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Let 77" be the hyperbolic n-space .
(e.g. the upper half space with the hyperbolic metric ds* = dy%).

Isom(#") — the group of isometries of F".

I' < Isom ("), a discrete subgroup —> .# = " /T is a
hyperbolic n-orbifold.

A is a manifold <= I is torsion free.

We will discuss finite volume hyperbolic n-manifolds and orbifolds.
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Volume of hyperbolic manifolds

For n even:

_ Vol(S")

Vol(A) >

(=1)"?y(.#) (Chern-Gauss—Bonnet Theorem)

For n > 3 finite volume hyperbolic n-orbifolds are rigid
(Mostow—Prasad rigidity) = volume is a topological invariant.

If ./ is an oriented connected hyperbolic n-manifold,
Vol(A') = vy||-#|| (Gromov—Thurston)

=—> volume is a measure of complexity.
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CONSTRUCTING HYPERBOLIC MANIFOLDS
B. EVERITT AND C. MACLACHLAN

ABSTRACT. The Coxeter simplex with symbol c=0—0—C=0 is a com-
pact hyperbolic 4-simplex and the related Coxeter group T is a discrete
subgroup of Isom(H*). The Coxeter simplex with symbol c—o—0=0 is
a spherical 3-simplex, and the related Coxeter group G is the group of
symmetries of the regular 120-cell. Using the geometry of the regular 120-
cell, Davis (3] constructed an epimorphism I' — G whose kernel K was
torsion-free, thus obtaining a small volume compact hyperbolic 4-manifold

H'/K.
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ABSTRACT. The Coxeter simplex with symbol c=0—0—C=0 is a com-
pact hyperbolic 4-simplex and the related Coxeter group T is a discrete
subgroup of Isom(H*). The Coxeter simplex with symbol c—o—0=0 is
a spherical 3-simplex, and the related Coxeter group G is the group of
symmetries of the regular 120-cell. Using the geometry of the regular 120-
cell, Davis (3] constructed an epimorphism I' — G whose kernel K was
torsion-free, thus obtaining a small volume compact hyperbolic 4-manifold

H'/K.

G(x) = 22 4+ 22,79 + 2% — 2973 + 23 — T34 + T2 + 2475 + T2,
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VOLUMES OF S-ARITHMETIC QUOTIENTS
OF SEMI-SIMPLE GROUPS

by Gorar PRASAD*

With an appendix by Moshe Jarden and Gopal Prasad

Dedicated to the memory of Harish-Chandra.

Introduction

The purpose of this paper is twofold: The first is to give a computable formula
for the volumes of the S-arithmetic quotients of G4 :=1II, . s G(%,), in terms of a natural
Haar measure on Gy, where G is an arbitrary absolutely quasi-simple, simply connected
algebraic group defined over a global field % (i.e. a number field or the function field
of a curve over a finite field) and S is a finite set of places of % containing all the archi-
medean ones; see § 3. The second is to use the results involved in the volume compu-
tation to provide a “ good *’ lower (and also upper) bound for the class number of G;
this is done in § 4 of the paper.
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3.7. Theorem. — We have the following

dim G 1211, § (%) m; !
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where

dim(G), r and m; denote the dimension, rank and Lie exponents;

[ is a Galois extension of k of degree < 3 defined in Prasad’s
paper;

- 5 =s(¥) is an integer defined in Prasad’s paper (s = 0 if G is an
inner form of a split group and s > 5 if G is an outer form);

- 74(G) is the Tamagawa number of G over k; and

& is an Euler product of the local factors e, = ¢(P,).



Results about minimal volume
H =PO(n,1)° =Isom™ (#")

Theorem 1. (B., 2004, B.—Emery, 2012) For every dimension n > 4
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Theorem 1. (B., 2004, B.—Emery, 2012) For every dimension n > 4
there exists a unique cocompact arithmetic subgroup 1y < H of the
smallest covolume.™) It is defined over kg = Q[v/5] and has

Vol(7" |T) = @ (n).

Theorem 2. (B., 2004, B.—Emery, 2012) For every dimension n > 4
there exists a unique non-cocompact arithmetic subgroup I'{ < H of
the smallest covolume. It is defined over ki = Q and has

Vol(H" /T™) = @pe(n).

(*) Of the first type.
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Proofs use

» Prasad’s volume formula
» Galois cohomology of algebraic groups
» Bruhat-Tits theory

» Bounds for discriminants and class numbers (Odlyzko bounds,
Brauer—Siegel theorem, Zimmert’s bound for regulator)
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Corollary. (B., 2004) If there exists a compact orientable arithmetic
hyperbolic 4-manifold M with Euler characteristic ¥ < 22, then its
groups is an index 14400y subgroup of the Coxeter group

I =15,3,3,3].
Conder—Maclachlan (2005) and C. Long (2008) constructed compact
orientable hyperbolic 4-manifolds with y = 16.

Open Problem. Do there exist an orientable compact hyperbolic
4-manifold with x < 16?

Emery (2014) showed that for n > 4 there are no compact orientable
arithmetic hyperbolic n-manifolds with y = 2.
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Qualitative results

Ly(x) =#{conj. cls. of lattices ' < H with u(H/T") < x};

ALy (x) =#{ arithmetic lattices }

Theorem (H. C. Wang, 1972). If H is not locally isomorphic to
PSLy(R) or PSLy(C), then Ly(x) is finite for every x > 0.

