- ▶ Picking the right threshold level *M* is crucial.
- ▶ Bias-variance trade-off: smaller *M* implies less variance but more bias.

Winsorized IS Theoretical Guarantees Empirical Performance Concl

How to pick M?

▶ Let $\{Y_i\}_{i=1}^n$ be random variables distributed iid with mean θ .

Winsorized IS Theoretical Guarantees

How to pick M?

- Let $\{Y_i\}_{i=1}^n$ be random variables distributed iid with mean θ .
- Consider winsorizing Y_i at different threshold levels in a pre-chosen set $\Lambda = \{M_1, \dots, M_k\}$ to obtain winsorized samples $\{Y_i^{M_j}\}_{i=1}^n$, $j = 1, \dots, k$.

How to pick M?

- Let $\{Y_i\}_{i=1}^n$ be random variables distributed iid with mean θ .
- \triangleright Consider winsorizing Y_i at different threshold levels in a pre-chosen set $\Lambda = \{M_1, \dots, M_k\}$ to obtain winsorized samples $\{Y_i^{M_j}\}_{j=1}^n, j = 1, \dots, k$.
- Pick the threshold level according to the rule

$$M_* = \min \left\{ M \in \Lambda : \forall M', M'' \ge M, |\overline{Y^{M'}} - \overline{Y^{M''}}| \le \alpha \cdot \left(\frac{\hat{\sigma}^{M'} + \hat{\sigma}^{M''}}{2} \right) \right\},$$

where:

How to pick M?

- Let $\{Y_i\}_{i=1}^n$ be random variables distributed iid with mean θ .
- \triangleright Consider winsorizing Y_i at different threshold levels in a pre-chosen set $\Lambda = \{M_1, \dots, M_k\}$ to obtain winsorized samples $\{Y_i^{M_j}\}_{j=1}^n, j = 1, \dots, k$.
- Pick the threshold level according to the rule

$$M_* = \min \left\{ M \in \Lambda : \forall M', M'' \ge M, |\overline{Y^{M'}} - \overline{Y^{M''}}| \le \alpha \cdot \left(\frac{\hat{\sigma}^{M'} + \hat{\sigma}^{M''}}{2}\right) \right\},$$

where:

- $\alpha = c \cdot \frac{t}{\sqrt{n-t}}$

- $\frac{c}{Y^M} = \frac{1}{n} \sum_{i=1}^n Y_i^M$ $\hat{\sigma}^M = \sqrt{\frac{1}{n} \sum_{i=1}^n (Y_i^M \overline{Y^M})^2}$.

Why?

▶ Why is this rule sensible?

Why?

- ▶ Why is this rule sensible?
- Intuitively, if we have truncation levels M' > M'', we are willing to truncate further to M'' if the increase in bias $|\frac{1}{n}\sum_{i=1}^n Y_i^{M'} \frac{1}{n}\sum_{i=1}^n Y_i^{M''}|$ is small relative to the standard deviation.

Whv?

- Why is this rule sensible?
- Intuitively, if we have truncation levels M' > M'', we are willing to truncate further to M" if the increase in bias $\left|\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{M'}-\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{M''}\right|$ is small relative to the standard deviation.
- ▶ The actual rule can be thought of as a concrete version of the Balancing Principle (or Lepski's Method), which is reminiscent of oracle inequalities.

- ▶ Why is this rule sensible?
- Intuitively, if we have truncation levels M' > M'', we are willing to truncate further to M'' if the increase in bias $|\frac{1}{n}\sum_{i=1}^n Y_i^{M'} \frac{1}{n}\sum_{i=1}^n Y_i^{M''}|$ is small relative to the standard deviation.
- ▶ The actual rule can be thought of as a concrete version of the Balancing Principle (or Lepski's Method), which is reminiscent of oracle inequalities.
- ▶ With high probability, the mean-squared error using M_* is less than 5 times the error roughly incurred by choosing the best threshold level in the set.

