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Oy = 2 PSL(2,Z) is the minimal non-compact 2-orbifold
and
Oy = 2/ (2,3,7) is the minimal compact 2-orbifold

v

w(O2) < u(61) (“compact < open”)

v

01 and O» have smooth covers with ¥ = —1 and —2, resp.

QuesTION. WHAT HAPPENS IN HIGHER DIMENSIONS 7
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120-cell in s7%:

M. Davis: One can identify opposite dodecahedral faces of the
120-cell to obtain a compact hyperbolic 4-manifold ./ .
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J. Ratcliffe, S. Tschantz: There exists a non-compact hyperbolic

4-manifold with x =1 (geometric construction).

The 120-cell can be subdivided into 14400 Coxeter simplexes
[5,3,3,5], it can also be subdivided into 2614400 simplexes
[5,3,3,3] although not in a regular way.

THEOREM. (M.B.) If there exists a compact arithmetic hyperbolic
4-manifold with y < 22, then it can be triangulated into [5,3,3,3]
Coxeter simplexes.

This reduces the problem to a finite computation
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M. Conder and C. Maclachlan: There exists a compact hyperbolic
4-manifold with ¥ = 16 whose fundamental group is a torsion free
subgroup of the [5,3,3,3] Coxeter group, i.e. it can be triangulated
into [5,3,3,3]-simplexes (computational construction).

C. Long (PhD Thesis, Southampton 2007): Two more examples
with } = 16 (computational construction).

QUESTION. lIs there any nice geometry beyond these examples?

QUESTION. Can one eventually get ¥ =2 for a compact orientable
hyperbolic 4-manifold?

NoTE: This is certainly not the case for high dimensions if
restricted to arithmetic manifolds and most likely also for arbitrary
manifolds.



n-dimensional case

THEOREM. (M.B.) Let n=2r > 4.

A. There exists a unique compact minimal arithmetic
n-orbifold 0" . It is defined over the field k = Q[v/5] and has
Euler characteristic

[T -2

2(Oin)| =

7L(r) =1 ifr is even and A(r) = *5L if r is odd.

. There exists a unique non-compact minimal arithmetic
n- orb/fold O'" . which is defined over Q and has

min

U0 ) = 52 1120

A'(r)=1ifr=0,1 (mod 4) and A'(r) = 232 if r =2,3 (mod 4).
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proofs

Let k be a number field, G — an algebraic group /k such that
for vo € Vio(k): G(ky,) = SO(1,n);
for ve Vo \{w}: G(k,)=SO(n+1).
A =G(k)NTlvev, G(k,) is a principal arithmetic subgroup of G.
Let P is the Euler-Poincaré measure in the sense of Serre on
G(Ak). Then

X(G/N)| = 1FF(G/N)

We can compute uEP(G/A) using Prasad’s volume formula.



proofs

Prasad’s formula:

HEP(A\G) =297 ™€

:

r m,-!

=1 (2m)mit+1

[k:Q)
) "L'k(G)éa



proofs

Prasad’s formula:

[k:Q]
LdimG [y M
uEP(AG) = 29, (__1 (27:)’"I+1> w(G) & H Av,

9D is the discriminant of k;

- r=n/2, the absolute rank of G;

- dimension dim G = 2r? 4+ r and Lie exponents m; = 2i —1;
- the Tamagawa number 7,(G) = 2;

- & is an Euler product which in our case is given by

& =Ck(2) .- Ci(2r);

- A, € Q are local densities in v from finite set T C V¢
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r4r r i—1)! [k:Q]
(G/MI =€ P (M Gt ) ETher b >

re4r fi= [k:Q] re+r
co TR (Mm 8d) ™ > cop P er-1)

this bound grows super-exponentially with n and has its minimum
on k=Q

by Godement compactness criterion if k =Q and n >4, then A is
non-cocompact

low dimensions, maximal arithmetic subgroups and precise
formulas require much more care



references

[1] M. Belolipetsky, On volumes of arithmetic quotients of
SO(1,n), arXiv: math.NT/0306423, Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (5), 3 (2004), 749-770.

[2] M. Belolipetsky, Addendum to: On volumes of arithmetic
quotients of SO(1,n), arXiv: math.NT /0610177, Ann. Scuola
Norm. Sup. Pisa Cl. Sci., to appear.



