Counting Lattices

Arbeitstagung, Bonn, June 2009
Mikhail Belolipetsky

Let H be a non-compact simple Lie group endowed with a fixed Haar measure μ. Let $\mathrm{L}_{H}(x)$ (resp. $\left.\mathrm{AL}_{H}(x)\right)$ denote the number of conjugacy classes of lattices (resp. arithmetic lattices) in H of covolume at most x.

A classical theorem of Wang [W] asserts that if H is not locally isomorphic to $\mathrm{SL}_{2}(\mathbb{R})$ or $\mathrm{SL}_{2}(\mathbb{C}), \mathrm{L}_{H}(x)$ is finite for every x. This is also true for $\mathrm{AL}_{H}(x)$ even for $H=\mathrm{SL}_{2}(\mathbb{R})$ or $\mathrm{SL}_{2}(\mathbb{C})$ by a result of Borel $[\mathrm{Bo}]$.

Recent years there has been a growing interest in the asymptotic behavior of these functions.

In [BGLM] the rate of growth of torsion-free lattices was determined for $H=$ $\mathrm{SO}(n, 1), n \geq 4$; it is super-exponential. The lower bound there is already obtained by considering a suitable single lattice in $\mathrm{SO}(n, 1)$ and its finite index subgroups. The upper bound is proved by geometric methods.

In [BGLS] we give a very precise super-exponential estimate for $\mathrm{AL}_{H}(x)$ for $H=\mathrm{SL}_{2}(\mathbb{R})$. Our main result states that $\lim _{x \rightarrow \infty} \frac{\log \mathrm{AL}_{H}(x)}{x \log x}=\frac{1}{2 \pi}$. Here again the full rate of growth is already obtained by considering the finite index subgroups of a single lattice - the main challenge is in proving the upper bound.

In [GLP] and [LN] (see also [GLNP]) precise asymptotic estimates were given for the growth rate of the number of congruence subgroups in a fixed lattice Λ in H. (Some of the results there are conditional on the GRH). That rate of growth turns out to depend only on H and not on Λ.

All this suggested that the rate of growth of the finite index subgroups within one lattice is the main contribution to $\mathrm{L}_{H}(x)$. This led to the following conjecture (see e.g. [GLNP]):

Let H be a non-compact simple Lie group of real rank at least 2. Then

$$
\lim _{x \rightarrow \infty} \frac{\log \mathrm{~L}_{H}(x)}{(\log x)^{2} / \log \log x}=\gamma(H), \quad \text { with } \quad \gamma(H)=\frac{(\sqrt{h(h+2)}-h)^{2}}{4 h^{2}}
$$

where h is the Coxeter number of the (absolute) root system corresponding to H (i.e. the root system of the split form of H).

In $[\mathrm{B}]$ it is shown that the growth rate of the maximal arithmetic lattices in H is very small (conjecturally polynomial, and indeed a polynomial bound is given there for the maximal non-uniform lattices and a slightly weaker bound of the form $x^{(\log x)^{\epsilon}}$ is proved for all maximal lattices). This gave a further support to the conjecture.

In [BL2] we show that the conjecture is essentially true for non-uniform lattices but in [BL1] we prove, somewhat surprisingly, that it is false in general. In fact, we discover here a new phenomenon: the main contribution to the growth of uniform lattices in H does not come from subgroups of a single lattice. As it will be explained below, it comes from a "diagonal counting" when we run through different arithmetic groups Γ_{i} defined over number fields k_{i} of different degrees d_{i}, and for each Γ_{i} we count some of its subgroups. The difference between the uniform and
non-uniform cases relies on the fact that all non-uniform lattices in H are defined over number fields of a bounded degree over \mathbb{Q}. On the other hand, uniform lattices may come from number fields k_{i} of arbitrarily large degrees, i.e., $d_{i} \rightarrow \infty$.

We now briefly describe the line of the argument. If Γ is an arithmetic lattice, there exists a number field k with ring of integers \mathcal{O} and the set of archimedean valuations V_{∞}, an absolutely simple, simply connected k-group G and an epimorphism $\phi: G=\prod_{v \in V_{\infty}} \mathrm{G}\left(k_{v}\right)^{o} \rightarrow H$, such that $\operatorname{Ker}(\phi)$ is compact and $\phi(\mathrm{G}(\mathcal{O}))$ is commensurable with Γ. G. Prasad $[\mathrm{P}]$ gave an explicit formula for the covolume of such $\phi(\mathrm{G}(\mathcal{O}))$ in H. The analysis of this formula and also the growth of the low-index congruence subgroups of $\phi(\mathrm{G}(\mathcal{O}))$ shows that we can expect fast subgroup growth if we consider groups over fields of growing degree with relatively slow growing discriminant \mathcal{D}_{k}. More precisely, we can combine this two entities together into the so-called root-discriminant $r d_{k}=\mathcal{D}_{k}^{1 / \operatorname{deg} k}$ and then look for a sequence of number fields k_{i} with degrees growing to ∞ but with bounded $r d_{k_{i}}$. In a seminal work Golod and Shafarevich [GS] came up with a construction of infinite class field towers. It is such a tower of number fields k_{i} that we use to define our arithmetic subgroups Γ_{i}. Galois cohomology methods show the existence of suitable k_{i}-algebraic groups G_{i} which give rise to arithmetic lattices $\Gamma_{i}=\mathrm{G}_{i}\left(\mathcal{O}_{i}\right)$ in H whose covolume is bounded exponentially in $d_{i}=\operatorname{deg} k_{i}$. We then present $c^{d_{i}^{2}}$ congruence subgroups of Γ_{i} whose covolume is still bounded exponentially in d_{i}. Using the theory of Bruhat-Tits buildings we can show that sufficiently many of such congruence subgroups are not conjugate to each other in H. This completes the proof of the lower bound $\log \mathrm{L}_{H}(x) \geq a(\log x)^{2}$ for some positive constant $a=a(H)$ at least for most real simple Lie groups H. The remaining cases require further consideration: for example, if H is a complex Lie group, the fields k_{i} should be replaced by suitable extensions obtained via the help of the theory of Pisot numbers. These fields do not form a class field tower any more but still have bounded root discriminant.

