Counting lattices and class field towers

Mikhail Belolipetsky, Durham University

Manresa September 3, 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

H is a non-compact simple Lie group, $\operatorname{rank}_{\mathbb{R}}(H) \geq 2$. μ a Haar measure on H.

<u>THEOREM.</u> (Wang, 1972) Given a positive real number x, H contains only finitely many conjugacy classes of discrete subgroups Γ with $\mu(H/\Gamma) < x$.

H is a non-compact simple Lie group, $\operatorname{rank}_{\mathbb{R}}(H) \geq 2$. μ a Haar measure on H.

<u>THEOREM.</u> (Wang, 1972) Given a positive real number x, H contains only finitely many conjugacy classes of discrete subgroups Γ with $\mu(H/\Gamma) < x$.

QUESTION. HOW MANY ?

PLAN:

◆□ → < 個 → < Ξ → < Ξ → < Ξ → の < ⊙</p>

PLAN:

Count finite index subgroups in a given lattice (D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PLAN:

 Count finite index subgroups in a given lattice (D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber)

2) Count maximal lattices (M.B.)

PLAN:

 Count finite index subgroups in a given lattice (D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber)

- 2) Count maximal lattices (M.B.)
- 3) Combine (1) and (2)

(M.B. – A. Lubotzky, work in progress)

Notation

$$s_n(\Gamma) = \#\{\text{subgroups of } \Gamma \text{ of index at most } n\}$$

 $\begin{aligned} \rho_{\rm H}^u(x) &= \#\{\text{conj. cls. of uniform lattices } \Gamma < {\rm H \ with } \ \mu({\rm H}/\Gamma) < x\} \\ \rho_{\rm H}^{nu}(x) &= \#\{ & \text{non-uniform} \\ \end{aligned}$

 $\begin{array}{l} m_{\rm H}^u(x) = \#\{ {\rm conj. \ cls. \ of \ uniform \ max. \ } \Gamma < {\rm H \ with \ } \mu({\rm H}/\Gamma) < x \} \\ m_{\rm H}^{nu}(x) = \#\{ \qquad \qquad {\rm non-uniform \ } \} \end{array}$

 $\rho_{\rm H}(x) = \rho_{\rm H}^{u}(x) + \rho_{\rm H}^{nu}(x), \quad m_{\rm H}(x) = m_{\rm H}^{u}(x) + m_{\rm H}^{nu}(x)$

<u>THEOREM.</u> (D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber '05) Assuming GRH and Serres conjecture, then for every lattice Γ in H the limit

 $\lim_{n\to\infty}\frac{\log s_n(\Gamma)}{(\log n)^2/\log\log n}$

exists and equals a constant $\gamma(H)$ which depends only on H and not on Γ . The number $\gamma(H)$ is an invariant which is easily computed from the root system of H.

<u>THEOREM.</u> (D. Goldfeld - A. Lubotzky - N. Nikolov - L. Pyber '05) Assuming GRH and Serres conjecture, then for every lattice Γ in H the limit

 $\lim_{n\to\infty}\frac{\log s_n(\Gamma)}{(\log n)^2/\log\log n}$

exists and equals a constant $\gamma(H)$ which depends only on H and not on Γ . The number $\gamma(H)$ is an invariant which is easily computed from the root system of H.

<u>CONJECTURE.</u> (Lubotzky et al.) Under assumptions of the theorem

$$\lim_{x\to\infty}\frac{\log\rho_{\rm H}(x)}{(\log x)^2/\log\log x}=\gamma({\rm H}).$$

<u>THEOREM.</u> (M.B., preprint)

There exist effectively computable positive constants A, B, A', B', which depend only on type of H, such that for sufficiently large x

$$A \leq rac{\log m_{
m H}^u(x)}{\log x} \leq Beta(x),$$

where $\beta(x) = C_{\epsilon}(\log x)^{\epsilon}$;

$$\mathcal{A}' \leq rac{\log m_{
m H}^{nu}(x)}{\log x} \leq \mathcal{B}'.$$

<u>THEOREM.</u> (M.B., preprint)

There exist effectively computable positive constants A, B, A', B', which depend only on type of H, such that for sufficiently large x

$$A \leq rac{\log m_{
m H}^u(x)}{\log x} \leq Beta(x),$$

where $\beta(x) = C_{\epsilon}(\log x)^{\epsilon}$;

$$A' \leq rac{\log m_{
m H}^{nu}(x)}{\log x} \leq B'.$$

CONJECTURE.
$$\beta(x) = const.$$

New Results

<u>THEOREM 1.</u> (M.B. - A. Lubotzky)For sufficiently large x,

$$a \leq rac{\log
ho_{\mathrm{H}}^u(x)}{(\log x)^2} \leq^* b,$$

where \leq^* holds if all lattices in H satisfy the congruence subgroup property; a, b are positive constants which depend only on H.

<u>THEOREM 2.</u> (M.B. – A. Lubotzky) For sufficiently large x,

$$\mathsf{a}' \leq \frac{\log \rho_{\mathrm{H}}^{nu}(x)}{(\log x)^2/\log\log x} \leq^{**} \mathsf{b}',$$

where \leq^{**} holds if H is a group of type A_{2^n-1} (n > 1), B_r , C_r , D_r ($r \neq 4$), E_7 , E_8 , F_4 or G_2 ; the positive constants a', b' depend only on H.

Some Open Problems

QUESTION.
Does
$$\lim_{x\to\infty} \frac{\log \rho_{\rm H}^u(x)}{(\log x)^2}$$
 exist? And if so, what is its value?

CONJECTURE.
$$\lim_{x \to \infty} \frac{\log \rho_{\rm H}^{nu}(x)}{(\log x)^2 / \log \log x} = \gamma({\rm H}).$$