Subspace stabilisers in hyperbolic lattices

Mikhail Belolipetsky, IMPA

Totally geodesic subspaces

Let $M=\mathbf{H}^{n} / \Gamma$ be a finite volume hyperbolic orbifold. We call by a totally geodesic subspace a finite volume totally geodesic immersed suborbifolds of M.

Totally geodesic subspaces

Let $M=\mathbf{H}^{n} / \Gamma$ be a finite volume hyperbolic orbifold. We call by a totally geodesic subspace a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis-Mohamadi (for $n=3$) and Bader-Fisher-Miller-Stover] If M contains infinitely many maximal totally geodesic subspaces of dimension at least 2 , then M is arithmetic.

Totally geodesic subspaces

Let $M=\mathbf{H}^{n} / \Gamma$ be a finite volume hyperbolic orbifold. We call by a totally geodesic subspace a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis-Mohamadi (for $n=3$) and Bader-Fisher-Miller-Stover] If M contains infinitely many maximal totally geodesic subspaces of dimension at least 2 , then M is arithmetic.

- For $n=3$ this answers a question of A. Reid and C. McMullen.

Totally geodesic subspaces

Let $M=\mathbf{H}^{n} / \Gamma$ be a finite volume hyperbolic orbifold. We call by a totally geodesic subspace a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis-Mohamadi (for $n=3$) and Bader-Fisher-Miller-Stover] If M contains infinitely many maximal totally geodesic subspaces of dimension at least 2 , then M is arithmetic.

- For $n=3$ this answers a question of A. Reid and C. McMullen.
- Arithmetic hyperbolic 3-orbifolds not of the simplest type and 2-orbifolds are excluded.

Totally geodesic subspaces

Let $M=\mathbf{H}^{n} / \Gamma$ be a finite volume hyperbolic orbifold. We call by a totally geodesic subspace a finite volume totally geodesic immersed suborbifolds of M.

Theorem 1.

[Margulis-Mohamadi (for $n=3$) and Bader-Fisher-Miller-Stover] If M contains infinitely many maximal totally geodesic subspaces of dimension at least 2 , then M is arithmetic.

- For $n=3$ this answers a question of A. Reid and C. McMullen.
- Arithmetic hyperbolic 3-orbifolds not of the simplest type and 2-orbifolds are excluded.
- The result tells very little about the nature of totally geodesic subspaces.

FC-subspaces

Definition. A totally geodesic subspace N of a hyperbolic orbifold $M=\mathbf{H}^{n} / \Gamma$ is called a finite centraliser subspace (or an $f c$-subspace) if there exists a finite subgroup $F<\operatorname{Comm}(\Gamma)$ such that $H=\operatorname{Fix}(F)$ is a subspace of \mathbf{H}^{n} and $N=H / \operatorname{Stab}_{\Gamma}(H)$.

FC-subspaces

Definition. A totally geodesic subspace N of a hyperbolic orbifold $M=\mathbf{H}^{n} / \Gamma$ is called a finite centraliser subspace (or an $f c$-subspace) if there exists a finite subgroup $F<\operatorname{Comm}(\Gamma)$ such that $H=\operatorname{Fix}(F)$ is a subspace of \mathbf{H}^{n} and $N=H / \operatorname{Stab}_{\Gamma}(H)$.

Here $\operatorname{Fix}(F)=\left\{x \in \mathbf{H}^{n} \mid g x=x, \forall g \in F\right\}$, and
$\operatorname{Comm}(\Gamma)=\left\{g \in \operatorname{Isom}\left(\mathbf{H}^{n}\right) \mid \Gamma \cap g \Gamma g^{-1}\right.$ has finite index in both $\}$.

FC-subspaces

Definition. A totally geodesic subspace N of a hyperbolic orbifold $M=\mathbf{H}^{n} / \Gamma$ is called a finite centraliser subspace (or an $f c$-subspace) if there exists a finite subgroup $F<\operatorname{Comm}(\Gamma)$ such that $H=\operatorname{Fix}(F)$ is a subspace of \mathbf{H}^{n} and $N=H / \operatorname{Stab}_{\Gamma}(H)$.

Here $\operatorname{Fix}(F)=\left\{x \in \mathbf{H}^{n} \mid g x=x, \forall g \in F\right\}$, and
$\operatorname{Comm}(\Gamma)=\left\{g \in \operatorname{Isom}\left(\mathbf{H}^{n}\right) \mid \Gamma \cap g \Gamma g^{-1}\right.$ has finite index in both $\}$.
Important Property: An fc-subspace of dimension $\geqslant 2$ of a finite volume hyperbolic orbifold is a finite volume hyperbolic orbifold.

