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Volume of hyperbolic manifolds

Let H n be the hyperbolic n-space
(e.g. the upper half space with the hyperbolic metric ds2 = dw2

y2 ).

Isom(H n) – the group of isometries of H n.

Γ < Isom(H n), a discrete subgroup =⇒ M = H n/Γ is a

hyperbolic n-orbifold.

M is a manifold ⇐⇒ Γ is torsion free.

We will discuss finite volume hyperbolic n-manifolds and orbifolds.
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Volume of hyperbolic manifolds

For n even:

Vol(M )=
Vol(Sn)

2
·(−1)n/2

χ(M ) (Chern–Gauss–Bonnet Theorem)

For n > 3 finite volume hyperbolic n-orbifolds are rigid
(Mostow–Prasad rigidity) =⇒ volume is a topological invariant.

If M is an oriented connected hyperbolic n-manifold,

Vol(M ) = νn‖M ‖ (Gromov–Thurston)

=⇒ volume is a measure of complexity.
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Volume of hyperbolic manifolds

Maclachlan Everitt paper
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Prasad’s formula

where

- dim(G), r and mi denote the dimension, rank and Lie exponents;

- l is a Galois extension of k of degree 6 3 defined in Prasad’s
paper;

- s = s(G ) is an integer defined in Prasad’s paper (s = 0 if G is an
inner form of a split group and s > 5 if G is an outer form);

- τk(G) is the Tamagawa number of G over k; and

- E is an Euler product of the local factors ev = e(Pv).
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Results about minimal volume
H = PO(n,1)◦ = Isom+(H n)

Theorem 1. (B., 2004, B.–Emery, 2012) For every dimension n > 4
there exists a unique cocompact arithmetic subgroup Γn

0 < H of the
smallest covolume. It is defined over k0 =Q[

√
5] and has

Vol(H n/Γ
n
0) = ωc(n).

Theorem 2. (B., 2004, B.–Emery, 2012) For every dimension n > 4
there exists a unique non-cocompact arithmetic subgroup Γn

1 < H of
the smallest covolume. It is defined over k1 =Q and has

Vol(H n/Γ
n
1) = ωnc(n).
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n = 2r, r even:

ωc(n) =
4 ·5r2+r/2 · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i);

n = 2r, r odd:

ωc(n) =
2 ·5r2+r/2 · (2π)r · (4r−1)

(2r−1)!!

r

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i);

(B., 2004)

n = 2r−1:

ωc(n) =
5r2−r/2 ·11r−1/2 · (r−1)!

22r−1πr L`0|k0(r)
r−1

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i),

where k0 =Q[
√

5] and l0 is the quartic field with a defining
polynomial x4− x3 +2x−1.

(B.–Emery, 2012)
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n = 2r, r ≡ 0, 1 (mod 4):

ωnc(n) =
4 · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!
(2π)2i ζ (2i);

n = 2r, r ≡ 2, 3 (mod 4):

ωnc(n) =
2 · (2r−1) · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!
(2π)2i ζ (2i); (B.)

n = 2r−1, r even:

ωnc(n) =
3r−1/2

2r−1 L`1|Q(r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i), where `1 =Q[

√
−3];

n = 2r−1, r ≡ 1 (mod 4):

ωnc(n) =
1

2r−2 ζ (r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i);

n = 2r−1, r ≡ 3 (mod 4):

ωnc(n) =
(2r−1)(2r−1−1)

3 ·2r−1 ζ (r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i); (B.–Emery)



Proofs use

I Prasad’s volume formula

I Galois cohomology of algebraic groups

I Bruhat–Tits theory

I Bounds for discriminants and class numbers (Odlyzko bounds,
Brauer–Siegel theorem, Zimmert’s bound for regulator)



Growth of minimal volume

∗graph from ICM’2014 talk



Corollary. (B., 2004) If there exists a compact orientable arithmetic
hyperbolic 4-manifold M with Euler characteristic χ < 22, then its
groups is an index 14400χ subgroup of the Coxeter group

Γ1 = [5,3,3,3].

Conder–Maclachlan (2005) and C. Long (2008) constructed compact
orientable hyperbolic 4-manifolds with χ = 16.

Open Problem. Do there exist an orientable compact hyperbolic
4-manifold with χ < 16?

Emery (2014) showed that for n > 4 there are no compact orientable
arithmetic hyperbolic n-manifolds with χ = 2.
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Some other results on mimimal volume

A. Salehi Golsefidy, Lattices of minimum covolume in Chevalley
groups over local fields of positive characteristic. Duke Math. J.
146 (2009), 227–251.

V. Emery and M. Stover, Covolumes of nonuniform lattices in
PU(n,1). Amer. J. Math. 136 (2014), 143–164.

F. Thilmany, Lattices of minimal covolume in SLn(R). Proc.
Lond. Math. Soc. 118 (2019), 78–102.
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Qualitative results

LH(x) = #{conj. cls. of lattices Γ < H with µ(H/Γ)< x};

ALH(x) = #{ arithmetic lattices }

Theorem (H. C. Wang, 1972). If H is not locally isomorphic to
PSL2(R) or PSL2(C), then LH(x) is finite for every x > 0.

Remark. This is false for PSL2, the volume spectrum here has
accumulation points.

Theorem (Borel, 1981). For H ' PSL2(R) or PSL2(C), the function
ALH(x) is finite for every x > 0.