Theorem

Let Y_i be iid with mean θ . Consider winsorizing Y_i at different levels in $\Lambda = \{M_1, \dots, M_k\}$ to obtain samples $Y_i^{M_j}$. Pick the threshold level

$$\mathit{M}_* = min \left\{ \mathit{M} \in \Lambda \ : \ \forall \mathit{M}', \mathit{M}'' \geq \mathit{M}, \quad |\overline{Y^{\mathit{M}'}} - \overline{Y^{\mathit{M}''}}| \leq \alpha \cdot \left(\frac{\hat{\sigma}^{\mathit{M}'} + \hat{\sigma}^{\mathit{M}''}}{2} \right) \right\},$$

where $\alpha = c \cdot \frac{t}{\sqrt{n-t}}$ with c, t chosen constants. Let K > 0 be such that $\mathbb{E}[|Y_i^{M_j} - \mathbb{E}[Y_i^{M_j}]|^3] \le K(\mathbb{V}[Y_i^{M_j}])^{3/2}$ for all j. Then, with probability

$$1-2|\Lambda|\left(1+rac{50K}{\sqrt{n}}-\Phi\left(t\sqrt{rac{n}{(\sqrt{n}-t)^2+t^2}}
ight)
ight)$$
 ,

it holds

$$|\overline{Y^{M_*}} - \theta| \le C \min_{M \in \Lambda} \left\{ |\mathbb{E}[Y_i^M] - \theta| + \frac{t\sqrt{n}}{\sqrt{n} - t} \frac{\hat{\sigma}^M}{\sqrt{n}} \right\},\,$$

Theorem

Let Y_i be iid with mean θ . Consider winsorizing Y_i at different levels in $\Lambda = \{M_1, \dots, M_k\}$ to obtain samples $Y_i^{M_j}$. Pick the threshold level

$$\mathit{M}_* = min \left\{ \mathit{M} \in \Lambda \ : \ \forall \mathit{M}', \mathit{M}'' \geq \mathit{M}, \quad |\overline{Y^{\mathit{M}'}} - \overline{Y^{\mathit{M}''}}| \leq \alpha \cdot \left(\frac{\hat{\sigma}^{\mathit{M}'} + \hat{\sigma}^{\mathit{M}''}}{2} \right) \right\},$$

where $\alpha = c \cdot \frac{t}{\sqrt{n-t}}$ with c, t chosen constants. Let K > 0 be such that

$$1-2|\Lambda|\left(1+rac{50K}{\sqrt{n}}-\Phi\left(t\sqrt{rac{n}{(\sqrt{n}-t)^2+t^2}}
ight)
ight),$$

it holds

$$|\overline{Y^{M_*}} - \theta| \le C \min_{M \in \Lambda} \left\{ |\mathbb{E}[Y_i^M] - \theta| + \frac{t\sqrt{n}}{\sqrt{n} - t} \frac{\hat{\sigma}^M}{\sqrt{n}} \right\},\,$$

Let Y_i be iid with mean θ . Consider winsorizing Y_i at different levels in $\Lambda = \{M_1, \dots, M_k\}$ to obtain samples $Y_i^{M_j}$. Pick the threshold level

$$\mathit{M}_* = \min \left\{ \mathit{M} \in \Lambda \ : \ \forall \mathit{M}', \mathit{M}'' \geq \mathit{M}, \quad |\overline{Y^{\mathit{M}'}} - \overline{Y^{\mathit{M}''}}| \leq \alpha \cdot \left(\frac{\hat{\sigma}^{\mathit{M}'} + \hat{\sigma}^{\mathit{M}''}}{2} \right) \right\},$$

where $\alpha = c \cdot \frac{t}{\sqrt{n-t}}$ with c, t chosen constants. Let K > 0 be such that

 $\mathbb{E}[|Y_i^{M_j} - \mathbb{E}[Y_i^{M_j}]|^3] \le K(\mathbb{V}[Y_i^{M_j}])^{3/2}$ for all j. Then, with probability

$$1-2|\Lambda|\left(1+\frac{50K}{\sqrt{n}}-\Phi\left(t\sqrt{\frac{n}{(\sqrt{n}-t)^2+t^2}}\right)\right)$$
,

it holds

$$|\overline{Y^{M_*}} - \theta| \le C \min_{M \in \Lambda} \left\{ |\mathbb{E}[Y_i^M] - \theta| + \frac{t\sqrt{n}}{\sqrt{n} - t} \frac{\hat{\sigma}^M}{\sqrt{n}} \right\},\,$$