The proof of the upper bound $\log \mathrm{L}_{H}(x) \leq b(\log x)^{2}$ for groups H of real rank at least 2 which satisfy Serre's congruence subgroup conjecture in [BL1] presents a new type of difficulty: this time we need to obtain a uniform upper bound on growth which does not depend on the degrees of the defining fields. (This is what makes the growth rate $x^{\log x}$ instead of $x^{\log x / \log \log x}$.) The new bound requires some new "subgroup growth" methods which we develop in [BL1]. A key ingredient of the proof is an important theorem of Babai, Cameron and Pálfy (see [LS, Theorem 4, p. 339]) which bounds the size of permutation groups with restricted Jordan-Holder components. We are taking advantage of the fact that this restriction applies uniformly for the profinite completions of all the lattices in a given group H.

On the other hand, the result of [BL2] shows that if one restricts attention only to non-uniform lattices then the original conjecture is true for most higher rank simple groups H (and conjecturally for all). Thus, let us assume that if G is a split form of H, then the center of the simply connected cover of G is a 2-group, and that H is not a triality. This is the case for most H 's. In fact, it says that H is not of type E_{6} or D_{4}, and if it is of type A_{n}, then n is of the form $n=2^{\alpha}-1$ for some $\alpha \in \mathbb{N}$. For such H we can show that $\lim _{x \rightarrow \infty} \frac{\log L_{H}^{n u}(x)}{(\log x)^{2} / \log \log x}=\gamma(H)$, where $\gamma(H)$ is defined as above and $\mathrm{L}_{H}^{n u}(x)$ denotes the number of conjugacy classes of non-uniform lattices in H of covolume at most x.

The proof of of this result uses Gauss's Theorem which gives a bound for the 2 -rank of the class groups of quadratic extensions. In order to be able to extend the
result to all simple groups H we would need similar bounds for l-ranks for $l>2$. In fact, we show in [BL2] that it is essentially equivalent to such bounds.

References

[B] M. Belolipetsky, Counting maximal arithmetic subgroups (with an appendix by J. Ellenberg and A. Venkatesh), Duke Math. J. 140 (2007), no. 1, 1-33.
[BGLS] M. Belolipetsky, T. Gelander, A. Lubotzky, A. Shalev, Counting arithmetic lattices and surfaces, preprint arXiv:0811.2482v1 [math.GR].
[BL1] M. Belolipetsky, A. Lubotzky, Counting manifolds and class field towers, preprint arXiv:0905.1841v1 [math.GR].
[BL2] M. Belolipetsky, A. Lubotzky, Counting non-uniform lattices, in preparation.
[Bo] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa (4) 8 (1981), 1-33.
[BGLM] M. Burger, T. Gelander, A. Lubotzky, S. Mozes, Counting hyperbolic manifolds, Geom. Funct. Anal. 12 (2002), 1161-1173.
[GLNP] D. Goldfeld, A. Lubotzky, N. Nikolov, L. Pyber, Counting primes, groups and manifolds, Proc. of National Acad. of Sci. 101 (2004), 13428-13430.
[GLP] D. Goldfeld, A. Lubotzky, L. Pyber, Counting congruence subgroups, Acta Math. 193 (2004), 73-104.
[GS] E. S. Golod, I. P. Shafarevich, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261-272 [Russian].
[LN] A. Lubotzky, N. Nikolov, Subgroup growth of lattices in semisimple Lie groups, Acta Math. 193 (2004), 105-139.
[LS] A. Lubotzky, D. Segal, Subgroup growth, Progr. Math. 212, Birkhäuser Verlag, Basel, 2003.
[P] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 91-117.
[W] H. C. Wang, Topics on totally discontinuous groups, in Symmetric spaces (St. Louis, Mo., 1969-1970), Pure Appl. Math. 8, Dekker, New York, 1972, 459-487.

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK;
Sobolev Institute of Mathematics, Koptyuga 4, 630090 Novosibirsk, Russia
E-mail address: mikhail.belolipetsky@durham.ac.uk

