Winsorized Importance Sampling

Paulo Orenstein
February 8, 2019

Stanford University

Ib—1

i

Paulo Orenstein Winsorized Importance Sampling Stanford University 1/23

il
i

1

1
i

i

Aliaih

-
ﬁ—f




Introduction

Introduction

> Let f(x) be an arbitrary function, p(x), g(x) probability densities. Suppose
we are interested in

6 = E,[(X)] = / F(x)p(x) .
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> Let f(x) be an arbitrary function, p(x), g(x) probability densities. Suppose
we are interested in

6 = E,[(X)] = / F(x)p(x) .

P> Assume we can only sample from g, which is called the sampling distribu-
tion; p is the target distribution.
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Introduction

Introduction

> Let f(x) be an arbitrary function, p(x), g(x) probability densities. Suppose
we are interested in

6 = E,[(X)] = / F(x)p(x)dx

P> Assume we can only sample from g, which is called the sampling distribu-
tion; p is the target distribution.

» The importance sampling estimator for 8 is

Zf(X) (X) X; ~q.
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Introduction

Introduction

» The importance sampling (IS) estimator is unbiased:

0, =3 E [f(x) ’;EQ] = / f(x)%q(x)dx = / F(x)p(x)dx = 8,

as long as g(x) > 0 whenever f(x)p(x) # 0.
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Introduction

Introduction

» The importance sampling (IS) estimator is unbiased:

0, =3 E [f(x) p(X)] = / £ P G dx = / F(x)p(x)dx = 6,

q(X) q(x)

as long as g(x) > 0 whenever f(x)p(x) # 0.

» But it can have huge or even infinite variance, leading to terrible estimates.
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Introduction

Introduction

» The importance sampling (IS) estimator is unbiased:

6, =3 E [f(x) ’;EQ] = / £ P G dx = / F(x)p(x)dx = 6,

a(x)
as long as g(x) > 0 whenever f(x)p(x) # 0.

» But it can have huge or even infinite variance, leading to terrible estimates.

> Can we control the variance of the terms

p(Xi)
q(Xi)

by sacrificing some small amount of bias?

Y = £(X)
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Winsorizing

» Can we improve on the IS estimator by winsorizing, or capping, the weights?
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» Denote the random variables winsorized at levels —M and M by

YM = max(—M, min(Y;, M)).
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Winsorizing
» Can we improve on the IS estimator by winsorizing, or capping, the weights?

» Denote the random variables winsorized at levels —M and M by

YM = max(—M, min(Y;, M)).

» Define the winsorized importance sampling estimator at level M as

S
i=1
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Winsorizing
» Can we improve on the IS estimator by winsorizing, or capping, the weights?

» Denote the random variables winsorized at levels —M and M by

YM = max(—M, min(Y;, M)).
» Define the winsorized importance sampling estimator at level M as

S
i=1

P Picking the right threshold level M is crucial.
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Winsorized IS

Winsorizing

» Can we improve on the IS estimator by winsorizing, or capping, the weights?

» Denote the random variables winsorized at levels —M and M by
YM = max(—M, min(Y;, M)).
» Define the winsorized importance sampling estimator at level M as
AM 1 . M
i=1
P Picking the right threshold level M is crucial.
P Bias-variance trade-off: smaller M implies less variance but more bias.
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Winsorized IS

How to pick M?

> Let {Y;}]_, be random variables distributed iid with mean 6.
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How to pick M?
> Let {Y;}]_, be random variables distributed iid with mean 6.

» Consider winsorizing Y; at different threshold Ievel_:,”in a pre-chosen set
AN ={Mx, ..., Mi} to obtain winsorized samples {Y; 7}, j=1,... k.
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Winsorized IS

How to pick M?
> Let {Y;}]_, be random variables distributed iid with mean 6.

» Consider winsorizing Y; at different threshold Ieveliﬂin a pre-chosen set
AN ={Mx, ..., Mi} to obtain winsorized samples {Y; 7}, j=1,... k.

» Pick the threshold level according to the rule
M AM!
M. = min{M ENYM, M > M |[YV - V7| < o (T)}

where:
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Winsorized IS

How to pick M?
> Let {Y;}]_, be random variables distributed iid with mean 6.