Theorem

Let Y_i be iid with mean θ . Consider winsorizing Y_i at different levels in $\Lambda = \{M_1, \ldots, M_k\}$ to obtain samples $Y_i^{M_j}$. Pick the threshold level

$$\mathit{M}_* = \min \left\{ \mathit{M} \in \Lambda \ : \ \forall \mathit{M}', \mathit{M}'' \geq \mathit{M}, \quad |\overline{Y^{\mathit{M}'}} - \overline{Y^{\mathit{M}''}}| \leq \alpha \cdot \left(\frac{\hat{\sigma}^{\mathit{M}'} + \hat{\sigma}^{\mathit{M}''}}{2} \right) \right\},$$

where $\alpha = c \cdot \frac{t}{\sqrt{n}-t}$ with c, t chosen constants. Let K > 0 be such that $\mathbb{E}[|Y_i^{M_j} - \mathbb{E}[Y_i^{M_j}]|^3] \leq K(\mathbb{V}[Y_i^{M_j}])^{3/2}$ for all j. Then, with probability

$$1-2|\Lambda|\left(1+rac{50K}{\sqrt{n}}-\Phi\left(t\sqrt{rac{n}{(\sqrt{n}-t)^2+t^2}}
ight)
ight)$$
 ,

it holds

$$|\overline{Y^{M_*}} - \theta| \le C \min_{M \in \Lambda} \left\{ |\mathbb{E}[Y_i^M] - \theta| + \frac{t\sqrt{n}}{\sqrt{n} - t} \frac{\hat{\sigma}^M}{\sqrt{n}} \right\},\,$$

Theorem

Let Y_i be iid with mean θ . Consider winsorizing Y_i at different levels in $\Lambda = \{M_1, \dots, M_k\}$ to obtain samples $Y_i^{M_j}$. Pick the threshold level

$$\mathit{M}_* = \min \left\{ \mathit{M} \in \Lambda \ : \ \forall \mathit{M}', \mathit{M}'' \geq \mathit{M}, \quad |\overline{Y^{\mathit{M}'}} - \overline{Y^{\mathit{M}''}}| \leq \alpha \cdot \left(\frac{\hat{\sigma}^{\mathit{M}'} + \hat{\sigma}^{\mathit{M}''}}{2} \right) \right\},$$

where $\alpha = c \cdot \frac{t}{\sqrt{n-t}}$ with c, t chosen constants. Let K > 0 be such that $\mathbb{E}[|Y_i^{M_j} - \mathbb{E}[Y_i^{M_j}]|^3] < K(\mathbb{V}[Y_i^{M_j}])^{3/2}$ for all j. Then, with probability

$$1 - 2|\Lambda| \left(1 + \frac{50K}{\sqrt{n}} - \Phi\left(t\sqrt{\frac{n}{(\sqrt{n} - t)^2 + t^2}}\right) \right),$$

it holds

$$|\overline{Y^{M_*}} - \theta| \le C \min_{M \in \Lambda} \left\{ |\mathbb{E}[Y_i^M] - \theta| + \frac{t\sqrt{n}}{\sqrt{n} - t} \frac{\hat{\sigma}^M}{\sqrt{n}} \right\},\,$$

troduction Winsorized IS **Theoretical Guarantees** Empirical Performance Conclusion

Proof

Apply the Balancing Theorem:

Balancing Theorem

Suppose $\theta \in \mathbb{R}$ is an unknown parameter, $\{\hat{E}^M\}_{M \in \Theta}$ is a sequence of estimators of θ indexed by $M \in \Theta \subset \mathbb{R}$, with Θ a finite set. Additionally, suppose that for each M we know $|\hat{E}^M - \theta| \leq \text{bias}(M) + \hat{s}(M)$, where we assume bias(M) is unknown but non-increasing in M, and $\hat{s}(M) > 0$ is observed and non-decreasing in M. Fix c > 2, and take

$$M_* = \min \left\{ M \in \Theta : \forall M', M'' \ge M, |\hat{E}^{M'} - \hat{E}^{M''}| \le c \left(\frac{\hat{s}(M') + \hat{s}(M'')}{2} \right) \right\}.$$

Then we have that

$$|\hat{\mathcal{E}}^{M_*} - \theta| \le C \min_{M \in \Theta} \left\{ \hat{s}(M) + \text{bias}(M) \right\}$$
,

where C is a constant depending on the chosen c, less than 4.25.