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Theorem 3. [BBKS]

Let M be a finite volume hyperbolic n-orbifold, $n \geqslant 2$.

- If M is arithmetic, then all the totally geodesic subspaces of codimension at most $\frac{n+1}{2}$ are fc-subspaces;
- If M is non-arithmetic, then the number of its fc-subspaces is bounded by $c \operatorname{Vol}(M), c=\operatorname{const}(n)$.

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Theorem 3. [BBKS]

Let M be a finite volume hyperbolic n-orbifold, $n \geqslant 2$.

- If M is arithmetic, then all the totally geodesic subspaces of codimension at most $\frac{n+1}{2}$ are fc-subspaces;
- If M is non-arithmetic, then the number of its fc-subspaces is bounded by $c \operatorname{Vol}(M), c=\operatorname{const}(n)$.

Corollary 1. If M is an arithmetic hyperbolic 3-orbifold, then all its totally geodesic subspaces are fc.

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Theorem 3. [BBKS]

Let M be a finite volume hyperbolic n-orbifold, $n \geqslant 2$.

- If M is arithmetic, then all the totally geodesic subspaces of codimension at most $\frac{n+1}{2}$ are $f c$-subspaces;
- If M is non-arithmetic, then the number of its fc-subspaces is bounded by $c \operatorname{Vol}(M), c=\operatorname{const}(n)$.

Corollary 1. If M is an arithmetic hyperbolic 3-orbifold, then all its totally geodesic subspaces are fc.

Corollary 2. A finite area hyperbolic surface is arithmetic if and only if all of its infinitely many closed geodesics are fc-subspaces.

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Proof of Theorem 2 is based on:

A dichotomy

Theorem 2. [B.-Bogachev-Kolpakov-Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has infinitely many fc-subspaces.

Proof of Theorem 2 is based on:

- Borel's density theorem;
- A construction of involutions for each of the three types of arithmetic lattices;
- Margulis superrigidity theorem.

Main technical results

Main technical results

Theorem 4. [BBKS]

Let M be a quasi-arithmetic hyperbolic orbifold with adjoint trace field k, and $N \subset M$ be a finite-volume totally geodesic suborbifold of dimension $m \geqslant 2$ with adjoint trace field K. Then N is hyperbolic and quasi-arithmetic, and $k \subseteq K$. If M is arithmetic, then N is arithmetic as well.

Main technical results

Theorem 4. [BBKS]

Let M be a quasi-arithmetic hyperbolic orbifold with adjoint trace field k, and $N \subset M$ be a finite-volume totally geodesic suborbifold of dimension $m \geqslant 2$ with adjoint trace field K. Then N is hyperbolic and quasi-arithmetic, and $k \subseteq K$. If M is arithmetic, then N is arithmetic as well.

Definition. If $k=K$, we call N a subform space.

Main technical results

Theorem 4. [BBKS]

Let M be a quasi-arithmetic hyperbolic orbifold with adjoint trace field k, and $N \subset M$ be a finite-volume totally geodesic suborbifold of dimension $m \geqslant 2$ with adjoint trace field K. Then N is hyperbolic and quasi-arithmetic, and $k \subseteq K$. If M is arithmetic, then N is arithmetic as well.

Definition. If $k=K$, we call N a subform space.
Prop. 1. Let $N=\mathbf{H}^{m} / \Lambda$ be a subform space of an arithmetic orbifold $M=\mathbf{H}^{n} / \Gamma$. Then N is an $f c-$ subspace associated to a single involution in the commensurator of Γ.

Prop. 2. Let M be a type I (resp. type II) arithmetic hyperbolic orbifold, and $N \subset M$ a subform space in M of dimension $\geqslant 2$. Then N is a type I (resp. type II) arithmetic hyperbolic orbifold.

Main technical results

Theorem 5. [BBKS]

Let $N=\mathbf{H}^{m} / \Lambda$ be a totally geodesic subspace of an arithmetic hyperbolic orbifold $M=\mathbf{H}^{n} / \Gamma$. Suppose that N is not a 3-dimensional type III orbifold and that $[K: k]=d \geqslant 1$, where K (resp. k) denotes the adjoint trace field of Λ (resp. Γ). Then there exists a unique minimal subform space $S \subseteq M$ of dimension $(m+1) \cdot d-1$ such that $N \subseteq S$, and there is no proper subform space of S which contains N.

