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Abstract. We introduce two conjectures which can be used to describe Kazhdan-Lusztig
cells in arbitrary infinite Coxeter groups.

1. Introduction

Groups defined by presentations of the form ⟨s1, . . . , sn | s2i = 1, (sisj)
mi,j = 1 (i, j =

1, . . . , n)⟩ are called Coxeter groups. The exponents mi,j ∈ N ∪ {∞} form the Coxeter
matrix, which characterizes the group up to isomorphism. The Coxeter groups that are
most important for applications are the Weyl groups and affine Weyl groups. For example,
the symmetric group Sn is isomorphic to the Coxeter group with presentation ⟨s1, . . . sn |
s2i = 1 (i = 1, . . . , n), (sisi+1)

3 = 1 (i = 1, . . . , n−1)⟩, and is also known as the Weyl group
of type An−1. For more information about Coxeter groups we refer to the book [H].

The notion of cells was introduced by Kazhdan and Lusztig [KL] to study representations
of Coxeter groups and their Hecke algebras. Later it was realized that cells arise in many
different branches of mathematics and have many interesting properties. Some examples
and references for the related results can be found in [G].

We are interested in the combinatorial structure of the cells in infinite Coxeter groups.
Examples of such groups include the affine Weyl groups, as well as Weyl groups of hyperbolic
Kac–Moody algebras. In contrast with the affine case, there are very few results on cells
in hyperbolic Coxeter groups available so far. We refer to [Bed] and [Bel] for some work in
this direction. Based on numerous computational experiments we introduce two conjectures
that describe the structure of the cells in infinite Coxeter groups. Our conjectures use
combinatorial rigidity for elements in an infinite Coxeter group (§4). We expect that this
notion may be of independent interest. We were able to check the conjectures for affine
groups of small rank (see [BG2] and §5), and to prove them in some special cases (see
[BG1] and §4). The latter include, in particular, the right-angled Coxeter groups previously
studied in [Bel]. The proof of the conjectures in their general form remains an open problem.

2. Visualization of cells

Let W be a Coxeter group with a fixed system of generators S. Consider a real vector
space V of dimension |S| with a basis {αs | s ∈ S}. We define a symmetric bilinear form
on V by

B(αs, αt) = − cos(π/m(s, t)), s, t ∈ S.
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Now for every s ∈ S we can define a linear map σs : V → V by

σs(λ) = λ− 2B(αs, λ)αs.

This map sends αs to −αs and fixes the hyperplane Hs orthogonal to αs with respect to
B in V . Therefore, σs is a reflection of the space V . One can show that the map s → σs
extends to a faithful linear representation of the group W in GL(V ), called the standard
geometric realization of the group.

Next let us introduce the Tits cone C ⊂ V of W . Every hyperplane Hs divides V into
two halfspaces. Let H+

s denote the closed halfspace on which the element α∗
s dual to αs is

nonnegative. The intersection of these halfspaces Σ0 = ∩H+
s for s ∈ S is a closed simplicial

cone in V . The closure of the union of all W -translates of Σ0 is again a cone in V . This
cone C is called the Tits cone. It is known that C = V if and only if W is finite. For infinite
groups W the Tits cone is significantly smaller than the whole space and hence is more
convenient for the geometric realization of the group.

Under some additional assumptions we can define the action of W on a section of the
Tits cone. In particular, this way we can describe the action of affine or hyperbolic Coxeter
groups of rank 3 on a Euclidean or Lobachevsky plane, respectively. For example, consider

the affine group W of type Ã2. This group is generated by three involutions s1, s2, s3
satisfying the relations (sisj)

3 = 1 for all i ̸= j. The space V is isomorphic to R3, and via
this the Tits cone C can be identified with the upper halfspace {(x, y, z) ∈ R3 | z ≥ 0}. It is
easy to check that the action of W preserves the affine plane M := {z = 1}, and that the
images of Σ0 intersect M in equilateral triangles (Figure 1). This construction implies that

the group W of type Ã2 can be realized as the discrete subgroup of the affine isometries of
a plane generated by reflections in the sides of an equilateral triangle.