Winsorized IS Theoretical Guarantees Empirical Performance

Proof

► Apply the Balancing Theorem:

Balancing Theorem

Suppose $\theta \in \mathbb{R}$ is an unknown parameter, $\{\hat{E}^M\}_{M \in \Theta}$ is a sequence of estimators of θ indexed by $M \in \Theta \subset \mathbb{R}$, with Θ a finite set. Additionally, suppose that for each M we know $|\hat{E}^M - \theta| \leq \operatorname{bias}(M) + \hat{s}(M)$, where we assume $\operatorname{bias}(M)$ is unknown but non-increasing in M, and $\hat{s}(M) > 0$ is observed and non-decreasing in M. Fix c > 2, and take

$$M_* = \min \left\{ M \in \Theta : \forall M', M'' \ge M, |\hat{E}^{M'} - \hat{E}^{M''}| \le c \left(\frac{\hat{s}(M') + \hat{s}(M'')}{2} \right) \right\}.$$

Then we have that

$$|\hat{E}^{M_*} - \theta| \le C \min_{M \in \Theta} \{\hat{s}(M) + \mathsf{bias}(M)\}$$
,

where C is a constant depending on the chosen c, less than 4.25.

► Then, use Berry-Esseen to get probabilistic bounds.

Winsorized IS Theoretical Guarantees Empirical Performance

Proof (of Balancing Theorem)

▶ We must thus show that for all $M \in \Theta$, there exists $C \ge 0$ such that $|\hat{E}^{M_*} - \theta| \le C(\hat{s}(M) + \text{bias}(M))$. For this we shall consider two cases.

Proof (of Balancing Theorem)

- \blacktriangleright We must thus show that for all $M \in \Theta$, there exists C > 0 such that $|\hat{E}^{M_*} - \theta| < C(\hat{s}(M) + bias(M))$. For this we shall consider two cases.
- \triangleright (i) First, consider any fixed M such that $M > M_*$. Then, by our definition of M_* , and since $\hat{s}(M)$ is non-decreasing in M,

$$|\hat{E}^{M_*} - \hat{E}^M| \le c \cdot \hat{s}(M).$$

Also, as $|\hat{E}^M - \theta| < \text{bias}(M) + \hat{s}(M)$, we get

$$|\hat{E}^{M_*} - \theta| \le |\hat{E}^{M_*} - \hat{E}^{M}| + |\hat{E}^{M} - \theta| \le c\hat{s}(M) + bias(M) + \hat{s}(M)$$

= bias(M) + (c + 1)\hat{s}(M).

This proves the case $M > M_*$.

- \blacktriangleright We must thus show that for all $M \in \Theta$, there exists C > 0 such that $|\hat{E}^{M_*} - \theta| < C(\hat{s}(M) + bias(M))$. For this we shall consider two cases.
- \triangleright (i) First, consider any fixed M such that $M > M_*$. Then, by our definition of M_* , and since $\hat{s}(M)$ is non-decreasing in M,

$$|\hat{E}^{M_*} - \hat{E}^M| \le c \cdot \hat{s}(M).$$

Also, as $|\hat{E}^M - \theta| < \text{bias}(M) + \hat{s}(M)$, we get

$$|\hat{E}^{M_*} - \theta| \le |\hat{E}^{M_*} - \hat{E}^{M}| + |\hat{E}^{M} - \theta| \le c\hat{s}(M) + bias(M) + \hat{s}(M)$$

= bias(M) + (c + 1)\hat{s}(M).

This proves the case $M > M_*$.

(ii) The other side is harder.

Winsorized IS Theoretical Guarantees Empirical Performance

How well does this work in practice?

▶ We consider examples with real and synthetic data.

How well does this work in practice?

- ▶ We consider examples with real and synthetic data.
- Compare three estimators:
 - usual IS: no winsorization;
 - CV IS: winsorization with threshold chosen via CV;
 - Balanced IS: winsorization with threshold chosen via Balancing Theorem.

How well does this work in practice?

- We consider examples with real and synthetic data.
- Compare three estimators:
 - usual IS: no winsorization;
 - CV IS: winsorization with threshold chosen via CV;
 - Balanced IS: winsorization with threshold chosen via Balancing Theorem.
- ► CV IS takes 10-20× longer than Balanced IS and is usually worse.