» Consider winsorizing Y; at different threshold Ieveliﬂin a pre-chosen set
AN ={Mx, ..., Mi} to obtain winsorized samples {Y; 7}, j=1,... k.

> Pick the threshold level according to the rule
- . AM' AM"
M. = min {M ENYM M > M, [YM =YW <a- (UZO’)}

where:

t
Vn—t
m c,t are chosen constants

m YM= %27:1 v
m M = \[E L (M - YR

B x=cC-
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» Why is this rule sensible?
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Why?

» Why is this rule sensible?

> Intuitively, if we have truncation levels M’ > M", we are willing to truncate
. . . . 1 MI 1 MII .
further to M" if the increase in bias |2 37 YM — 2577 Y| is small
relative to the standard deviation.
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Why?

» Why is this rule sensible?

> Intuitively, if we have truncation levels M’ > M", we are willing to truncate
. . . . 1 M/ 1 MI/ .
further to M" if the increase in bias |2 37 YM — 2577 Y| is small
relative to the standard deviation.

» The actual rule can be thought of as a concrete version of the Balancing
Principle (or Lepski’'s Method), which is reminiscent of oracle inequalities.
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Theoretical Guarantees

Why?

» Why is this rule sensible?

> Intuitively, if we have truncation levels M’ > M", we are willing to truncate
. . . . 1 M/ 1 MI/ .
further to M" if the increase in bias |2 37 YM — 2577 Y| is small
relative to the standard deviation.

» The actual rule can be thought of as a concrete version of the Balancing
Principle (or Lepski’'s Method), which is reminiscent of oracle inequalities.

> With high probability, the mean-squared error using M, is less than 5 times
the error roughly incurred by choosing the best threshold level in the set.
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Theoretical Guarantees

__Introduction ________ Winsorized IS Theoretical Guarantees ________ Empirical Performance______ Conclusion _
Let Y; be iid with mean 6. Consider winAs/’orizing Y; at different levels in
My} to obtain samples Y;™. Pick the threshold level
& M ) }

P &M
/\/I*zmin{MG/\ CYML M > M, |YM'—Y’V’"|§a-<

N[+
(o}

SI%
%_/—’

it holds
[YM: — 6| < Cmin {|]E[Y,-M] -0+
MeN

where C = C(c) can be made less than 4.25.
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Theoretical Guarantees

Let Y; be iid with mean 6. Consider winsorizing Y; at different levels in
AN={M,..., My} to obtain samples Y,.M’. Pick the threshold level

N[+
(o}

—_— R AM/
/\/I*:min{Mel\ CYML M > M, YV Y| < (a

)

where a = ¢ - f - with ¢, t chosen constants.

it holds

[YM: — 6| < Cmin {|]E[Y,-M] -0+
MeN

where C = C(c) can be made less than 4.25.
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Theoretical Guarantees

Let Y; be iid with mean 6. Consider winsorizing Y; at different levels in
AN={M,..., My} to obtain samples Y,.M’. Pick the threshold level

N[+
(o}

—_— R AM/
/\/I*:min{Mel\ CYML M > M, YV Y| < (a

)

where a = ¢ - f - with ¢, t chosen constants.
Then, with probability

el )

[YM: — 6| < Cmin {|]E[Y,-M] -0+
MeN

it holds

where C = C(c) can be made less than 4.25.
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Theoretical Guarantees

Theorem

Let Y; be iid with mean 6. Consider winsorizing Y; at different levels in
AN={M,..., My} to obtain samples Y,.M’. Pick the threshold level

N[+
(o}

—_— R AM/
/\/I*:min{Mel\ CYML M > M, YV Y| < (a

)

where a = ¢ - ft with ¢, t chosen constants. Let K > 0 be such that

n—t

E[|Y" — E[Y"11?] < K(V[Y"'])*? for all j. Then, with probability
1—ﬂM<1 —¢<t )),

— : ty/n &Y
M. _ @] < My _ i
Y 9|_CMmér/1\{|E[Y,] 9|+ﬁ—tﬁ}'

it holds

where C = C(c) can be made less than 4.25.
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Theoretical Guarantees