Main technical results

Theorem 5. [BBKS]
Let $N=\mathbf{H}^{m} / \Lambda$ be a totally geodesic subspace of an arithmetic hyperbolic orbifold $M=\mathbf{H}^{n} / \Gamma$. Suppose that N is not a 3-dimensional type III orbifold and that $[K: k]=d \geqslant 1$, where K (resp. k) denotes the adjoint trace field of Λ (resp. Γ). Then there exists a unique minimal subform space $S \subseteq M$ of dimension $(m+1) \cdot d-1$ such that $N \subseteq S$, and there is no proper subform space of S which contains N.

Definition. In the settings of Theorem 5 if the minimal subform space S of M which contains N is precisely M, we say that N is a Weil restriction subspace of M.

Main technical results

Theorem 5. [BBKS]

Let $N=\mathbf{H}^{m} / \Lambda$ be a totally geodesic subspace of an arithmetic hyperbolic orbifold $M=\mathbf{H}^{n} / \Gamma$. Suppose that N is not a 3-dimensional type III orbifold and that $[K: k]=d \geqslant 1$, where K (resp. k) denotes the adjoint trace field of Λ (resp. Γ). Then there exists a unique minimal subform space $S \subseteq M$ of dimension $(m+1) \cdot d-1$ such that $N \subseteq S$, and there is no proper subform space of S which contains N.

Definition. In the settings of Theorem 5 if the minimal subform space S of M which contains N is precisely M, we say that N is a Weil restriction subspace of M.

Corollary. A totally geodesic immersion $N \subseteq M$ of arithmetic hyperbolic orbifolds is a composition of two geodesic immersions

$$
N \subseteq S \subseteq M
$$

where N is a Weil restriction subspace of S, and S is a subform space of M.

Example 1

Let $k=\mathbb{Q}, V=\mathbb{Q}^{n+1}$ and consider the symmetric bilinear form given in the standard basis by:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \oplus_{m}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

where $m=(n-1) / 2$.
Let

$$
M=\left[\begin{array}{cc}
0 & -1 / \sqrt{5} \\
-\sqrt{5} & 0
\end{array}\right] \oplus_{m}\left[\begin{array}{cc}
2 / \sqrt{5} & 1 / \sqrt{5} \\
1 / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right]
$$

Have

$$
M^{t} A M=A, M^{2}=\mathrm{id}, M \text { corresponds to an involution in } \mathbf{P O}(f)_{\mathbb{Q}} .
$$

Example 1 (cont.)

The positive eigenspace V^{+}relative to the eigenvalue 1 for M has dimension $(n+1) / 2$, with orthogonal basis \mathscr{B}_{+}given by:

$$
\mathscr{B}_{+}=\left(e_{0}-\sqrt{5} e_{1}, e_{2 i}+(\sqrt{5}-2) e_{2 i+1}\right), i=1, \ldots, m .
$$

The negative eigenspace V^{-}relative to the eigenvalue -1 has the same dimension $(n+1) / 2$, with orthogonal basis \mathscr{B}_{-}given by:

$$
\mathscr{B}_{-}=\left(e_{0}+\sqrt{5} e_{1}, e_{2 i}+(-\sqrt{5}-2) e_{2 i+1}\right), i=1, \ldots, m
$$

Example 1 (cont.)

The positive eigenspace V^{+}relative to the eigenvalue 1 for M has dimension $(n+1) / 2$, with orthogonal basis \mathscr{B}_{+}given by:

$$
\mathscr{B}_{+}=\left(e_{0}-\sqrt{5} e_{1}, e_{2 i}+(\sqrt{5}-2) e_{2 i+1}\right), i=1, \ldots, m
$$

The negative eigenspace V^{-}relative to the eigenvalue -1 has the same dimension $(n+1) / 2$, with orthogonal basis \mathscr{B}_{-}given by:

$$
\mathscr{B}_{-}=\left(e_{0}+\sqrt{5} e_{1}, e_{2 i}+(-\sqrt{5}-2) e_{2 i+1}\right), i=1, \ldots, m
$$

The restriction g of the form f to V^{+}is represented with respect to \mathscr{B}_{+}by the diagonal matrix with one entry equal to $-2 \sqrt{5}$ and all other entries equal to $20-8 \sqrt{5}$. Similarly, the restriction h of the form f to V_{-}is represented with respect to \mathscr{B}_{-}by the diagonal matrix with one entry equal to $2 \sqrt{5}$ and all other entries equal to $20+8 \sqrt{5}$.

Example 1 (cont.)