Winsorized IS Theoretical Guarantees Empirical Performance

How well does this work in practice?

- We consider examples with real and synthetic data.
- Compare three estimators:
 - usual IS: no winsorization;
 - CV IS: winsorization with threshold chosen via CV;
 - Balanced IS: winsorization with threshold chosen via Balancing Theorem.
- ► CV IS takes 10-20× longer than Balanced IS and is usually worse.
- ▶ For small variances Balanced IS matches usual IS; as the proposal distribution gets worse, Balanced IS performs much better.

rduction Winsorized IS Theoretical Guarantees **Empirical Performance** Col

Example: self-avoiding walk [Knuth, 1976]

duction Winsorized IS Theoretical Guarantees Empirical Performance Col

ction Winsorized IS Theoretical Guarantees **Empirical Performance** Co

duction Winsorized IS Theoretical Guarantees **Empirical Performance** Cor

ction Winsorized IS Theoretical Guarantees **Empirical Performance** Co

uction Winsorized IS Theoretical Guarantees Empirical Performance Co

duction Winsorized IS Theoretical Guarantees **Empirical Performance** Co

Winsorized IS Theoretical Guarantees Empirical Performance Co

Knuth suggested estimating the number of self-avoiding walks using importance sampling.

Winsorized IS Theoretical Guarantees Empirical Performance

- Knuth suggested estimating the number of self-avoiding walks using importance sampling.
- For this, we need to choose a sampling distribution, q(x), over the self-avoiding walks.

Winsorized IS Theoretical Guarantees Empirical Performance

- Knuth suggested estimating the number of self-avoiding walks using importance sampling.
- ▶ For this, we need to choose a sampling distribution, q(x), over the self-avoiding walks.
- Consider building one sequentially.

eduction Winsorized IS Theoretical Guarantees **Empirical Performance** Conc

tion Winsorized IS Theoretical Guarantees **Empirica<u>l</u> Performance** Co

tion Winsorized IS Theoretical Guarantees **Empirical Performance** Co

Winsorized IS Theoretical Guarantees Empirical Performance C

- Define:
 - $p(x) = \frac{1}{Z_n} \mathbb{I}_{[SAW]}(x)$; note Z_n is the number of self-avoiding random walks;
 - $q(x) = \frac{1}{d_1 \cdot d_2 \cdot \cdot \cdot d_{m_X}}; d_i$ is the number of available neighbors to i (could be 0);
 - $f(x) = Z_n.$

- Define:
 - $p(x) = \frac{1}{Z_n} \mathbb{I}_{[SAW]}(x)$; note Z_n is the number of self-avoiding random walks;
 - $q(x) = \frac{1}{d_1 \cdot d_2 \cdot \cdot \cdot d_{m_x}}; d_i$ is the number of available neighbors to i (could be 0);
 - $f(x) = Z_n.$
- We would like to estimate

$$Z_n = \mathbb{E}_p[Z_n] = \mathbb{E}_p[f(X)] = \mathbb{E}_q\left[\frac{f(X)p(X)}{q(X)}\right] = \mathbb{E}_q\left[\frac{\mathbb{I}_{[SAW]}(X)}{q(X)}\right]$$
$$\approx \frac{1}{n}\sum_{i=1}^n d_1(X_i)d_2(X_i)\cdots d_{m_{X_i}}(X_i)\cdot \mathbb{I}_{[SAW]}(X).$$

► How does winsorization perform?

- ► How does winsorization perform?
- ▶ 1000 simulations of 1000 SAWs.
- $\theta = 1.56 \cdot 10^{24}$: $c = 1 + \sqrt{3}$. t = 2.
- $M \in \{10^{21}, 5 \cdot 10^{23}, 10^{25}, 5 \cdot 10^{26}, 10^{28}\}.$

- ▶ How does winsorization perform?
- ▶ 1000 simulations of 1000 SAWs.
- $\theta = 1.56 \cdot 10^{24}$; $c = 1 + \sqrt{3}$, t = 2.
- $M \in \{10^{21}, 5 \cdot 10^{23}, 10^{25}, 5 \cdot 10^{26}, 10^{28}\}.$

