Subspace stabilisers in hyperbolic lattices

Mikhail Belolipetsky, IMPA

Let $M = \mathbf{H}^n / \Gamma$ be a finite volume *hyperbolic orbifold*. We call by a *totally geodesic subspace* a finite volume totally geodesic immersed suborbifolds of M.

Let $M = \mathbf{H}^n / \Gamma$ be a finite volume *hyperbolic orbifold*. We call by a *totally geodesic subspace* a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis–Mohamadi (for n = 3) and Bader–Fisher–Miller–Stover] If *M* contains infinitely many maximal totally geodesic subspaces of dimension at least 2, then *M* is arithmetic.

Let $M = \mathbf{H}^n / \Gamma$ be a finite volume *hyperbolic orbifold*. We call by a *totally geodesic subspace* a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis–Mohamadi (for n = 3) and Bader–Fisher–Miller–Stover] If *M* contains infinitely many maximal totally geodesic subspaces of dimension at least 2, then *M* is arithmetic.

For n = 3 this answers a question of A. Reid and C. McMullen.

Let $M = \mathbf{H}^n / \Gamma$ be a finite volume *hyperbolic orbifold*. We call by a *totally geodesic subspace* a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis–Mohamadi (for n = 3) and Bader–Fisher–Miller–Stover] If *M* contains infinitely many maximal totally geodesic subspaces of dimension at least 2, then *M* is arithmetic.

- For n = 3 this answers a question of A. Reid and C. McMullen.
- Arithmetic hyperbolic 3-orbifolds not of the *simplest type* and 2-orbifolds are excluded.

Let $M = \mathbf{H}^n / \Gamma$ be a finite volume *hyperbolic orbifold*. We call by a *totally geodesic subspace* a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis–Mohamadi (for n = 3) and Bader–Fisher–Miller–Stover] If *M* contains infinitely many maximal totally geodesic subspaces of dimension at least 2, then *M* is arithmetic.

- For n = 3 this answers a question of A. Reid and C. McMullen.
- Arithmetic hyperbolic 3-orbifolds not of the *simplest type* and 2-orbifolds are excluded.
- The result tells very little about the nature of totally geodesic subspaces.

FC-subspaces

Definition. A totally geodesic subspace *N* of a hyperbolic orbifold $M = \mathbf{H}^n / \Gamma$ is called a *finite centraliser subspace* (or an *fc-subspace*) if there exists a finite subgroup $F < \text{Comm}(\Gamma)$ such that H = Fix(F) is a subspace of \mathbf{H}^n and $N = H / \text{Stab}_{\Gamma}(H)$.

FC-subspaces

Definition. A totally geodesic subspace *N* of a hyperbolic orbifold $M = \mathbf{H}^n / \Gamma$ is called a *finite centraliser subspace* (or an *fc-subspace*) if there exists a finite subgroup $F < \text{Comm}(\Gamma)$ such that H = Fix(F) is a subspace of \mathbf{H}^n and $N = H / \text{Stab}_{\Gamma}(H)$.

Here $\operatorname{Fix}(F) = \{x \in \mathbf{H}^n | gx = x, \forall g \in F\}$, and $\operatorname{Comm}(\Gamma) = \{g \in \operatorname{Isom}(\mathbf{H}^n) | \Gamma \cap g\Gamma g^{-1} \text{ has finite index in both} \}.$

FC-subspaces

Definition. A totally geodesic subspace *N* of a hyperbolic orbifold $M = \mathbf{H}^n / \Gamma$ is called a *finite centraliser subspace* (or an *fc-subspace*) if there exists a finite subgroup $F < \text{Comm}(\Gamma)$ such that H = Fix(F) is a subspace of \mathbf{H}^n and $N = H / \text{Stab}_{\Gamma}(H)$.

Here $\operatorname{Fix}(F) = \{x \in \mathbf{H}^n | gx = x, \forall g \in F\}$, and $\operatorname{Comm}(\Gamma) = \{g \in \operatorname{Isom}(\mathbf{H}^n) | \Gamma \cap g\Gamma g^{-1} \text{ has finite index in both} \}.$

Important Property: An *fc*-subspace of dimension ≥ 2 of a finite volume hyperbolic orbifold is a finite volume hyperbolic orbifold.