Figure 1. Slicing the Tits cone

A generalization of this construction leads to triangle groups. Let ∆ be a triangle with
angles π/p, π/q, π/r, where p, q, r ∈ N ∪ {∞}. The triangle ∆ lives on a sphere, or in
an affine or hyperbolic plane, depending on whether 1/p + 1/q + 1/r is > 1, = 1, or < 1.
The group Wpqr of isometries of the corresponding space generated by reflections in the
sides of ∆ is respectively a finite, affine, or hyperbolic Coxeter group. For example W333 is

the affine group of type Ã2. In Figure 2 we show the tessellation of the hyperbolic plane
corresponding to W237 (the Hurwitz group). The coloring of the triangles indicates the
partition of W into cells, which we will define in the next section.
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Figure 2. W237

3. Main definitions

Consider a Coxeter group W with a system of generators S. Any element w ∈ W can be
written as a product, or word, in the generators: w = s1 . . . sN , si ∈ S. Such an expression
is called reduced if we cannot use the relations in W to produce a shorter expression for w.
An element can have different reduced expressions but it is not hard to check that all of
them have the same length. Therefore, we can define the length function l : W → N ∪ {0},
which assigns to an element w ∈ W the length of a reduced expression with respect to
the generators S (see [H, Ch. 1.6] for more details). Another important notion which can
be defined using the reduced expressions is the partial order ≤ of Chevalley–Bruhat. Let
s1 . . . sN be a word in the generators. We define a subexpression as to be any (possibly
empty) product of the form si1 . . . siM , where 1 ≤ i1 ≤ . . . ≤ iM ≤ N . We say that y ≤ w
if an expression for y appears as a subexpression of a reduced expression for w. It can be
shown that the relation ≤ is a partial order on the group W (see [H, Ch. 5.9]).

Let H denote the Hecke algebra of W over the ring A = Z[q1/2, q−1/2] of Laurent poly-

nomials in q1/2. This algebra is a free A-module with a basis Tw, w ∈ W and with multipli-
cation defined by TwTw′ = Tww′ if l(ww′) = l(w) + l(w′), and T 2

s = q + (q − 1)Ts for s ∈ S.
Together with the basis (Tw)w∈W , we can define in H another basis (Cw)w∈W . This new
basis, introduced by Kazhdan and Lusztig in [KL], has a number of important properties
and has proven to be very convenient for describing the representations of W and H. The
elements Cw can be expressed in terms of Tw by the formulae

Cw =
∑
y≤w

(−1)l(w)−l(y)ql(w)/2−l(y)Py,w(q
−1)Ty,

where the Py,w(t) ∈ Z[t] are the Kazhdan–Lusztig polynomials. The polynomials Py,w(t) are
nonzero exactly when y, w ∈ W satisfy y ≤ w, equal 1 when y = w, and otherwise have
degree deg(Py,w) at most d(y, w) := (l(w)− l(y)− 1)/2. If deg(Py,w) = d(y, w), we denote
the leading coefficient by µ(y, w) = µ(w, y), and in all other cases (including when y and w
are not comparable in the partial order) we put µ(y, w) = µ(w, y) = 0. We indicate that
µ(y, w) ̸= 0 by y−−w.
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Using the polynomials Py,w we can define the partial orders ≤L, ≤R, ≤LR on W . First,
for w ∈ W we define the left and right descent sets:

L(w) = {s ∈ S | sw < w}, R(w) = {s ∈ S | ws < w}.
Next, we say that y ≤L w if there exists a sequence y = y0, y1, . . . , yn = w in W such that
yi−−yi+1 and L(yi) ̸⊂ L(yi+1) for all 0 ≤ i < n. The relation ≤R can be defined using
≤L: we put y ≤R w if y−1 ≤L w−1. Finally, y ≤LR w means that there exists a sequence
y = y0, y1, . . . , yn = w such that for all i < n, we have either yi ≤L yi+1 or yi ≤R yi+1. It is
easy to check that ≤L, ≤R and ≤LR are partial orders on W ; we denote the corresponding
equivalence relations by ∼L, ∼R and ∼LR. The equivalence classes of ∼L (respectively, ∼R,
∼LR) are called the left cells (resp. right cells, two-sided cells) of W . It follows from the
definitions that the left and right cells have very similar properties, thus we will mostly deal
with only one of these two types of cells.

Consider for example Figure 2, which depicts the cells of W237. There are five 2-sided
cells, corresponding to the five shades of gray in the figure. The left cells can also be seen:
they are the connected unions of triangles of a given color. Note that this group apparently
has infinitely many left cells.

Now consider the multiplication of the C-basis element in H. We can write

CxCy =
∑
z

hx,y,zCz, hx,y,z ∈ A.