Let Y; be iid with mean 6. Consider winsorizing Y; at different levels in
AN={M,..., My} to obtain samples Y,.M’. Pick the threshold level

N[+
(o}

—_— R AM/
/\/I*:min{Mel\ CYML M > M, YV Y| < (a

)

where a = ¢ - ft with ¢, t chosen constants. Let K > 0 be such that

n—t

E[|Y" — E[Y"11?] < K(V[Y"'])*? for all j. Then, with probability

1-2/A| <1+%—¢(t W))

it holds

— : ty/n &Y
M. _ @] < My _ i
Y 9|_CMmér/1\{|E[Y,] 9|+ﬁ—tﬁ}'

where C = C(c) can be made less than 4.25.
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Theoretical Guarantees

Proof

» Apply the Balancing Theorem:

Balancing Theorem

Suppose 6 € R is an unknown parameter, {EM}Mge is a sequence of
estimators of 6 indexed by M € © C R, with © a finite set. Additionally,
suppose that for each M we know |EM — 6] < bias(M) + (M), where we
assume bias(M) is unknown but non-increasing in M, and (M) > 0 is
observed and non-decreasing in M. Fix ¢ > 2, and take

2

~ ! ~ 1
M, = min{M €O VM M >M, |[EM—EM|<c (M>}

Then we have that

EMe g < o R .
|E )< C min {5(M) + bias(M)},

where C is a constant depending on the chosen c, less than 4.25.
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Theoretical Guarantees

Proof

» Apply the Balancing Theorem:

Balancing Theorem

Suppose 6 € R is an unknown parameter, {EM}Mge is a sequence of
estimators of 6 indexed by M € © C R, with © a finite set. Additionally,
suppose that for each M we know |EM — 6] < bias(M) + (M), where we
assume bias(M) is unknown but non-increasing in M, and (M) > 0 is
observed and non-decreasing in M. Fix ¢ > 2, and take

~ ! ~ 1
M, = min{M €O VM M >M, |[EM—EM|<c (W)}

Then we have that

EMe g < o R .
|E )< C min {5(M) + bias(M)},

where C is a constant depending on the chosen c, less than 4.25.

» Then, use Berry-Esseen to get probabilistic bounds.
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Theoretical Guarantees

Proof (of Balancing Theorem)

» We must thus show that for all M € ©, there exists C > 0 such that
|EM- — 9] < C(3(M) + bias(M)). For this we shall consider two cases.
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Theoretical Guarantees

Proof (of Balancing Theorem)

» We must thus show that for all M € ©, there exists C > 0 such that
|EM- — 9] < C(3(M) + bias(M)). For this we shall consider two cases.

» (i) First, consider any fixed M such that M > M,. Then, by our definition
of M, and since 5(M) is non-decreasing in M,

|EM — EM) < ¢ 3(Mm).
Also, as |[EM — 6| < bias(M) + 5(M), we get

|EM — ] < |EM — EM| +|EM — 6] < c8(M) + bias(M) + 3(M)
= bias(M) + (c + 1)3(M).

This proves the case M > M..
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Theoretical Guarantees

Proof (of Balancing Theorem)

» We must thus show that for all M € ©, there exists C > 0 such that
|EM- — 9] < C(3(M) + bias(M)). For this we shall consider two cases.

» (i) First, consider any fixed M such that M > M,. Then, by our definition
of M, and since 5(M) is non-decreasing in M,

|EM — EM) < ¢ 3(Mm).
Also, as |[EM — 6| < bias(M) + 5(M), we get

|EM — ] < |EM — EM| +|EM — 6] < c8(M) + bias(M) + 3(M)
= bias(M) + (c + 1)3(M).

This proves the case M > M..

» (ii) The other side is harder.
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Empirical Performance

How well does this work in practice?

> We consider examples with real and synthetic data.
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How well does this work in practice?

> We consider examples with real and synthetic data.

» Compare three estimators:
m usual IS: no winsorization;
m CV IS: winsorization with threshold chosen via CV;

m Balanced IS: winsorization with threshold chosen via Balancing Theorem.
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How well does this work in practice?