Theorem 2. [B.–Bogachev–Kolpakov–Slavich]

A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Theorem 2. [B.–Bogachev–Kolpakov–Slavich] *A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.*

Theorem 3. [BBKS]

Let M be a finite volume hyperbolic n-orbifold, $n \ge 2$ *.*

- If M is arithmetic, then all the totally geodesic subspaces of codimension at most ⁿ⁺¹/₂ are fc-subspaces;
- ► If M is non-arithmetic, then the number of its fc-subspaces is bounded by c Vol(M), c = const(n).

Theorem 2. [B.–Bogachev–Kolpakov–Slavich] *A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.*

Theorem 3. [BBKS]

Let M be a finite volume hyperbolic n-orbifold, $n \ge 2$ *.*

- If M is arithmetic, then all the totally geodesic subspaces of codimension at most ⁿ⁺¹/₂ are fc-subspaces;
- ► If M is non-arithmetic, then the number of its fc-subspaces is bounded by c Vol(M), c = const(n).

Corollary 1. If M is an arithmetic hyperbolic 3-orbifold, then *all* its totally geodesic subspaces are fc.

Theorem 2. [B.–Bogachev–Kolpakov–Slavich] *A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.*

Theorem 3. [BBKS]

Let M be a finite volume hyperbolic n-orbifold, $n \ge 2$ *.*

- If M is arithmetic, then all the totally geodesic subspaces of codimension at most ⁿ⁺¹/₂ are fc-subspaces;
- ► If M is non-arithmetic, then the number of its fc-subspaces is bounded by c Vol(M), c = const(n).

Corollary 1. If M is an arithmetic hyperbolic 3-orbifold, then *all* its totally geodesic subspaces are fc.

Corollary 2. A finite area hyperbolic surface is arithmetic if and only if all of its infinitely many closed geodesics are fc-subspaces.

Theorem 2. [B.–Bogachev–Kolpakov–Slavich]

A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Theorem 2. [B.–Bogachev–Kolpakov–Slavich] *A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.*

Proof of Theorem 2 is based on:

Theorem 2. [B.–Bogachev–Kolpakov–Slavich] *A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.*

Proof of Theorem 2 is based on:

- Borel's density theorem;
- A construction of involutions for each of the three types of arithmetic lattices;
- Margulis superrigidity theorem.

Theorem 4. [BBKS]

Let *M* be a quasi-arithmetic hyperbolic orbifold with adjoint trace field *k*, and $N \subset M$ be a finite-volume totally geodesic suborbifold of dimension $m \ge 2$ with adjoint trace field *K*. Then *N* is hyperbolic and quasi-arithmetic, and $k \subseteq K$. If *M* is arithmetic, then *N* is arithmetic as well.

Theorem 4. [BBKS]

Let *M* be a quasi-arithmetic hyperbolic orbifold with adjoint trace field k, and $N \subset M$ be a finite-volume totally geodesic suborbifold of dimension $m \ge 2$ with adjoint trace field K. Then N is hyperbolic and quasi-arithmetic, and $k \subseteq K$. If *M* is arithmetic, then N is arithmetic as well.

Definition. If k = K, we call N a subform space.

Theorem 4. [BBKS]

Let *M* be a quasi-arithmetic hyperbolic orbifold with adjoint trace field *k*, and $N \subset M$ be a finite-volume totally geodesic suborbifold of dimension $m \ge 2$ with adjoint trace field *K*. Then *N* is hyperbolic and quasi-arithmetic, and $k \subseteq K$. If *M* is arithmetic, then *N* is arithmetic as well.

Definition. If k = K, we call N a subform space.

Prop. 1. Let $N = \mathbf{H}^m / \Lambda$ be a subform space of an arithmetic orbifold $M = \mathbf{H}^n / \Gamma$. Then N is an fc-subspace associated to a single involution in the commensurator of Γ .

Prop. 2. Let M be a type I (resp. type II) arithmetic hyperbolic orbifold, and $N \subset M$ a subform space in M of dimension ≥ 2 . Then N is a type I (resp. type II) arithmetic hyperbolic orbifold.

Theorem 5. [BBKS]

Let $N = \mathbf{H}^m / \Lambda$ be a totally geodesic subspace of an arithmetic hyperbolic orbifold $M = \mathbf{H}^n / \Gamma$. Suppose that N is not a 3-dimensional type III orbifold and that $[K : k] = d \ge 1$, where K (resp. k) denotes the adjoint trace field of Λ (resp. Γ). Then there exists a unique minimal subform space $S \subseteq M$ of dimension $(m + 1) \cdot d - 1$ such that $N \subseteq S$, and there is no proper subform space of S which contains N.