Let a(z) be the smallest integer such that qa(z)/2hx,y,z ∈ A+ for all x, y ∈ W , where

A+ = Z[q1/2]. Denote by Di the set {z ∈ W | l(z) − a(z) − 2δ(z) = i}, where δ(z) is the
degree of the polynomial Pe,z, l(z) is the length function on W , and a(z) is defined as above.
The set D = D0 consists of distinguished involutions of W introduced by Lusztig in [L2,
1.3].

Lusztig proved that in affine groups there is a bijection between the set D and the left
(or right) cells of W [L2]. This deep result has many important corollaries and applications.
One of the main goals of our work is to make this correspondence between distinguished
involutions and cells explicit, so that one can describe the structure of the cells using the
distinguished involutions of the group. Another goal is to find an algorithm that produces
distinguished involutions of a given group. In the next section we will formulate two con-
jectures that answer these questions and present some results to support the conjectures.

4. Conjectures and results

We will need some more notations and definitions. Given w ∈ W , we write w = x.y if
w = xy and l(w) = l(x) + l(y). Denote by Z(w) the set of all v ∈ W such that w = x.v.y
for some x, y ∈ W and v ∈ WI for some I ⊂ S with WI finite. (We recall that for a
subset I ⊂ S, WI denotes the standard parabolic subgroup of W generated by s ∈ I.) We
call v ∈ Z(w) maximal in w if it is not a proper subword of any other v′ ∈ Z(w) such
that w = x′.v′.y′ with x′ ≤ x and y′ ≤ y. Let Z = Z(W ) be the union of Z(w) over all
w ∈ W , Df := D∩Z be the set of distinguished involutions of the finite standard parabolic
subgroups of W and D•

f := Df r (S ∪ {1}). Note that each of the sets Z(W ), Df and D•
f

is finite.

We call w = x.v.y rigid at v if (i) v ∈ Df , (ii) v is maximal in w, and (iii) for every reduced
expression w = x′.v′.y′ with a(v′) ≥ a(v), we have l(x) = l(x′) and l(y) = l(y′). This notion
of combinatorial rigidity plays an important role in our considerations. Figure 3 helps to
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understand its meaning using the Cayley graph of the group W . Maximal distinguished
involutions of the finite parabolic subgroups correspond to the “long cycles” in the graph.
Combinatorial rigidity means that such a cycle can not be shifted along the presentation

of w in any direction. For example, in the triangle group W333 of type Ã2, the element
w = s3s1s2s1s3 is rigid at v = s1s2s1, but w

′ = s2s3s1s2s1s3s2 is not rigid at v.

(a) (b)

Figure 3. Rigid(a) and non-rigid(b) expressions in the Cayley graph

Our conjectures can be formulated as follows:

Conjecture 1. (“distinguished involutions”) Let v = x.v1.x
−1 ∈ D with v1 ∈ D•

f and

a(v) = a(v1), and let v′ = s.v.s with s ∈ S. Then if sxv1 is rigid at v1, we have v′ ∈ D.

Conjecture 2. (“basic equivalences”) Let w = y.v0 with v0 maximal in w.

(a) Let u = x.v1.x
−1 ∈ D satisfies a(u) ≤ a(v0) and w′ = wu is reduced and has

a(w′) = a(w). Then there exists v01 such that v0 = v′0.v01, v′01xv1 is rigid at
v1 for every v′01 such that v0 = v′′0 .v

′
01 and l(v′01) = l(v01), the right descent set

R(w′v−1
01 ) ( R(w), and µ(w,w′v−1

01 ) ̸= 0, which implies w ∼R w′v−1
01 ∼R w′.

(b) Let w′′ = w.v1 with v1 ∈ Df not maximal in w′′ and a(w′′) = a(v0). Then we can

write w = y.v01.v02.v03 so that v03.v1 is maximal in w′′, R(w′′v−1
02 ) ̸= R(w), and

µ(w,w′′v−1
02 ) ̸= 0. So again w ∼R w′′v−1

02 ∼R w′′.

Conjecture 1 can be used to inductively construct distinguished involutions in an infinite
Coxeter group W starting from the involutions of its finite standard parabolic subgroups.
Conjecture 2, in turn, allows one to obtain equivalences in the group using its distinguished
involutions. Let us note that the usual method for obtaining results of this kind is based on
computing Kazhdan–Lusztig polynomials. This requires many computations and, moreover,
does not give any a priori information about the elements that are distinguished involutions
or satisfy the cell equivalences in the group. For infinite Coxeter groups in which an ex-
haustive search is not possible this latter disadvantage becomes critical. Our Conjecture
2 does not necessarily give all equivalences in the group, but still one can expect that the
equivalences provided by the conjecture suffice for describing the cells. More precisely, we
have the following theorem.

