
On volumes of arithmetic hyperbolic n-orbifolds

Mikhail Belolipetsky
Durham University



Siegel’s theorem

Let H = PSL(2,R) = Isom+(H 2), and
Γ≤ H, a discrete subgroup.

Theorem 1. (Siegel’1945) There exists a discrete subgroup Γ0 in H of
the smallest covolume. It is unique up to conjugation and isomorphic
to the triangle group ∆(2,3,7), and its covolume

µ(H/Γ0) = vol(H 2/Γ0) = π/21.

Remarks: 1. Γ0 = ∆(2,3,7) is an arithmetic subgroup of PSL(2,R)
defined over k = Q[cos(2π

7 )].

2. vol(H 2/Γ0) = πζk(−1).

The theorem of Siegel is closely related to the Hurwitz theorem:

Aut(Sg)≤ 84(g−1), Sg is a Riemann surface of genus g≥ 2.
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The tessellation of the fundamental domain of the surface of genus 3
with 168 automorphisms by (2,3,7)-hyperbolic triangles:

this picture is due to Felix Klein (1879)



Non-cocompact case

can consider separately the case when Γ is non-cocompact but still
has finite covolume, i.e. H /Γ has cusps.

Theorem 2. There exists a discrete non-cocompact subgroup Γ1 in H
of the smallest covolume. It is unique up to conjugation and
isomorphic to the modular group PSL(2,Z), and its covolume

µ(H/Γ1) = vol(H 2/Γ1) = π/3.

Remarks: 1. Γ1 = PSL(2,Z) is an arithmetic subgroup of PSL(2,R)
defined over Q.

2. vol(H 2/Γ1) = 4πζ (−1).

3. vol(H 2/Γ0) < vol(H 2/Γ1).
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Higher dimensions..?

Problem. (Siegel) Identify the minimal covolume discrete groups of
isometries of the hyperbolic n-space for n > 2.

We will restrict our attention to arithmetic subgroups.

For n = 3 the restricted problem was solved by Chinburg and Fried-
man (1986). In 2009 Ann. Math. paper Gehring and Martin announ-
ced the proof that the orbifold constructed by Chinburg and Friedman
has the smallest volume among all hyperbolic 3-orbifolds. The
non-cocompact analogue of this problem was solved by Meyerhoff
(1986). Here again the minimal covolume subgroup appears to be
arithmetic.
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Results
Let H = PO(n,1)◦ = Isom+(H n), and

Γ≤ H, a discrete subgroup.

Theorem 3. (B.’2004, B.-Emery’2010) For every dimension n≥ 4
there exists a unique cocompact arithmetic subgroup Γn

0 < H of the
smallest covolume. It is defined over k0 = Q[

√
5] and has

vol(H n/Γ
n
0) = ωc(n).
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n = 2r, r even:

ωc(n) =
4 ·5r2+r/2 · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i);

n = 2r, r odd:

ωc(n) =
2 ·5r2+r/2 · (2π)r · (4r−1)

(2r−1)!!

r

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i);

(B.’2004)

n = 2r−1:

ωc(n) =
5r2−r/2 ·11r−1/2 · (r−1)!

22r−1πr L`0|k0(r)
r−1

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i),

where k0 = Q[
√

5] and l0 is the quartic field with a defining
polynomial x4− x3 +2x−1.

(B.-Emery’2010)
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n = 2r, r ≡ 0, 1 (mod 4):

ωnc(n) =
4 · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!
(2π)2i ζ (2i);

n = 2r, r ≡ 2, 3 (mod 4):

ωnc(n) =
2 · (2r−1) · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!
(2π)2i ζ (2i); (B.)

n = 2r−1, r even:

ωnc(n) =
3r−1/2

2r−1 L`1|Q(r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i), where `1 = Q[

√
−3];

n = 2r−1, r ≡ 1 (mod 4):

ωnc(n) =
1

2r−2 ζ (r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i);

n = 2r−1, r ≡ 3 (mod 4):

ωnc(n) =
(2r−1)(2r−1−1)

3 ·2r−1 ζ (r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i); (B.-Emery)



Growth of minimal covolume



Ingredients of the proof:

Arithmetic Subgroups of PO(n,1)

Optimization Procedure

Prasad’s formula

Bruhat–Tits theory

Galois cohomology

Odlyzko bounds

Minimal Lattice

Skip details



some details

Skip details

Let k be a number field, G – an algebraic group /k such that
for v0 ∈ V∞(k): G(kv0)∼= SO(n,1);
for v ∈ V∞ \{v0}: G(kv)∼= SO(n+1).

Λ = G(k)∩∏v∈Vf
G(kv) is a principal arithmetic subgroup of G.

Assume n even.

Let µEP is the Euler-Poincaré measure in the sense of Serre. Then

|χ(G/Λ)|= µ
EP(G/Λ)

We can compute µEP(G/Λ) using Prasad’s volume formula.



some details

Skip details

Let k be a number field, G – an algebraic group /k such that
for v0 ∈ V∞(k): G(kv0)∼= SO(n,1);
for v ∈ V∞ \{v0}: G(kv)∼= SO(n+1).

Λ = G(k)∩∏v∈Vf
G(kv) is a principal arithmetic subgroup of G.

Assume n even.
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Prasad’s formula for SO(n,1), n even

µ
EP(Λ\G) = 2D

1
2 dimG

k

(
r

∏
i=1

mi!
(2π)mi+1

)[k:Q]

τk(G)E ∏
v∈T

λv,

- Dk is the discriminant of k;

- r = n/2, the absolute rank of G;

- dimension dimG = 2r2 + r and Lie exponents mi = 2i−1;

- the Tamagawa number τk(G) = 2;

- E is an Euler product which in our case is given by
E = ζk(2) · . . . ·ζk(2r);

- λv ∈Q are local densities, v runs through a finite subset T ⊂ Vf .
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Assume r = n/2 is large (e.g. r ≥ 30) and n is even

|χ(G/Λ)|= CD
r2+r/2
k

(
∏

r
i=1

(2i−1)!
(2π)2i

)[k:Q]
E ∏v∈T λv

>

CD
r2+r/2
k

(
∏

r
i=1

(2i−1)!
(2π)2i

)[k:Q]
> CD

r2+r/2
k (2r−1)!

This bound grows super-exponentially with n and attains its minimum
on k = Q.

By Godement compactness criterion, if k = Q and n≥ 4, then Λ is
non-cocompact. In cocompact case the smallest Dk = 5.

Odd dimensional case is more complicated. Moreover, low
dimensions, maximal arithmetic subgroups and precise formulas
require much more care!
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Differences btw. odd and even dimensions:

n = 2r – even n = 2r−1 – odd

type Br type Dr

only inner forms inner and outer forms

|Z(Spin(n,1))|= 2 |Z(Spin(n,1))|= 4

The main features of the results obtained:

I Precise computation of the minimal covolume;
I Uniqueness of the extremal subgroups.
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