Theorem 5. [BBKS]

Let $N = \mathbf{H}^m / \Lambda$ be a totally geodesic subspace of an arithmetic hyperbolic orbifold $M = \mathbf{H}^n / \Gamma$. Suppose that N is not a 3-dimensional type III orbifold and that $[K : k] = d \ge 1$, where K (resp. k) denotes the adjoint trace field of Λ (resp. Γ). Then there exists a unique minimal subform space $S \subseteq M$ of dimension $(m + 1) \cdot d - 1$ such that $N \subseteq S$, and there is no proper subform space of S which contains N.

Definition. In the settings of Theorem 5 if the minimal subform space S of M which contains N is precisely M, we say that N is a *Weil* restriction subspace of M.

Theorem 5. [BBKS]

Let $N = \mathbf{H}^m / \Lambda$ be a totally geodesic subspace of an arithmetic hyperbolic orbifold $M = \mathbf{H}^n / \Gamma$. Suppose that N is not a 3-dimensional type III orbifold and that $[K : k] = d \ge 1$, where K (resp. k) denotes the adjoint trace field of Λ (resp. Γ). Then there exists a unique minimal subform space $S \subseteq M$ of dimension $(m + 1) \cdot d - 1$ such that $N \subseteq S$, and there is no proper subform space of S which contains N.

Definition. In the settings of Theorem 5 if the minimal subform space S of M which contains N is precisely M, we say that N is a *Weil* restriction subspace of M.

Corollary. A totally geodesic immersion $N \subseteq M$ of arithmetic hyperbolic orbifolds is a composition of two geodesic immersions

 $N \subseteq S \subseteq M$,

where *N* is a *Weil restriction subspace* of *S*, and *S* is a *subform space* of *M*.

Example 1

Let $k = \mathbb{Q}$, $V = \mathbb{Q}^{n+1}$ and consider the symmetric bilinear form given in the standard basis by:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \oplus_m \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$$

where m = (n-1)/2. Let

$$M = \begin{bmatrix} 0 & -1/\sqrt{5} \\ -\sqrt{5} & 0 \end{bmatrix} \oplus_m \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ 1/\sqrt{5} & -2/\sqrt{5} \end{bmatrix}$$

Have

 $M^{t}AM = A, M^{2} = id, M$ corresponds to an involution in **PO** $(f)_{\mathbb{Q}}$.

The positive eigenspace V^+ relative to the eigenvalue 1 for *M* has dimension (n+1)/2, with orthogonal basis \mathscr{B}_+ given by:

$$\mathscr{B}_+ = (e_0 - \sqrt{5}e_1, e_{2i} + (\sqrt{5} - 2)e_{2i+1}), i = 1, \dots, m.$$

The negative eigenspace V^- relative to the eigenvalue -1 has the same dimension (n+1)/2, with orthogonal basis \mathcal{B}_- given by:

$$\mathscr{B}_{-} = (e_0 + \sqrt{5}e_1, e_{2i} + (-\sqrt{5}-2)e_{2i+1}), i = 1, \dots, m.$$

The positive eigenspace V^+ relative to the eigenvalue 1 for *M* has dimension (n+1)/2, with orthogonal basis \mathscr{B}_+ given by:

$$\mathscr{B}_+ = (e_0 - \sqrt{5}e_1, e_{2i} + (\sqrt{5} - 2)e_{2i+1}), i = 1, \dots, m.$$

The negative eigenspace V^- relative to the eigenvalue -1 has the same dimension (n+1)/2, with orthogonal basis \mathscr{B}_- given by:

$$\mathscr{B}_{-} = (e_0 + \sqrt{5}e_1, e_{2i} + (-\sqrt{5}-2)e_{2i+1}), i = 1, \dots, m.$$

The restriction g of the form f to V^+ is represented with respect to \mathscr{B}_+ by the diagonal matrix with one entry equal to $-2\sqrt{5}$ and all other entries equal to $20 - 8\sqrt{5}$. Similarly, the restriction h of the form f to V_- is represented with respect to \mathscr{B}_- by the diagonal matrix with one entry equal to $2\sqrt{5}$ and all other entries equal to $20 + 8\sqrt{5}$.