Theorem 1. [BG1] If an infinite Coxeter group satisfies Conjectures 1 and 2, and also two
conjectures of Lusztig, then

(1) The set D of distinguished involutions consists of the union of v ∈ Df and the
elements of W obtained from them using Conjecture 1.

(2) The relations described in Conjecture 2 determine the partition of W into right cells.
(3) The relations described in Conjecture 2 together with its ∼L-analogue determine the

partition of W into two-sided cells.
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The conjectures of Lusztig to which we refer in the theorem are so-called “positivity
conjecture” and a conjecture about a combinatorial description of the function a(z). The
positivity conjecture is now proved for a wide class of infinite Coxeter groups that includes
affine Weyl groups. On the other hand, there have been recently found examples of Coxeter
groups for which the conjecture about the function a(z) is false. We expect that even for
these groups the conclusion of Theorem 1 is true but it would require a different argument.
We refer to [BG1] for more details and the proof of the theorem.

We were able to prove Conjectures 1 and 2 under certain additional assumptions. The
results are given in the following two theorems.

Theorem 2. [BG1] Let v = x.v1.x
−1 ∈ D with v1 ∈ D•

f , a(v) = a(vs), and L(vs)rR(vs) ̸=
∅. Then if v′ = s.v.s is rigid at v1, we have v′ ∈ D.

Theorem 3. [BG1] Let w = x.v0 = tn . . . t1.sl . . . s1 with ti, si ∈ S, v0 = sl . . . s1 ∈ Df is
the longest element of a standard finite parabolic subgroup of W which is maximal in w and
a(w) = a(v0); u = y.u0.y

−1 ∈ D with u0 ∈ Df such that a(u) = a(u0) = l; and w′ = w.u.v01
with v01 = s1 . . . sl−1 has a(w′) = a(w) and R(w′) ( R(w).

Assume that

(1) For any vj = tj . . . t1v0t1 . . . tj, j = 0, . . . , n − 1 and t = tj+1 or t = tj−1 if tj−1 ̸∈
R(vj), we have a(vjt) = a(vj), L(vjt)rR(vjt) ̸= ∅ and tvjt is rigid at v0.

(2) For any uj = sj−1 . . . s1us1 . . . sj−1, j = 1, . . . , l− 1 with u1 = u, we have a(ujsj) =
a(uj), L(ujsj)rR(ujsj) ̸= ∅ and sjujsj is rigid at u0;

Then µ(w,w′) ̸= 0 and w ∼R w′.

The additional assumption L(vs) r R(vs) ̸= ∅ in Theorem 2 may seem minor, but
unfortunately this is not the case. In particular, conditions (1) and (2) in Theorem 3
appear as a consequence of this assumption. The proof of the theorems 2 and 3 in [BG1]
essentially uses the results from two unpublished letters of Springer and Lusztig [LS]. A
possible approach to the proof of our conjectures in general requires developing further the
ideas of this correspondence.

Although the conditions of Theorems 2 and 3 are not always met for all W , the theorems
can still be used to produce interesting results. We will give some examples in the next
section, other applications of the theorems are considered in [BG1].

5. Cells in affine groups of rank 3

Affine Weyl groups of rank 3 have type Ã2, B̃2 (= C̃2) or G̃2 (see [H, Chapter 4]). The
cells in these groups were first described by Lusztig in [L1]. In this section we will show
how the same results can be relatively easily obtained using conjectures from §4.

Type Ã2: The group W is generated by involutions s1, s2, s3 with relations (s1s2)
3 =

(s2s3)
3 = (s3s1)

3 = 1. We have

Df = {1, s1, s2, s3, s1s3s1, s3s2s3, s2s1s2}, D•
f = {s1s3s1, s3s2s3, s2s1s2}.

Applying Conjecture 1 with v = v1 = s1s3s1, we get v′ = s2vs2 ∈ D. Note that after this
the inductive procedure terminates as the elements s1s2v and s3s2v which would come out
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on the next step are both non-rigid at v. We can apply the same procedure to the other
two involutions from D•

f . As a result we get

D = {1, s1, s2, s3, s1s3s1, s3s2s3, s2s1s2, s2s1s3s1s2, s1s3s2s3s1, s3s2s1s2s3}.