The positive eigenspace V^{+}relative to the eigenvalue 1 for M has dimension $(n+1) / 2$, with orthogonal basis \mathscr{B}_{+}given by:

$$
\mathscr{B}_{+}=\left(e_{0}-\sqrt{5} e_{1}, e_{2 i}+(\sqrt{5}-2) e_{2 i+1}\right), i=1, \ldots, m
$$

The negative eigenspace V^{-}relative to the eigenvalue -1 has the same dimension $(n+1) / 2$, with orthogonal basis \mathscr{B}_{-}given by:

$$
\mathscr{B}_{-}=\left(e_{0}+\sqrt{5} e_{1}, e_{2 i}+(-\sqrt{5}-2) e_{2 i+1}\right), i=1, \ldots, m
$$

The restriction g of the form f to V^{+}is represented with respect to \mathscr{B}_{+}by the diagonal matrix with one entry equal to $-2 \sqrt{5}$ and all other entries equal to $20-8 \sqrt{5}$. Similarly, the restriction h of the form f to V_{-}is represented with respect to \mathscr{B}_{-}by the diagonal matrix with one entry equal to $2 \sqrt{5}$ and all other entries equal to $20+8 \sqrt{5}$.
Thus g has signature $((n-1) / 2,1)$ and $h=g^{\sigma}$ is positive definite, so that g is admissible.

Example 1 (cont.)

The group

$$
\operatorname{Res}_{\mathbb{Q}(\sqrt{5}) / \mathbb{Q}} \mathbf{O}(g)_{\mathbb{R}}=\mathbf{O}(g)_{\mathbb{R}} \times \mathbf{O}(h)_{\mathbb{R}}
$$

is realised as the subgroup of $\mathrm{O}(f, \mathbb{R})$ which preserves the decomposition $\mathbb{R}^{n+1}=\left(V^{+} \otimes \mathbb{R}\right) \oplus\left(V^{-} \otimes \mathbb{R}\right)$.

The space $U=\mathbb{H}^{n} \cap\left(V^{+} \otimes \mathbb{R}\right)$ projects to an arithmetic finite-volume totally geodesic subspace in $\mathbb{H}^{n} / \mathrm{PO}(f, \mathbb{Z})$ which is a Weil restriction subspace with adjoint trace field $\mathbb{Q}(\sqrt{5})$ and ambient group $\mathbf{P O}(g)$.

Example 2 (type I lattice in a type II lattice).

Let $D^{\prime}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ a division quaternion algebra and let $K=\mathbb{Q}(\sqrt{3})$. The K-algebra $D=D^{\prime} \otimes K$ splits since 3 is a square in K.

Example 2 (type I lattice in a type II lattice).

Let $D^{\prime}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ a division quaternion algebra and let $K=\mathbb{Q}(\sqrt{3})$. The K-algebra $D=D^{\prime} \otimes K$ splits since 3 is a square in K.

Consider the admissible K-form of signature ($2 m-1,1$) given by

$$
f(\mathbf{x})=-\sqrt{3} x_{0}^{2}+x_{1}^{2}+\ldots+x_{2 m-1}^{2} .
$$

The form f can be interpreted as a form on $D_{+}^{m}=\left\{x \in D^{m} \mid x \mathbf{i}=x\right\}$.

Example 2 (type I lattice in a type II lattice).

Let $D^{\prime}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ a division quaternion algebra and let $K=\mathbb{Q}(\sqrt{3})$. The K-algebra $D=D^{\prime} \otimes K$ splits since 3 is a square in K.

Consider the admissible K-form of signature $(2 m-1,1)$ given by

$$
f(\mathbf{x})=-\sqrt{3} x_{0}^{2}+x_{1}^{2}+\ldots+x_{2 m-1}^{2} .
$$

The form f can be interpreted as a form on $D_{+}^{m}=\left\{x \in D^{m} \mid x \mathbf{i}=x\right\}$.
We now extend the form f to a skew-Hermitian form F on D^{m} by setting

$$
\begin{aligned}
& F\left(x_{1}+y_{1} \mathbf{j}, x_{2}+y_{2} \mathbf{j}\right)=f\left(x_{1}, x_{1}\right)(\mathbf{i}-1) \mathbf{j}+f\left(x_{1}, y_{2}\right)(\mathbf{i}-1)+ \\
&+f\left(x_{2}, y_{1}\right)(\mathbf{i}+1)+f\left(y_{1}, y_{2}\right)(\mathbf{i}+1) \mathbf{j}
\end{aligned}
$$

for all $x_{1}, y_{1}, x_{2}, y_{2} \in D_{+}^{m}$.
The admissibility of F follows directly from the admissibility of the initial form f.

