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Totally geodesic subspaces

Let M = Hn/Γ be a finite volume hyperbolic orbifold. We call by a
totally geodesic subspace a finite volume totally geodesic immersed
suborbifolds of M.

Theorem 1.
[Margulis–Mohamadi (for n = 3) and Bader–Fisher–Miller–Stover]
If M contains infinitely many maximal totally geodesic subspaces of
dimension at least 2, then M is arithmetic.

▶ For n = 3 this answers a question of A. Reid and C. McMullen.

▶ Arithmetic hyperbolic 3-orbifolds not of the simplest type and
2-orbifolds are excluded.

▶ The result tells very little about the nature of totally geodesic
subspaces.
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FC-subspaces

Definition. A totally geodesic subspace N of a hyperbolic orbifold
M = Hn/Γ is called a finite centraliser subspace (or an fc-subspace)
if there exists a finite subgroup F < Comm(Γ) such that H = Fix(F)
is a subspace of Hn and N = H/StabΓ(H).

Here Fix(F) = {x ∈ Hn |gx = x, ∀g ∈ F}, and
Comm(Γ) = {g ∈ Isom(Hn) | Γ∩gΓg−1 has finite index in both}.

Important Property: An fc-subspace of dimension ⩾ 2 of a finite
volume hyperbolic orbifold is a finite volume hyperbolic orbifold.
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A dichotomy
Theorem 2. [B.–Bogachev–Kolpakov–Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has
infinitely many fc-subspaces.

Theorem 3. [BBKS]
Let M be a finite volume hyperbolic n-orbifold, n ⩾ 2.
▶ If M is arithmetic, then all the totally geodesic subspaces of

codimension at most n+1
2 are fc-subspaces;

▶ If M is non-arithmetic, then the number of its fc-subspaces is
bounded by cVol(M), c = const(n).

Corollary 1. If M is an arithmetic hyperbolic 3-orbifold, then all its
totally geodesic subspaces are fc.

Corollary 2. A finite area hyperbolic surface is arithmetic if and only
if all of its infinitely many closed geodesics are fc-subspaces.
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A dichotomy
Theorem 2. [B.–Bogachev–Kolpakov–Slavich]
A finite volume hyperbolic n-orbifold is arithmetic if and only if it has
infinitely many fc-subspaces.

Proof of Theorem 2 is based on:

▶ Borel’s density theorem;

▶ A construction of involutions for each of the three types of
arithmetic lattices;

▶ Margulis superrigidity theorem.
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Main technical results

Theorem 4. [BBKS]
Let M be a quasi-arithmetic hyperbolic orbifold with adjoint trace
field k, and N ⊂ M be a finite-volume totally geodesic suborbifold of
dimension m ⩾ 2 with adjoint trace field K. Then N is hyperbolic and
quasi-arithmetic, and k ⊆ K. If M is arithmetic, then N is arithmetic
as well.

Definition. If k = K, we call N a subform space.

Prop. 1. Let N = Hm/Λ be a subform space of an arithmetic orbifold
M = Hn/Γ. Then N is an fc–subspace associated to a single
involution in the commensurator of Γ.

Prop. 2. Let M be a type I (resp. type II) arithmetic hyperbolic
orbifold, and N ⊂ M a subform space in M of dimension ⩾ 2. Then N
is a type I (resp. type II) arithmetic hyperbolic orbifold.
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Main technical results
Theorem 5. [BBKS]
Let N = Hm/Λ be a totally geodesic subspace of an arithmetic
hyperbolic orbifold M = Hn/Γ. Suppose that N is not a 3-dimensional
type III orbifold and that [K : k] = d ⩾ 1, where K (resp. k) denotes
the adjoint trace field of Λ (resp. Γ). Then there exists a unique
minimal subform space S ⊆ M of dimension (m+1) ·d−1 such that
N ⊆ S, and there is no proper subform space of S which contains N.

Definition. In the settings of Theorem 5 if the minimal subform space
S of M which contains N is precisely M, we say that N is a Weil
restriction subspace of M .

Corollary. A totally geodesic immersion N ⊆ M of arithmetic
hyperbolic orbifolds is a composition of two geodesic immersions

N ⊆ S ⊆ M,

where N is a Weil restriction subspace of S, and
S is a subform space of M.
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Example 1

Let k =Q, V =Qn+1 and consider the symmetric bilinear form given
in the standard basis by:

A =

[
0 1
1 0

]
⊕m

[
2 0
0 2

]
,

where m = (n−1)/2.
Let

M =

[
0 −1/

√
5

−
√

5 0

]
⊕m

[
2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]
.

Have
MtAM = A, M2 = id, M corresponds to an involution in PO(f )Q.



