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Introduction

I Let f (x) be an arbitrary function, p(x), q(x) probability densities. Suppose
we are interested in

θ = Ep[f (X )] =

∫
R

f (x)p(x)dx .

I Assume we can only sample from q, which is called the sampling distribu-
tion; p is the target distribution.

I The importance sampling estimator for θ is

θ̂n =
1
n

n∑
i=1

f (Xi)
p(Xi)

q(Xi)
, Xi ∼ q.
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Introduction

I The importance sampling (IS) estimator is unbiased:

θ̂n
n→∞−→ E

[
f (x)

p(X )

q(X )

]
=

∫
f (x)

p(x)

q(x)
q(x)dx =

∫
f (x)p(x)dx = θ,

as long as q(x) > 0 whenever f (x)p(x) 6= 0.

I But it can have huge or even infinite variance, leading to terrible estimates.

I Can we control the variance of the terms

Yi = f (Xi)
p(Xi)

q(Xi)

by sacrificing some small amount of bias?
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Winsorizing

I Can we improve on the IS estimator by winsorizing, or capping, the weights?

I Denote the random variables winsorized at levels −M and M by

Y M
i = max(−M,min(Yi ,M)).

I Define the winsorized importance sampling estimator at level M as

θ̂M
n =

1
n

n∑
i=1

Y M
i .

I Picking the right threshold level M is crucial.

I Bias-variance trade-off: smaller M implies less variance but more bias.
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How to pick M?

I Let {Yi}ni=1 be random variables distributed iid with mean θ.

I Consider winsorizing Yi at different threshold levels in a pre-chosen set
Λ = {M1, . . . ,Mk} to obtain winsorized samples {Y Mj

i }
n
i=1, j = 1, . . . , k.

I Pick the threshold level according to the rule

M∗ = min

{
M ∈ Λ : ∀M ′,M ′′ ≥ M, |Y M ′ − Y M ′′ | ≤ α ·

(
σ̂M ′ + σ̂M ′′

2

)}
,

where:

α = c · t√
n−t

c, t are chosen constants
Y M = 1

n
∑n

i=1 Y M
i

σ̂M =
√

1
n
∑n

i=1(Y M
i − Y M)2.
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Why?

I Why is this rule sensible?

I Intuitively, if we have truncation levels M ′ > M ′′, we are willing to truncate
further to M ′′ if the increase in bias | 1n

∑n
i=1 Y M ′

i − 1
n

∑n
i=1 Y M ′′

i | is small
relative to the standard deviation.

I The actual rule can be thought of as a concrete version of the Balancing
Principle (or Lepski’s Method), which is reminiscent of oracle inequalities.

I With high probability, the mean-squared error using M∗ is less than 5 times
the error roughly incurred by choosing the best threshold level in the set.
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Theorem
Let Yi be iid with mean θ. Consider winsorizing Yi at different levels in
Λ = {M1, . . . ,Mk} to obtain samples Y Mj

i . Pick the threshold level

M∗ = min

{
M ∈ Λ : ∀M ′,M ′′ ≥ M, |Y M ′ − Y M ′′ | ≤ α ·

(
σ̂M ′ + σ̂M ′′

2

)}
,

where α = c · t√
n−t with c, t chosen constants. Let K > 0 be such that

E[|Y Mj
i − E[Y Mj

i ]|3] ≤ K(V[Y Mj
i ])3/2 for all j . Then, with probability

1− 2|Λ|
(
1 +

50K√
n
− Φ

(
t
√

n
(
√

n − t)2 + t2

))
,

it holds

|Y M∗ − θ| ≤ C min
M∈Λ

{
|E[Y M

i ]− θ|+ t
√

n√
n − t

σ̂M

√
n

}
,

where C = C(c) can be made less than 4.25.
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Proof

I Apply the Balancing Theorem:

Balancing Theorem

Suppose θ ∈ R is an unknown parameter, {ÊM}M∈Θ is a sequence of
estimators of θ indexed by M ∈ Θ ⊂ R, with Θ a finite set. Additionally,
suppose that for each M we know |ÊM − θ| ≤ bias(M) + ŝ(M), where we
assume bias(M) is unknown but non-increasing in M, and ŝ(M) > 0 is
observed and non-decreasing in M. Fix c > 2, and take

M∗ = min

{
M ∈ Θ : ∀M ′,M ′′ ≥ M, |ÊM ′ − ÊM ′′ | ≤ c

(
ŝ(M ′) + ŝ(M ′′)

2

)}
.

Then we have that

|ÊM∗ − θ| ≤ C min
M∈Θ
{ŝ(M) + bias(M)} ,

where C is a constant depending on the chosen c, less than 4.25.

I Then, use Berry-Esseen to get probabilistic bounds.
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Proof (of Balancing Theorem)

I We must thus show that for all M ∈ Θ, there exists C ≥ 0 such that
|ÊM∗ − θ| ≤ C(ŝ(M) + bias(M)). For this we shall consider two cases.