Example 2 (cont.)

Let $\Lambda<\mathrm{U}(F, D)$ be an arithmetic lattice. Since $D \cong M_{2}(K)$, we have that Λ is a type I lattice.

Example 2 (cont.)

Let $\Lambda<\mathrm{U}(F, D)$ be an arithmetic lattice. Since $D \cong M_{2}(K)$, we have that Λ is a type I lattice.
On the other hand, Λ is a totally geodesic sublattice in $\Gamma<\mathrm{U}\left(G, D^{\prime}\right)$, where $G=\operatorname{Res}_{K / k}(F)$ is an admissible skew-Hermitian form on $\left(D^{\prime}\right)^{2 m}$. It follows that Γ is a type II lattice.

Example 2 (cont.)

Let $\Lambda<\mathrm{U}(F, D)$ be an arithmetic lattice. Since $D \cong M_{2}(K)$, we have that Λ is a type I lattice.
On the other hand, Λ is a totally geodesic sublattice in $\Gamma<\mathrm{U}\left(G, D^{\prime}\right)$, where $G=\operatorname{Res}_{K / k}(F)$ is an admissible skew-Hermitian form on $\left(D^{\prime}\right)^{2 m}$. It follows that Γ is a type II lattice.

So we obtain that the type I orbifold $M=\mathbb{H}^{2 m-1} / \Lambda$ is realised as a Weil restriction subspace in the type II orbifold $N=\mathbb{H}^{4 m-1} / \Gamma$.

Trialitarian 7-dimensional orbifolds

Types of arithmetic subgroups of $\operatorname{Isom}\left(\mathbf{H}^{n}\right)$:

- type I (simplest type) are defined by quadratic forms;
- type II (only in odd dimensions n) are defined by skew-Hermitian forms;
- type III (exceptional type in $n=3$ and $n=7$).

Trialitarian 7-dimensional orbifolds

Figure: The Tits index of ${ }^{6} D_{4,0}$ of trialitarian type.

Trialitarian 7-dimensional orbifolds

Figure: The Tits index of ${ }^{6} D_{4,0}$ of trialitarian type.

Definition. Let $\Gamma<\mathbf{P O}_{7,1}(\mathbb{R})$ be a lattice commensurable with $\mathrm{G}(\mathscr{O})$, for some triality algebraic k-group G . Then Γ is called an arithmetic lattice of type III. An orbifold $M=\mathbb{H}^{7} / \Gamma$ is of type III if the group Γ is commensurable in the wide sense with an arithmetic lattice of type III.

Trialitarian 7-dimensional orbifolds

There are 3 possible partitions of the roots compatible with the action of the absolute Galois group of k :

$$
\begin{align*}
\Delta_{-}=\left\{\alpha_{0}\right\}, \Delta_{+} & =\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \tag{1}\\
\Delta_{+} & =\left\{\alpha_{0}\right\}, \Delta_{-} \tag{2}
\end{align*}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} ;
$$

This gives 3 different involutions $g_{1}, g_{2}, g_{3} \in \operatorname{Comm}(\Gamma)$ which generate the Klein 4-group.

Trialitarian 7-dimensional orbifolds - applications

Theorem 6. [BBKS]
Every 7-dimensional type III orbifold contains a 3-dimensional type III totally geodesic fc-subspace.

Trialitarian 7-dimensional orbifolds - applications

Theorem 6. [BBKS]

Every 7-dimensional type III orbifold contains a 3-dimensional type III totally geodesic fc-subspace.

Theorem 7. [Bogachev-Slavich-Sun]
All arithmetic lattices in $\mathbf{P O}_{7,1}(\mathbb{R})$ are not LERF (locally extended residually finite).

Trialitarian 7-dimensional orbifolds - questions

Theorem 8. [Bergeron-Clozel]
Congruence subgroups of trialitarian lattices have vanishing first Betti numbers.

Trialitarian 7-dimensional orbifolds - questions

Theorem 8. [Bergeron-Clozel]
Congruence subgroups of trialitarian lattices have vanishing first Betti numbers.

Question 1. Are trialitarian lattices superrigid in the sense of Margulis?

Trialitarian 7-dimensional orbifolds - questions

Theorem 8. [Bergeron-Clozel]
Congruence subgroups of trialitarian lattices have vanishing first Betti numbers.

Question 1. Are trialitarian lattices superrigid in the sense of Margulis?

Question 2. Do trialitarian lattices have congruence subgroup property?