Remark. This is false for PSL,, the volume spectrum here has
accumulation points.

Theorem (Borel, 1981). For H ~ PSL,(R) or PSL,(C), the function
ALy (x) is finite for every x > 0.

Question. What can we say about Ly (x) and ALy(x) as functions of
x? In particular, what is the asymptotic behavior of these functions?
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Motivation

(1) ’density of topologies’ in cosmology (cf. S. Carlip, Phys. Rev.
Letters (1997) and Class. Quant. Grav (1998));

(2) connection with distributions of primes, discriminants and class
numbers of algebraic number fields.
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Theorem (Goldfeld - Lubotzky - Nikolov - Pyber’05).
Let H be a simple Lie group of real rank at least 2. Assuming the
GRH and Serre’s conjecture, for every lattice I in H the limit

n—eo (logn)?/loglogn

exists and equals a constant Y(H) which depends only on H and not
onT. The number y(H) is an invariant which is easily computed from
the root system of H.

Conjecture (Lubotzky et al.).
Under the assumptions of the theorem

logLy(x)
=vY(H).
Ear (logx)?/loglogx Y(H)



Plan

(1) Count finite index subgroups in a given lattice
(done by D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber);

(2) Count maximal lattices;

(3) Combine (1) and (2).



Counting maximal arithmetic subgroups

Theorem 3. (B. 2007 with Appendix by Ellenberg—Venkatesh)

A. If H contains an irreducible cocompact arithmetic subgroup (or,
equivalently, H is isotypic), then there exist effectively computable
positive constants A and B which depend only on the type of almost
simple factors of H, such that for sufficiently large x

A < mpg(x) <P,
where B(x) is a function which we define for an arbitrary € > 0 as
B(x) = C(logx)¢, C = C(¢) is a constant which depends only on €.

B. If H contains a non-cocompact irreducible arithmetic subgroup
then there exist effectively computable positive constants A, which
depends only on the type of almost simple factors of H, and B'
depending on H, such that for sufficiently large x

A <m(x) <A
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Theorem 4. (B.-Lubotzky, 2012)
Let H be a simple Lie group of real rank at least 2. Then

(i) There exists a positive constant a such that Ly (x) > x*1°8* for all
sufficiently large x.

(i1) Assuming the CSP and MP, there exists a positive constant b
such that Ly (x) < x1°2% for all sufficiently large x.



Growth of lattices

Theorem 4. (B.-Lubotzky, 2012)
Let H be a simple Lie group of real rank at least 2. Then
(i) There exists a positive constant a such that Ly (x) > x*1°8* for all
sufficiently large x.

(i1) Assuming the CSP and MP, there exists a positive constant b
such that Ly (x) < x1°2% for all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the
existence of infinite class field towers of totally real fields as
established by Golod and Shafarevich.



Growth of lattices

Theorem 4. (B.-Lubotzky, 2012)
Let H be a simple Lie group of real rank at least 2. Then

(i) There exists a positive constant a such that Ly (x) > x*1°8* for all
sufficiently large x.

(i1) Assuming the CSP and MP, there exists a positive constant b
such that Ly (x) < x1°2% for all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the
existence of infinite class field towers of totally real fields as
established by Golod and Shafarevich.

logL
Open Problem. Does lim LH(X)

exist? And if so, what is its
7% (log ) 4

value?

Note: Theorem 4 disproves Lubotzky’s conjecture.
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Theorem 6. (BGLS, 2010)
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Theorem 5. (B.—Gelander—Lubotzky—Shalev, 2010)
Let H = PSL;(R) endowed with the Haar measure induced from the
Riemanian measure of the hyperbolic plane S¢>. Then

m logALg(x) 1

li = —.
e xlogx 2n

Theorem 6. (BGLS, 2010)

Let H = PSL;(C) endowed with the Haar measure induced from the
Riemanian measure of the hyperbolic space 7€3. Then there exist
o, B > 0 such that for x > 0,

oxlogx < log ALy (x) < Bxlogx.

Corollary. We can extend results of Borel-Prasad (Publ. IHES,
1989), B. (Duke Math. J., 2007), and Agol-B.—Storm—Whyte
(Groups, Geom., and Dynamics, 2008) to the SL,-case.
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Theorem 7. (B.—Lubotzky, 2019)
For a 2-generic simple Lie group H of real rank at least 2, we have

OB
x—es (logx)?/loglogx ’

where y(H) is an explicit constant and L}}! (x) is the number of
conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-generic means that H is not of type Eg or Dy, and if it is of
type A,, then n is of the form n = 2% — 1 for some a € N.
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Theorem 7. (B.—Lubotzky, 2019)
For a 2-generic simple Lie group H of real rank at least 2, we have

OB
x—es (logx)?/loglogx ’

where y(H) is an explicit constant and L}}! (x) is the number of
conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-generic means that H is not of type Eg or Dy, and if it is of
type A,, then n is of the form n = 2% — 1 for some a € N.

Conjecture 1. Theorem 6 applies to any semisimple Lie group of real
rank at least 2.

We prove that this conjecture is equivalent to:

Conjecture 2. Fix an integer d > 2 and a prime L. Then for number

fields k of degree d, 1k;(Cl(k)) = 0(%)'

(for [ = d = 2 this follows from the Gauss theorem)



Some other results on counting lattices
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Thank You Gopal!