	IS	CV IS	Balanced IS
MSE	$2.075 \cdot 10^{49}$	$2.457 \cdot 10^{48}$	$2.437 \cdot 10^{48}$
MAD	$1.817 \cdot 10^{24}$	$1.567 \cdot 10^{24}$	$1.561 \cdot 10^{24}$

- ▶ Procedure is run as follows:
 - Let $M_1 = 10^{28}$;
 - ightharpoonup set $M_* = M_1$

- ▶ Procedure is run as follows:
 - Let $M_1 = 10^{28}$; ► set $M_* = M_1$
 - Let $M_2 = 5 \cdot 10^{26}$;

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$;
 - \triangleright set $M_* = M_1$
 - Let $M_2 = 5 \cdot 10^{26}$;
 - if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$;
 - ightharpoonup set $M_* = M_1$
 - Let $M_2 = 5 \cdot 10^{26}$;
 - if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;
 - lelse, stop

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$;
 - set M_∗ = M₁
 - Let $M_2 = 5 \cdot 10^{26}$;
 - ▶ if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;
 - lelse, stop
 - Let $M_3 = 10^{25}$

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$;
 - \triangleright set $M_* = M_1$
 - Let $M_2 = 5 \cdot 10^{26}$:
 - if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;
 - else, stop
 - Let $M_3 = 10^{25}$
 - $\qquad \text{if } |\overline{Y}^{M_1} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_3}}{2}\right) \text{ and } |\overline{Y}^{M_2} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_2} + \hat{\sigma}^{M_3}}{2}\right), \text{ set } M_* = \\$ M_3 , and consider further truncation:

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$:
 - \triangleright set $M_* = M_1$
 - Let $M_2 = 5 \cdot 10^{26}$:
 - if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;
 - else, stop
 - Let $M_3 = 10^{25}$
 - $\qquad \text{if } |\overline{Y}^{M_1} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_3}}{2}\right) \text{ and } |\overline{Y}^{M_2} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_2} + \hat{\sigma}^{M_3}}{2}\right), \text{ set } M_* = \\$ M_3 , and consider further truncation:
 - else, stop

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$:
 - \triangleright set $M_* = M_1$
 - Let $M_2 = 5 \cdot 10^{26}$:
 - if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;
 - else, stop
 - Let $M_3 = 10^{25}$
 - $\qquad \text{if } |\overline{Y}^{M_1} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_3}}{2}\right) \text{ and } |\overline{Y}^{M_2} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_2} + \hat{\sigma}^{M_3}}{2}\right), \text{ set } M_* = \\$ M_3 and consider further truncation;
 - else, stop
 -

- Procedure is run as follows:
 - Let $M_1 = 10^{28}$:
 - \triangleright set $M_1 = M_2$
 - Let $M_2 = 5 \cdot 10^{26}$:
 - if $|\overline{Y}^{M_1} \overline{Y}^{M_2}| \le \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_2}}{2}\right)$, set $M_* = M_2$, and consider further truncation;
 - else, stop
 - Let $M_3 = 10^{25}$
 - $\qquad \text{if } |\overline{Y}^{M_1} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_1} + \hat{\sigma}^{M_3}}{2}\right) \text{ and } |\overline{Y}^{M_2} \overline{Y}^{M_3}| \leq \alpha \left(\frac{\hat{\sigma}^{M_2} + \hat{\sigma}^{M_3}}{2}\right), \text{ set } M_* = \\$ M_3 , and consider further truncation:
 - else, stop
 -
- Computational complexity: $O(|\Lambda| \cdot (|\Lambda| + n))$

Simulation 1: Exponential

- $p = \frac{1}{\theta} Expo$,
- ightharpoonup q = Expo,
- ightharpoonup f(x) = x
- $\theta \in \{1.3, 1.5, 1.9, 2, 2.1, 3, 4, 10\}$
- $M \in \{550, 500, 400, 200, 100, 10\}$

duction Winsorized IS Theoretical Guarantees Empirical Performance Con

Simulation 1: Exponential

ction Winsorized IS Theoretical Guarantees Empirical Performance Con

Simulation 1: Exponential

Simulation 2: Normal

- P = N(0, 1),
- $ightharpoonup q = N(0, \theta),$
- ightharpoonup f(x) = x
- $\theta = \{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9\}$
- ► *M* ∈ {550, 500, 400, 200, 100, 10}