Question. What can we say about LH(x) and ALH(x) as functions of
x? In particular, what is the asymptotic behavior of these functions?
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Motivation

(1) ’density of topologies’ in cosmology (cf. S. Carlip, Phys. Rev.
Letters (1997) and Class. Quant. Grav (1998));

(2) connection with distributions of primes, discriminants and class
numbers of algebraic number fields.
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Theorem (Goldfeld - Lubotzky - Nikolov - Pyber’05).
Let H be a simple Lie group of real rank at least 2. Assuming the
GRH and Serre’s conjecture, for every lattice Γ in H the limit

lim
n→∞

logsn(Γ)

(logn)2/ log logn

exists and equals a constant γ(H) which depends only on H and not
on Γ. The number γ(H) is an invariant which is easily computed from
the root system of H.

Conjecture (Lubotzky et al.).
Under the assumptions of the theorem

lim
x→∞

logLH(x)
(logx)2/ log logx

= γ(H).



Theorem (Goldfeld - Lubotzky - Nikolov - Pyber’05).
Let H be a simple Lie group of real rank at least 2. Assuming the
GRH and Serre’s conjecture, for every lattice Γ in H the limit

lim
n→∞

logsn(Γ)

(logn)2/ log logn

exists and equals a constant γ(H) which depends only on H and not
on Γ. The number γ(H) is an invariant which is easily computed from
the root system of H.

Conjecture (Lubotzky et al.).
Under the assumptions of the theorem

lim
x→∞

logLH(x)
(logx)2/ log logx

= γ(H).



Plan

(1) Count finite index subgroups in a given lattice
(done by D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber);

(2) Count maximal lattices;

(3) Combine (1) and (2).



Counting maximal arithmetic subgroups
Theorem 3. (B. 2007 with Appendix by Ellenberg–Venkatesh)
A. If H contains an irreducible cocompact arithmetic subgroup (or,
equivalently, H is isotypic), then there exist effectively computable
positive constants A and B which depend only on the type of almost
simple factors of H, such that for sufficiently large x

xA 6 mH(x)6 xBβ (x),

where β (x) is a function which we define for an arbitrary ε > 0 as
β (x) = C(logx)ε , C = C(ε) is a constant which depends only on ε .

B. If H contains a non-cocompact irreducible arithmetic subgroup
then there exist effectively computable positive constants A′, which
depends only on the type of almost simple factors of H, and B′

depending on H, such that for sufficiently large x

xA′ 6 mnu
H (x)6 xB′ .



Growth of lattices

Theorem 4. (B.–Lubotzky, 2012)
Let H be a simple Lie group of real rank at least 2. Then

(i) There exists a positive constant a such that LH(x)> xa logx for all
sufficiently large x.

(ii) Assuming the CSP and MP, there exists a positive constant b
such that LH(x)6 xb logx for all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the
existence of infinite class field towers of totally real fields as
established by Golod and Shafarevich.

Open Problem. Does lim
x→∞

logLH(x)
(logx)2 exist? And if so, what is its

value?

Note: Theorem 4 disproves Lubotzky’s conjecture.
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Growth of lattices
Theorem 5. (B.–Gelander–Lubotzky–Shalev, 2010)
Let H = PSL2(R) endowed with the Haar measure induced from the
Riemanian measure of the hyperbolic plane H 2. Then

lim
x→∞

logALH(x)
x logx

=
1

2π
.

Theorem 6. (BGLS, 2010)
Let H = PSL2(C) endowed with the Haar measure induced from the
Riemanian measure of the hyperbolic space H 3. Then there exist
α,β > 0 such that for x� 0,

αx logx 6 logALH(x)6 βx logx.

Corollary. We can extend results of Borel–Prasad (Publ. IHES,
1989), B. (Duke Math. J., 2007), and Agol–B.–Storm–Whyte
(Groups, Geom., and Dynamics, 2008) to the SL2-case.
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Growth of lattices
Theorem 7. (B.–Lubotzky, 2019)
For a 2-generic simple Lie group H of real rank at least 2, we have

lim
x→∞

logLnu
H (x)

(logx)2/ log logx
= γ(H),

where γ(H) is an explicit constant and Lnu
H (x) is the number of

conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-generic means that H is not of type E6 or D4, and if it is of
type An, then n is of the form n = 2α −1 for some α ∈ N.

Conjecture 1. Theorem 6 applies to any semisimple Lie group of real
rank at least 2.

We prove that this conjecture is equivalent to:

Conjecture 2. Fix an integer d > 2 and a prime l. Then for number
fields k of degree d, rkl(Cl(k)) = o( logDk√

log logDk
).

(for l = d = 2 this follows from the Gauss theorem)
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Some other results on counting lattices

M. Burger, T. Gelander, A. Lubotzky, S. Mozes, Counting
hyperbolic manifolds. Geom. Funct. Anal. 12 (2002),
1161–1173.

T. Gelander, Homotopy type and volume of locally symmetric
manifolds, Duke Math. J. 124 (2004), 459–515.

A. Salehi Golsefidy, Counting lattices in simple Lie groups: the
positive characteristic case. Duke Math. J. 161 (2012), 431–481.

M. Belolipetsky and B. Linowitz, Counting isospectral
manifolds. Adv. Math. 321 (2017), 69–79.



Thank You Gopal!


