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two examples of arithmetic 2-orbifolds

Γ1 = PSL(2,Z)⊂ PSL(2,R),
an arithmetic subgroup.

Γ1 is defined over Q

Γ1 acts on hyperbolic plane:

the factor orbifold O1 = H 2/Γ1

χ(O1) =−1/6 = 2ζ (−1)
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Γ2 = ∆(2,3,7)⊂ PSL(2,R),
an arithmetic subgroup.

Γ2 defined over k = Q[cos(2π
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χ(O2) =−1/42 = 2−1ζk(−1)
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facts

I hyperbolic volume µ = 2π|χ| (so µ(O1) = π

3 , µ(O2) = π

21)

I O1 = H 2/PSL(2,Z) is the minimal non-compact 2-orbifold
and
O2 = H 2/∆(2,3,7) is the minimal compact 2-orbifold

I µ(O2) < µ(O1) (“compact < open”)

I O1 and O2 have smooth covers with χ =−1 and −2, resp.

Question. WHAT HAPPENS IN HIGHER DIMENSIONS ?
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dimension 4

120-cell in H 4:

M. Davis: One can identify opposite dodecahedral faces of the
120-cell to obtain a compact hyperbolic 4-manifold M .
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dimension 4

χ(M ) = 26

Question. Can one get smaller?

J. Ratcliffe, S. Tschantz: There exists a non-compact hyperbolic
4-manifold with χ = 1 (geometric construction).

The 120-cell can be subdivided into 14400 Coxeter simplexes
[5,3,3,5], it can also be subdivided into 26 ·14400 simplexes
[5,3,3,3] although not in a regular way.

Theorem. (M.B.) If there exists a compact arithmetic hyperbolic
4-manifold with χ < 22, then it can be triangulated into [5,3,3,3]
Coxeter simplexes.

This reduces the problem to a finite computation
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dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic
4-manifold with χ = 16 whose fundamental group is a torsion free
subgroup of the [5,3,3,3] Coxeter group, i.e. it can be triangulated
into [5,3,3,3]-simplexes (computational construction).

C. Long (PhD Thesis, Southampton 2007): Two more examples
with χ = 16 (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get χ = 2 for a compact orientable
hyperbolic 4-manifold?

Note: This is certainly not the case for high dimensions if
restricted to arithmetic manifolds and most likely also for arbitrary
manifolds.



dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic
4-manifold with χ = 16 whose fundamental group is a torsion free
subgroup of the [5,3,3,3] Coxeter group, i.e. it can be triangulated
into [5,3,3,3]-simplexes (computational construction).

C. Long (PhD Thesis, Southampton 2007): Two more examples
with χ = 16 (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get χ = 2 for a compact orientable
hyperbolic 4-manifold?

Note: This is certainly not the case for high dimensions if
restricted to arithmetic manifolds and most likely also for arbitrary
manifolds.



dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic
4-manifold with χ = 16 whose fundamental group is a torsion free
subgroup of the [5,3,3,3] Coxeter group, i.e. it can be triangulated
into [5,3,3,3]-simplexes (computational construction).

C. Long (PhD Thesis, Southampton 2007): Two more examples
with χ = 16 (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get χ = 2 for a compact orientable
hyperbolic 4-manifold?

Note: This is certainly not the case for high dimensions if
restricted to arithmetic manifolds and most likely also for arbitrary
manifolds.



dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic
4-manifold with χ = 16 whose fundamental group is a torsion free
subgroup of the [5,3,3,3] Coxeter group, i.e. it can be triangulated
into [5,3,3,3]-simplexes (computational construction).

C. Long (PhD Thesis, Southampton 2007): Two more examples
with χ = 16 (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get χ = 2 for a compact orientable
hyperbolic 4-manifold?

Note: This is certainly not the case for high dimensions if
restricted to arithmetic manifolds and most likely also for arbitrary
manifolds.



dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic
4-manifold with χ = 16 whose fundamental group is a torsion free
subgroup of the [5,3,3,3] Coxeter group, i.e. it can be triangulated
into [5,3,3,3]-simplexes (computational construction).

C. Long (PhD Thesis, Southampton 2007): Two more examples
with χ = 16 (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get χ = 2 for a compact orientable
hyperbolic 4-manifold?

Note: This is certainly not the case for high dimensions if
restricted to arithmetic manifolds and most likely also for arbitrary
manifolds.



n-dimensional case

Theorem. (M.B.) Let n = 2r ≥ 4.
A. There exists a unique compact minimal arithmetic
n-orbifold On

min. It is defined over the field k = Q[
√

5] and has
Euler characteristic

|χ(On
min)|=

λ (r)

4r−1

r

∏
i=1

|ζk(1−2i)|,

λ (r) = 1 if r is even and λ (r) = 4r−1
2 if r is odd.

B. There exists a unique non-compact minimal arithmetic
n-orbifold O ′n

min which is defined over Q and has

|χ(O ′n
min)|=

λ ′(r)

2r−2

r

∏
i=1

|ζ (1−2i)|,

λ ′(r) = 1 if r ≡ 0,1 (mod 4) and λ ′(r) = 2r−1
2 if r ≡ 2,3 (mod 4).



remarks

I the field of definition of the smallest compact 2-orbifold is the
cubic field Q[cos(2π

7 )], starting from n = 4 the field switch to

Q[
√

5] and stabilize

I for n ≥ 6, |χ(On
min)|> |χ(O ′n

min)| (“compact > open!”)

I the Euler characteristic reaches its absolute minimum in
dimension n = 16 with χ(O ′n

min) = 1.0589... ·10−15 and then
grows super-exponentially with n

I these asymptotic results are significantly stronger then the
ones which are known from the geometric considerations
(cf. Gromov)
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proofs

Let k be a number field, G – an algebraic group /k such that
for v0 ∈ V∞(k): G(kv0)

∼= SO(1,n);
for v ∈ V∞ \{v0}: G(kv )∼= SO(n+1).

Λ = G(k)∩∏v∈Vf
G(kv ) is a principal arithmetic subgroup of G.

Let µEP is the Euler-Poincaré measure in the sense of Serre on
G(Ak). Then

|χ(G/Λ)|= µ
EP(G/Λ)

We can compute µEP(G/Λ) using Prasad’s volume formula.
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proofs

Prasad’s formula:

µ
EP(Λ\G ) = 2D

1
2 dimG
k

(
r

∏
i=1

mi !

(2π)mi+1

)[k:Q]

τk(G )E ∏
v∈T

λv ,

- Dk is the discriminant of k;

- r = n/2, the absolute rank of G;

- dimension dimG = 2r2 + r and Lie exponents mi = 2i −1;

- the Tamagawa number τk(G ) = 2;

- E is an Euler product which in our case is given by
E = ζk(2) · . . . ·ζk(2r);

- λv ∈Q are local densities in v from finite set T ⊂ Vf
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proofs

assume r is large (e.g. r ≥ 30)

|χ(G/Λ)|= CD
r2+r/2
k

(
∏

r
i=1

(2i−1)!
(2π)2i

)[k:Q]
E ∏v∈T λv >

CD
r2+r/2
k

(
∏

r
i=1

(2i−1)!
(2π)2i

)[k:Q]
> CD

r2+r/2
k (2r −1)!

this bound grows super-exponentially with n and has its minimum
on k = Q

by Godement compactness criterion if k = Q and n ≥ 4, then Λ is
non-cocompact

low dimensions, maximal arithmetic subgroups and precise
formulas require much more care
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