Therefore, the group W of type Ã2 has 10 left (right) cells. Using Conjecture 2 and the
geometric realization of the group it is easy to show that the partition of W into cells is the
one shown on Figure 4(a), where two-sided cells correspond to the regions of the same color
and left cells correspond to the connected components of the two-sided cells. This coincides
with the result of [L1]. Note that in order to produce the cells we only need Theorems 2
and 3, and thus our results for this case are unconditional.

Type B̃2: The group W is generated by involutions s1, s2, s3 with (s1s2)
2 = (s2s3)

4 =
(s1s3)

4 = 1.

D•
f = {s1s2, (s2s3)2, (s1s3)2}.

Conjecture 1 gives

D = {1, s1, s2, s3, s1s2, s3s1s2s3, s1s3s1s2s3s1, s2s3s1s2s3s2,
s2s3s2s3, s1s2s3s2s3s1, s3s1s2s3s2s3s1s3, s2s3s1s2s3s2s3s1s3s2,

s1s3s1s3, s2s1s3s1s3s2, s3s2s1s3s1s3s2s3, s1s3s2s1s3s1s3s2s3s1}.

The partition of W into cells, which we get using Conjecture 2, is shown on Figure 4(b).
One can quite easily obtain this partition by following the cycles which correspond to the
distinguished involutions on the tessellation of the plane. The result is again in agreement
with [L1]. Note that in this case one can check that the assumptions of Theorem 2 hold, but
not the assumptions of Theorem 3. Thus we can compute the distinguished involutions, but
we cannot prove that our relations suffice to generate the cells, and therefore cannot be sure
that we actually have all the distinguished involutions without using Lusztig’s computations
in [L1] or referring to our conjectures.

Type G̃2: The group W is generated by involutions s1, s2, s3 with (s1s2)
2 = (s3s1)

3 =
(s2s3)

6 = 1.

D•
f = {s1s2, s3s1s3, (s2s3)3}.

The application of Conjecture 1 in this case already requires some effort because of a large
number of possible variants. In order to generate the list of distinguished involutions we
used a computer. Our algorithms and their application to other affine Weyl groups are



8 M. V. BELOLIPETSKY AND P. E. GUNNELLS

described in [BG2]. As a result of these computations, we obtain

D = {1, s1, s2, s3, s1s2,
s3s1s2s3, s2s3s1s2s3s2, s3s2s3s1s2s3s2s3, s1s3s2s3s1s2s3s2s3s1, s2s3s2s3s1s2s3s2s3s2,

s3s1s3, s2s3s1s3s2, s3s2s3s1s3s2s3, s2s3s2s3s1s3s2s3s2,

s3s2s3s2s3s1s3s2s3s2s3, s1s3s2s3s2s3s1s3s2s3s2s3s1,

s2s3s2s3s2s3, s1s2s3s2s3s2s3s1, s3s1s2s3s2s3s2s3s1s3, s2s3s1s2s3s2s3s2s3s1s3s2,

s3s2s3s1s2s3s2s3s2s3s1s3s2s3, s2s3s2s3s1s2s3s2s3s2s3s1s3s2s3s2,

s1s3s2s3s1s2s3s2s3s2s3s1s3s2s3s1, s2s1s3s2s3s1s2s3s2s3s2s3s1s3s2s3s1s2,

s3s1s2s3s2s3s1s2s3s2s3s2s3s1s3s2s3s2s1s3,

s2s3s1s2s3s2s3s1s2s3s2s3s2s3s1s3s2s3s2s1s3s2,

s3s2s3s1s2s3s2s3s1s2s3s2s3s2s3s1s3s2s3s2s1s3s2s3,

s1s3s2s3s1s2s3s2s3s1s2s3s2s3s2s3s1s3s2s3s2s1s3s2s3s1}.

Therefore, the group W of type G̃2 has 28 left (right) cells. The interested reader can
check that Conjecture 2 allows us to obtain the partition of W into cells which is shown on
Figure 4(c). Note that for this case the conditions of neither Theorem 2 nor 3 are satisfied.
For instance, we have

L(s3s2s3s1s2s3s2s3s2s3s1s3s2s3s1) \ R(s3s2s3s1s2s3s2s3s2s3s1s3s2s3s1) = ∅.
Thus our results here rely on unproved instances of the conjectures, but nevertheless the
results agree with [L1].

(a) (b) (c)

Figure 4. Cells in Ã2, B̃2 and G̃2
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