> We consider examples with real and synthetic data.

» Compare three estimators:
m usual IS: no winsorization;
m CV IS: winsorization with threshold chosen via CV;

m Balanced IS: winsorization with threshold chosen via Balancing Theorem.

> CV IS takes 10-20x longer than Balanced IS and is usually worse.
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Empirical Performance

How well does this work in practice?

> We consider examples with real and synthetic data.

» Compare three estimators:
m usual IS: no winsorization;
m CV IS: winsorization with threshold chosen via CV;

m Balanced IS: winsorization with threshold chosen via Balancing Theorem.

> CV IS takes 10-20x longer than Balanced IS and is usually worse.

» For small variances Balanced IS matches usual IS; as the proposal distri-
bution gets worse, Balanced IS performs much better.
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Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]

10 L 2 r—eo—o—o
L 4
8 & &
7 & L 4 L 4 4 4 L 4
6 &
5 L ]
4 ] ] { ]
3 {
2 L L L 4
1 @ @
‘—e
0 4 5 6 7 8 9 10

Sampling

10 / 23



Empirical Performance

Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]
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Empi

Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]

» Knuth suggested estimating the number of self-avoiding walks using im-
portance sampling.
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Example: self-avoiding walk [Knuth, 1976]

» Knuth suggested estimating the number of self-avoiding walks using im-
portance sampling.

» For this, we need to choose a sampling distribution, g(x), over the self-
avoiding walks.

Winsorized Importance Sampling Stanford University 11 /23



Empirical Performance

Example: self-avoiding walk [Knuth, 1976]

» Knuth suggested estimating the number of self-avoiding walks using im-
portance sampling.

» For this, we need to choose a sampling distribution, g(x), over the self-
avoiding walks.

» Consider building one sequentially.
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Example: self-avoiding walk [Knuth, 1976]




Empirical Performance

Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]
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Example: self-avoiding walk [Knuth, 1976]

g(z) =172 x 2712 x 3716

° |
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' €
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Empirical Performance

Example: self-avoiding walk [Knuth, 1976]

> Define:
m p(x) = Z%]I[SAW](X); note Z, is the number of self-avoiding random walks;

B g(x) = m; d; is the number of available neighbors to i (could be 0);

n f(x) = Z,.
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Example: self-avoiding walk [Knuth, 1976]

> Define:
m p(x) = Z%]I[SAW](X); note Z, is the number of self-avoiding random walks;

B g(x) = m; d; is the number of available neighbors to i (could be 0);

n f(x) = Z,.

> We would like to estimate

Z, = Bp[Z:] = E,[F(X)] = E {M] _E, [M}(X)}

a(X) a(X)

1 n
~ Z di(Xi)d2(Xi) -+ dmy (Xi) - Iisam (X).
i=1
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Example: self-avoiding walk [Knuth, 1976]

» How does winsorization perform?
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Example: self-avoiding walk [Knuth, 1976]

» How does winsorization perform?

» 1000 simulations of 1000 SAWs.

> §=156-10>* c=1++3, t=2.

> M e {10%,5-10%,10%,5-10%, 10%%}.
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Empirical Performance

Example: self-avoiding walk [Knuth, 1976]

» How does winsorization perform?

» 1000 simulations of 1000 SAWs.

> §=156-10>* c=1++3, t=2.

> M e {10%,5-10%,10%,5-10%, 10%%}.

IS CV IS Balanced IS
MSE | 2.075-10% | 2.457-10% | 2.437-10%
MAD | 1.817-10** | 1.567-10%* | 1.561-10%*
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Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,
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» Procedure is run as follows:

m Let My = 1028,
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m Let M, =5-10%;
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Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;
> if IVMl —Vle <a (M) set M, = Ms, and consider further truncation;
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Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;

L —M —M. sM1 4 5M: . .
> if Y -V <a (%) set M. = M, and consider further truncation;

> else, stop
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Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;

L —M —M. sM1 4 5M: . .
> if Y -V <a (%) set M. = M, and consider further truncation;