ction Winsorized IS Theoretical Guarantees Empirical Performance Cor

Simulation 2: Normal

luction Winsorized IS Theoretical Guarantees Empirical Performance Conc

Simulation 2: Normal

$$p = t_{21}(0, 1),$$

$$ightharpoonup q = t_{21}(\theta, 1 - 1/21),$$

$$ightharpoonup f(x) = x$$
,

$$\theta = \{0, 0.5, 1, 1.5, 2, 2.5, 3\}$$

Winsorized IS Theoretical Guarantees Empirical Performance Co

Simulation 3: t

Winsorized IS Theoretical Guarantees Empirical Performance Conclu

Simulation 3: t

Simulation 4: Multivariate Normal

- ▶ $p = N_{\theta}(0, 1),$
- $ightharpoonup q = t_{21,\theta}(0.4 \cdot 1, 0.8 \cdot 1),$
- $f(\mathbf{x}) = \sum_{i=1}^{\theta} x_i,$
- $\theta = \{20, 40, 60, 80, 100\}$
- $M \in \{550, 500, 400, 200, 100, 50, 10\}$

Winsorized IS Theoretical Guarantees Empirical Performance Concl

Simulation 4: Multivariate Normal

on Winsorized IS Theoretical Guarantees Empirical Performance Cond

Simulation 4: Multivariate Normal

Simulation 5: Normal Mixture

- $p = 0.8 \cdot N(0, 0.5) + 0.2 \cdot N(\theta, 0.5),$
- ightharpoonup q = N(0,4),
- ightharpoonup f(x) = x,
- $\theta = \{1, 3, 5, 7, 9, 11, 12\}$
- ► *M* ∈ {550, 500, 400, 200, 100, 10}

duction Winsorized IS Theoretical Guarantees Empirical Performance Conclusi

Simulation 5: Normal Mixture

Winsorized IS Theoretical Guarantees Empirical Performance Conclu

Simulation 5: Normal Mixture

ction Winsorized IS Theoretical Guarantees Empirical Performance Conclusion

Is it worth winsorizing?

- Negative aspects:
 - theory requires high n, at least 10^8 (but can be improved);
 - must be provided truncation values;
 - why winsorize symmetrically around 0?

Is it worth winsorizing?

- Negative aspects:
 - theory requires high n, at least 10^8 (but can be improved);
 - must be provided truncation values;
 - why winsorize symmetrically around 0?
- ► Positive aspects:
 - works well in practice;
 - adaptive to the sample;
 - comes with finite-sample optimality properties.

roduction Winsorized IS Theoretical Guarantees Empirical Performance Conclusion

Conclusion

Importance sampling should not rely only on sample mean.

on Winsorized IS Theoretical Guarantees Empirical Performance Conclusion

Conclusion

Importance sampling should not rely only on sample mean.

▶ We need robust, adaptive alternatives.

Winsorized IS Theoretical Guarantees Empirical Performance Conclusion

Conclusion

- Importance sampling should not rely only on sample mean.
- ▶ We need robust, adaptive alternatives.
- ▶ Balanced IS has theoretical guarantees and performs well in practice:
 - in high-variance settings, it outperforms usual IS
 - in low-variance settings, it matches it.

Conclusion

- Importance sampling should not rely only on sample mean.
- ▶ We need robust, adaptive alternatives.
- ▶ Balanced IS has theoretical guarantees and performs well in practice:
 - in high-variance settings, it outperforms usual IS
 - in low-variance settings, it matches it.
- Many future extensions.

Winsorized IS Theoretical Guarantees Empirical Performance Conclusion

References

▶ Ionides, E. L. (2008). Truncated importance sampling. *Journal of Computational and Graphical Statistics*, 17(2).

- ▶ Mathé, P. (2006). The Lepskii principle revisited. *Inverse problems*, 22(3).
- Orenstein, P. (2018). Finite-sample Guarantees for Winsorized Importance Sampling. arXiv preprint arXiv:1810.11130.
- Shao, Q.-M. (2005). An explicit berry—esseen bound for student's t-statistic via Stein's Method. Stein's Method and Applications, 5:143.
- Vehtari, A., Gelman, A., and Gabry, J. (2015). Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646