Example 1 (cont.)
The positive eigenspace V+ relative to the eigenvalue 1 for M has
dimension (n+1)/2, with orthogonal basis B+ given by:

B+ = (e0 −
√

5e1,e2i +(
√

5−2)e2i+1), i = 1, . . . ,m.

The negative eigenspace V− relative to the eigenvalue −1 has the
same dimension (n+1)/2, with orthogonal basis B− given by:

B− = (e0 +
√

5e1,e2i +(−
√

5−2)e2i+1), i = 1, . . . ,m.

The restriction g of the form f to V+ is represented with respect to
B+ by the diagonal matrix with one entry equal to −2

√
5 and all

other entries equal to 20−8
√

5. Similarly, the restriction h of the
form f to V− is represented with respect to B− by the diagonal matrix
with one entry equal to 2

√
5 and all other entries equal to 20+8

√
5.

Thus g has signature ((n−1)/2,1) and h = gσ is positive definite, so
that g is admissible.
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Example 1 (cont.)

The group
ResQ(

√
5)/QO(g)R = O(g)R×O(h)R

is realised as the subgroup of O(f ,R) which preserves the
decomposition Rn+1 = (V+⊗R)⊕ (V−⊗R).

The space U =Hn ∩ (V+⊗R) projects to an arithmetic finite-volume
totally geodesic subspace in Hn/PO(f ,Z) which is a Weil restriction
subspace with adjoint trace field Q(

√
5) and ambient group PO(g).



Example 2 (type I lattice in a type II lattice).
Let D′ =

(
−1,3
Q

)
a division quaternion algebra and let K =Q(

√
3).

The K-algebra D = D′⊗K splits since 3 is a square in K.

Consider the admissible K-form of signature (2m−1,1) given by

f (x) =−
√

3x2
0 + x2

1 + . . .+ x2
2m−1.

The form f can be interpreted as a form on Dm
+ = {x ∈ Dm|x i = x}.

We now extend the form f to a skew-Hermitian form F on Dm by
setting

F(x1 + y1 j,x2 + y2 j) = f (x1,x1)(i−1)j+ f (x1,y2)(i−1)+

+ f (x2,y1)(i+1)+ f (y1,y2)(i+1)j

for all x1,y1,x2,y2 ∈ Dm
+.

The admissibility of F follows directly from the admissibility of the
initial form f .
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Example 2 (cont.)

Let Λ < U(F,D) be an arithmetic lattice. Since D ∼= M2(K), we have
that Λ is a type I lattice.

On the other hand, Λ is a totally geodesic sublattice in Γ < U(G,D′),
where G = ResK/k(F) is an admissible skew-Hermitian form on
(D′)2m. It follows that Γ is a type II lattice.

So we obtain that the type I orbifold M =H2m−1/Λ is realised as a
Weil restriction subspace in the type II orbifold N =H4m−1/Γ.
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Trialitarian 7-dimensional orbifolds

Types of arithmetic subgroups of Isom(Hn):

▶ type I (simplest type) are defined by quadratic forms;

▶ type II (only in odd dimensions n) are defined by
skew-Hermitian forms;

▶ type III (exceptional type in n = 3 and n = 7).



Trialitarian 7-dimensional orbifolds

Figure: The Tits index of 6D4,0 of trialitarian type.

Definition. Let Γ < PO7,1(R) be a lattice commensurable with G(O),
for some triality algebraic k-group G. Then Γ is called an arithmetic
lattice of type III. An orbifold M =H7/Γ is of type III if the group Γ

is commensurable in the wide sense with an arithmetic lattice of
type III.
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Definition. Let Γ < PO7,1(R) be a lattice commensurable with G(O),
for some triality algebraic k-group G. Then Γ is called an arithmetic
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Trialitarian 7-dimensional orbifolds

There are 3 possible partitions of the roots compatible with the action
of the absolute Galois group of k:

∆− = {α0}, ∆+ = {α1,α2,α3}; (1)

∆+ = {α0}, ∆− = {α1,α2,α3}; (2)

∆− = ∆, ∆+ = /0. (3)

This gives 3 different involutions g1, g2, g3 ∈ Comm(Γ) which
generate the Klein 4-group.



Trialitarian 7-dimensional orbifolds – applications

Theorem 6. [BBKS]
Every 7-dimensional type III orbifold contains a 3-dimensional type
III totally geodesic fc-subspace.

Theorem 7. [Bogachev–Slavich–Sun]
All arithmetic lattices in PO7,1(R) are not LERF (locally extended
residually finite).
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Trialitarian 7-dimensional orbifolds – questions

Theorem 8. [Bergeron–Clozel]
Congruence subgroups of trialitarian lattices have vanishing first
Betti numbers.

Question 1. Are trialitarian lattices superrigid in the sense of
Margulis?

Question 2. Do trialitarian lattices have congruence subgroup
property?
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