> else, stop

m Let M3 =102
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Empirical Performance

Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;
L —M —M. sM1 4 5M: . .
> if Y -V <a (%) set M. = M, and consider further truncation;
> else, stop

m Let M3 =102

=M =M sMy s M —My =M My s M
> [V V) <o () and (V2 V) <o (2210 ser m,
Ms, and consider further truncation;
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Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;

L —M —M. sM1 4 5M: . .
> if Y -V <a (%) set M. = M, and consider further truncation;
> else, stop

m Let M3 =10%
> i Y Y <« (M) and [Y"2 - V"3 < a (M) set M,

Ms, and consider further truncation;
> else, stop

ized Importance Sampling Stanford University 15 / 23



Empirical Performance

Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;

L —M —M. sM1 4 5M: . .
> if Y -V <a (%) set M. = M, and consider further truncation;
> else, stop

m Let M3 =10%
> i Y Y <« (M) and [Y"2 - V"3 < a (M) set M,

Ms, and consider further truncation;
> else, stop

ized Importance Sampling Stanford University 15 / 23



Empirical Performance

Procedure

» Procedure is run as follows:

m Let My = 1028,
> set M. =M,

m Let M, =5-10%;
L —M —M. sM1 4 5M: . .
> if Y -V <a (%) set M. = M, and consider further truncation;
> else, stop

m Let M3 =10%
> i Y Y <« (M) and [Y"2 - V"3 < a (M) set M, =

Ms, and consider further truncation;
> else, stop

> Computational complexity: O(|A| - (|A| 4+ n))
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Empirical Performance

Simulation 1: Exponential

> p= ;Expo,
> q = Expo,
> f(x) = x,

» 6e{1.315109,22.1,3,4, 10}

> M € {550,500, 400, 200, 100, 10}
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Simulation 1: Exponential
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mance

Simulation 1: Exponential

15
A
10
A Estimator
a A imporiance Samping
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A 4
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Simulation 2: Normal

> p=N(0,1),
> g=N(0,6),
> f(x)=x,

> 6=1{0.2,0.3,0.4,0.5,0.6,0.7,0.9}

> M e {550, 500, 400, 200, 100, 10}
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Simulation 2: Normal
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Simulation 2: Normal
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Empirical Performance

Simulation 3: t

v

p = t1(0,1),

> g =txn(6,1—1/21),

> f(x)=x,

» 6=1{0,05,1,15225,3}

> M e {550, 500, 400, 200, 100, 50, 5, 1}
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Empirical Performance

Simulation 4: Multivariate Normal

> p=Np(0,1),

> g=t00(0.4-1,0.8 1),
> f(x) = S0 xi

> 6 = {20,40, 60, 80, 100}

> M e {550, 500, 400, 200, 100, 50, 10}
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Simulation 4: Multivariate Normal
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Empirical Performance

Simulation 5: Normal Mixture

> p=08-N(0,05)+02-N(6,0.5),

> g = N(0,4),

> f(x)=x,

» 6=1{1,3,57,9,11,12}

> M e {550, 500, 400, 200, 100, 10}
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Simulation 5: Normal Mixture
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Conclusion

Is it worth winsorizing?

> Negative aspects:

m theory requires high n, at least 108 (but can be improved);
m must be provided truncation values;

m why winsorize symmetrically around 07
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Conclusion

Is it worth winsorizing?

> Negative aspects:

m theory requires high n, at least 108 (but can be improved);
m must be provided truncation values;
m why winsorize symmetrically around 07
P> Positive aspects:
m works well in practice;
m adaptive to the sample;

m comes with finite-sample optimality properties.
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> We need robust, adaptive alternatives.

» Balanced IS has theoretical guarantees and performs well in practice:

m in high-variance settings, it outperforms usual IS

® in low-variance settings, it matches it.

Winsorized Importance Sampling Stanford University



Conclusion

Conclusion

P Importance sampling should not rely only on sample mean.

> We need robust, adaptive alternatives.

» Balanced IS has theoretical guarantees and performs well in practice:

m in high-variance settings, it outperforms usual IS

® in low-variance settings, it matches it.

> Many future extensions.
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