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The theorem of Siegel is closely related to the Hurwitz theorem:

Aut(S,) < 84(g—1), S, is a Riemann surface of genus g > 2.



The tessellation of the fundamental domain of the surface of genus 3
with 168 automorphisms by (2,3,7)-hyperbolic triangles:

this picture is due to Felix Klein (1879)
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Non-cocompact case

can consider separately the case when I is non-cocompact but still
has finite covolume, i.e. .7 /I" has cusps.

Theorem 2. There exists a discrete non-cocompact subgroup I'y in H
of the smallest covolume. It is unique up to conjugation and
isomorphic to the modular group PSL(2,7), and its covolume

w(H/Ty) = vol(s2)T1) = /3.

Remarks: 1. I'j = PSL(2,Z) is an arithmetic subgroup of PSL(2,R)
defined over Q.

2. vol(#2Ty) = 4rl(—1).
3. vol(#72 /Ty) < vol(£%Ty).
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For n = 3 the restricted problem was solved by Chinburg and Fried-
man (1986). In 2009 Ann. Math. paper Gehring and Martin announ-
ced the proof that the orbifold constructed by Chinburg and Friedman
has the smallest volume among all hyperbolic 3-orbifolds. The
non-cocompact analogue of this problem was solved by Meyerhoff
(1986). Here again the minimal covolume subgroup appears to be
arithmetic.
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Theorem 4. (B.’2004, B.-Emery’2010) For every dimension n > 4
there exists a unique non-cocompact arithmetic subgroup I' < H of
the smallest covolume. It is defined over ki = Q and has

vol(J" JT}) = @pe(n).
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Growth of minimal covolume
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Ingredients of the proof:

@metic Subgroups of POD

Prasad’s formula Galois cohomology
A 4
@ization Pro@
Bruhat-Tits theory Odlyzko bounds

A\ 4
Minimal Lattice
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some details

Let k be a number field, G — an algebraic group /k such that
for vy € Voo(k): G(ky,) = SO(n, 1);
forv e Vo \ {vw}: G(k,) 2SO(n+1).

A =G(k) NIIyev, G(kv) is a principal arithmetic subgroup of G.
Assume n even.
Let uf is the Euler-Poincaré measure in the sense of Serre. Then
X(G/A)| = 1 (G/A)

We can compute (5P (G/A) using Prasad’s volume formula.



Prasad’s formula for SO(n, 1), n even
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Prasad’s formula for SO(n, 1), n even

[:Q]
L dim z i!

Dy is the discriminant of k;
r =n/2, the absolute rank of G;

dimension dim G = 2r% + r and Lie exponents m; = 2i — 1;

the Tamagawa number 7 (G) = 2;

& is an Euler product which in our case is given by
E=2C((2)...-&((2r);

- A, € Q are local densities, v runs through a finite subset 7' C V;.
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0dd dimensional case is more complicated. Moreover, low
dimensions, maximal arithmetic subgroups and precise formulas
require much more care!
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The main features of the results obtained:

> Precise computation of the minimal covolume;

> Uniqueness of the extremal subgroups.
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