The positive eigenspace V^+ relative to the eigenvalue 1 for *M* has dimension (n+1)/2, with orthogonal basis \mathscr{B}_+ given by:

$$\mathscr{B}_+ = (e_0 - \sqrt{5}e_1, e_{2i} + (\sqrt{5} - 2)e_{2i+1}), i = 1, \dots, m.$$

The negative eigenspace V^- relative to the eigenvalue -1 has the same dimension (n+1)/2, with orthogonal basis \mathcal{B}_- given by:

$$\mathscr{B}_{-} = (e_0 + \sqrt{5}e_1, e_{2i} + (-\sqrt{5}-2)e_{2i+1}), i = 1, \dots, m.$$

The restriction g of the form f to V^+ is represented with respect to \mathscr{B}_+ by the diagonal matrix with one entry equal to $-2\sqrt{5}$ and all other entries equal to $20 - 8\sqrt{5}$. Similarly, the restriction h of the form f to V_- is represented with respect to \mathscr{B}_- by the diagonal matrix with one entry equal to $2\sqrt{5}$ and all other entries equal to $20 + 8\sqrt{5}$.

Thus *g* has signature ((n-1)/2, 1) and $h = g^{\sigma}$ is positive definite, so that *g* is *admissible*.

The group

$$\mathrm{Res}_{\mathbb{Q}(\sqrt{5})/\mathbb{Q}}\mathbf{O}(g)_{\mathbb{R}}=\mathbf{O}(g)_{\mathbb{R}}\times\mathbf{O}(h)_{\mathbb{R}}$$

is realised as the subgroup of $O(f, \mathbb{R})$ which preserves the decomposition $\mathbb{R}^{n+1} = (V^+ \otimes \mathbb{R}) \oplus (V^- \otimes \mathbb{R}).$

The space $U = \mathbb{H}^n \cap (V^+ \otimes \mathbb{R})$ projects to an arithmetic finite-volume totally geodesic subspace in $\mathbb{H}^n/\text{PO}(f,\mathbb{Z})$ which is a Weil restriction subspace with adjoint trace field $\mathbb{Q}(\sqrt{5})$ and ambient group PO(g).

Example 2 (type I lattice in a type II lattice). Let $D' = \begin{pmatrix} -1, 3 \\ \mathbb{Q} \end{pmatrix}$ a division quaternion algebra and let $K = \mathbb{Q}(\sqrt{3})$.

The *K*-algebra $D = D' \otimes K$ splits since 3 is a square in *K*.

Example 2 (type I lattice in a type II lattice).

Let $D' = \begin{pmatrix} -1,3 \\ \mathbb{Q} \end{pmatrix}$ a division quaternion algebra and let $K = \mathbb{Q}(\sqrt{3})$. The *K*-algebra $D = D' \otimes K$ splits since 3 is a square in *K*.

Consider the admissible *K*-form of signature (2m - 1, 1) given by

$$f(\mathbf{x}) = -\sqrt{3}x_0^2 + x_1^2 + \ldots + x_{2m-1}^2.$$

The form *f* can be interpreted as a form on $D^m_+ = \{x \in D^m | x \mathbf{i} = x\}$.

Example 2 (type I lattice in a type II lattice).

Let $D' = \begin{pmatrix} -1, 3 \\ \mathbb{Q} \end{pmatrix}$ a division quaternion algebra and let $K = \mathbb{Q}(\sqrt{3})$. The *K*-algebra $D = D' \otimes K$ splits since 3 is a square in *K*.

Consider the admissible *K*-form of signature (2m - 1, 1) given by

$$f(\mathbf{x}) = -\sqrt{3}x_0^2 + x_1^2 + \ldots + x_{2m-1}^2$$

The form *f* can be interpreted as a form on $D_+^m = \{x \in D^m | x \mathbf{i} = x\}$. We now extend the form *f* to a skew-Hermitian form *F* on D^m by setting

$$F(x_1 + y_1 \mathbf{j}, x_2 + y_2 \mathbf{j}) = f(x_1, x_1)(\mathbf{i} - 1)\mathbf{j} + f(x_1, y_2)(\mathbf{i} - 1) + f(x_2, y_1)(\mathbf{i} + 1) + f(y_1, y_2)(\mathbf{i} + 1)\mathbf{j}$$

for all $x_1, y_1, x_2, y_2 \in D^m_+$.