I (i) First, consider any fixed M such that M > M∗. Then, by our definition
of M∗, and since ŝ(M) is non-decreasing in M,

|ÊM∗ − ÊM | ≤ c · ŝ(M).

Also, as |ÊM − θ| ≤ bias(M) + ŝ(M), we get

|ÊM∗ − θ| ≤ |ÊM∗ − ÊM |+ |ÊM − θ| ≤ cŝ(M) + bias(M) + ŝ(M)

= bias(M) + (c + 1)ŝ(M).

This proves the case M > M∗.

I (ii) The other side is harder.
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|ÊM∗ − ÊM | ≤ c · ŝ(M).
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How well does this work in practice?

I We consider examples with real and synthetic data.

I Compare three estimators:

usual IS: no winsorization;

CV IS: winsorization with threshold chosen via CV;

Balanced IS: winsorization with threshold chosen via Balancing Theorem.

I CV IS takes 10-20× longer than Balanced IS and is usually worse.

I For small variances Balanced IS matches usual IS; as the proposal distri-
bution gets worse, Balanced IS performs much better.
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Example: self-avoiding walk [Knuth, 1976]

I Knuth suggested estimating the number of self-avoiding walks using im-
portance sampling.

I For this, we need to choose a sampling distribution, q(x), over the self-
avoiding walks.

I Consider building one sequentially.
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Example: self-avoiding walk [Knuth, 1976]

I Define:
p(x) = 1

Zn
I[SAW ](x); note Zn is the number of self-avoiding random walks;

q(x) = 1
d1·d2···dmx

; di is the number of available neighbors to i (could be 0);

f (x) = Zn.

I We would like to estimate

Zn = Ep[Zn] = Ep[f (X )] = Eq

[
f (X )p(X )

q(X )

]
= Eq

[ I[SAW ](X )

q(X )

]
≈ 1

n

n∑
i=1

d1(Xi)d2(Xi) · · · dmXi
(Xi) · I[SAW ](X ).
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Example: self-avoiding walk [Knuth, 1976]

I How does winsorization perform?

I 1000 simulations of 1000 SAWs.

I θ = 1.56 · 1024; c = 1 +
√
3, t = 2.

I M ∈ {1021, 5 · 1023, 1025, 5 · 1026, 1028}.

IS CV IS Balanced IS
MSE 2.075 · 1049 2.457 · 1048 2.437 · 1048

MAD 1.817 · 1024 1.567 · 1024 1.561 · 1024
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Procedure

I Procedure is run as follows:

Let M1 = 1028;
I set M∗ = M1

Let M2 = 5 · 1026;

I if |Y M1 −Y
M2 | ≤ α

(
σ̂M1+σ̂M2

2

)
, set M∗ = M2, and consider further truncation;

I else, stop

Let M3 = 1025

I if |Y M1 −Y
M3 | ≤ α

(
σ̂M1+σ̂M3

2

)
and |Y M2 −Y

M3 | ≤ α
(
σ̂M2+σ̂M3

2

)
, set M∗ =

M3, and consider further truncation;
I else, stop

. . .

I Computational complexity: O(|Λ| · (|Λ|+ n))
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Simulation 1: Exponential

I p = 1
θ
Expo,

I q = Expo,

I f (x) = x ,

I θ ∈ {1.3, 1.5, 1.9, 2, 2.1, 3, 4, 10}

I M ∈ {550, 500, 400, 200, 100, 10}
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Simulation 2: Normal

I p = N(0, 1),

I q = N(0, θ),

I f (x) = x ,

I θ = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9}

I M ∈ {550, 500, 400, 200, 100, 10}
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Simulation 3: t

I p = t21(0, 1),

I q = t21(θ, 1− 1/21),

I f (x) = x ,

I θ = {0, 0.5, 1, 1.5, 2, 2.5, 3}

I M ∈ {550, 500, 400, 200, 100, 50, 5, 1}
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Simulation 4: Multivariate Normal

I p = Nθ(0, 1),

I q = t21,θ(0.4 · 1, 0.8 · I ),

I f (x) =
∑θ

i=1 xi ,

I θ = {20, 40, 60, 80, 100}

I M ∈ {550, 500, 400, 200, 100, 50, 10}
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Simulation 5: Normal Mixture

I p = 0.8 · N(0, 0.5) + 0.2 · N(θ, 0.5),

I q = N(0, 4),

I f (x) = x ,

I θ = {1, 3, 5, 7, 9, 11, 12}

I M ∈ {550, 500, 400, 200, 100, 10}
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Is it worth winsorizing?

I Negative aspects:

theory requires high n, at least 108 (but can be improved);

must be provided truncation values;

why winsorize symmetrically around 0?

I Positive aspects:

works well in practice;

adaptive to the sample;

comes with finite-sample optimality properties.
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Conclusion

I Importance sampling should not rely only on sample mean.

I We need robust, adaptive alternatives.

I Balanced IS has theoretical guarantees and performs well in practice:

in high-variance settings, it outperforms usual IS

in low-variance settings, it matches it.

I Many future extensions.
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