The admissibility of F follows directly from the admissibility of the initial form f.

Let $\Lambda < U(F,D)$ be an arithmetic lattice. Since $D \cong M_2(K)$, we have that Λ is a type I lattice.

Let $\Lambda < U(F,D)$ be an arithmetic lattice. Since $D \cong M_2(K)$, we have that Λ is a type I lattice.

On the other hand, Λ is a totally geodesic sublattice in $\Gamma < U(G, D')$, where $G = \operatorname{Res}_{K/k}(F)$ is an admissible skew-Hermitian form on $(D')^{2m}$. It follows that Γ is a type II lattice. Let $\Lambda < U(F,D)$ be an arithmetic lattice. Since $D \cong M_2(K)$, we have that Λ is a type I lattice.

On the other hand, Λ is a totally geodesic sublattice in $\Gamma < U(G,D')$, where $G = \operatorname{Res}_{K/k}(F)$ is an admissible skew-Hermitian form on $(D')^{2m}$. It follows that Γ is a type II lattice.

So we obtain that the type I orbifold $M = \mathbb{H}^{2m-1}/\Lambda$ is realised as a Weil restriction subspace in the type II orbifold $N = \mathbb{H}^{4m-1}/\Gamma$.

Types of arithmetic subgroups of $Isom(H^n)$:

- type I (simplest type) are defined by quadratic forms;
- type II (only in odd dimensions n) are defined by skew-Hermitian forms;
- type III (exceptional type in n = 3 and n = 7).

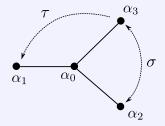


Figure: The Tits index of ${}^{6}D_{4,0}$ of trialitarian type.

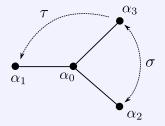


Figure: The Tits index of ${}^{6}D_{4,0}$ of trialitarian type.

Definition. Let $\Gamma < \mathbf{PO}_{7,1}(\mathbb{R})$ be a lattice commensurable with $G(\mathcal{O})$, for some triality algebraic *k*-group G. Then Γ is called an *arithmetic lattice of type III*. An orbifold $M = \mathbb{H}^7/\Gamma$ is of type III if the group Γ is commensurable in the wide sense with an arithmetic lattice of type III.

There are 3 possible partitions of the roots compatible with the action of the absolute Galois group of *k*:

$$\Delta_{-} = \{\alpha_0\}, \Delta_{+} = \{\alpha_1, \alpha_2, \alpha_3\}; \tag{1}$$

$$\Delta_{+} = \{\alpha_0\}, \Delta_{-} = \{\alpha_1, \alpha_2, \alpha_3\}; \qquad (2)$$

$$\Delta_{-} = \Delta, \quad \Delta_{+} = \emptyset. \tag{3}$$

This gives 3 different involutions $g_1, g_2, g_3 \in \text{Comm}(\Gamma)$ which generate the Klein 4-group.

Trialitarian 7-dimensional orbifolds – applications

Theorem 6. [BBKS]

Every 7-dimensional type III orbifold contains a 3-dimensional type III totally geodesic fc-subspace.

Trialitarian 7-dimensional orbifolds – applications

Theorem 6. [BBKS]

Every 7-dimensional type III orbifold contains a 3-dimensional type III totally geodesic fc-subspace.

Theorem 7. [Bogachev–Slavich–Sun] All arithmetic lattices in **PO**_{7,1}(\mathbb{R}) are not LERF (locally extended residually finite).

Trialitarian 7-dimensional orbifolds – questions

Theorem 8. [Bergeron–Clozel]

Congruence subgroups of trialitarian lattices have vanishing first Betti numbers.

Trialitarian 7-dimensional orbifolds – questions

Theorem 8. [Bergeron–Clozel]

Congruence subgroups of trialitarian lattices have vanishing first Betti numbers.

Question 1. Are trialitarian lattices superrigid in the sense of Margulis?

Trialitarian 7-dimensional orbifolds – questions

Theorem 8. [Bergeron–Clozel]

Congruence subgroups of trialitarian lattices have vanishing first Betti numbers.

Question 1. Are trialitarian lattices superrigid in the sense of Margulis?

Question 2. *Do trialitarian lattices have congruence subgroup property?*