Euler-Poincaré characteristic of arithmetic hyperbolic n-orbifolds

Mikhail Belolipetsky, Durham University
26° Colóquio Brasileiro de Matemática August, 2007

two examples of arithmetic 2-orbifolds

$$
\Gamma_{1}=\operatorname{PSL}(2, \mathbb{Z}) \subset \operatorname{PSL}(2, \mathbb{R})
$$ an arithmetic subgroup.

two examples of arithmetic 2-orbifolds

$\Gamma_{1}=\operatorname{PSL}(2, \mathbb{Z}) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.
Γ_{1} is defined over \mathbb{Q}

two examples of arithmetic 2-orbifolds

$$
\Gamma_{1}=\operatorname{PSL}(2, \mathbb{Z}) \subset \operatorname{PSL}(2, \mathbb{R})
$$ an arithmetic subgroup.

Γ_{1} is defined over \mathbb{Q}
Γ_{1} acts on hyperbolic plane:

two examples of arithmetic 2-orbifolds

$$
\Gamma_{1}=\operatorname{PSL}(2, \mathbb{Z}) \subset \operatorname{PSL}(2, \mathbb{R})
$$ an arithmetic subgroup.

Γ_{1} is defined over \mathbb{Q}
Γ_{1} acts on hyperbolic plane:

the factor orbifold $\mathscr{O}_{1}=\mathscr{H}^{2} / \Gamma_{1}$

two examples of arithmetic 2-orbifolds

$$
\Gamma_{1}=\operatorname{PSL}(2, \mathbb{Z}) \subset \operatorname{PSL}(2, \mathbb{R})
$$ an arithmetic subgroup.

Γ_{1} is defined over \mathbb{Q}
Γ_{1} acts on hyperbolic plane:

the factor orbifold $\mathscr{O}_{1}=\mathscr{H}^{2} / \Gamma_{1}$

$$
\chi\left(\mathscr{O}_{1}\right)=-1 / 6
$$

two examples of arithmetic 2-orbifolds

$$
\Gamma_{1}=\operatorname{PSL}(2, \mathbb{Z}) \subset \operatorname{PSL}(2, \mathbb{R})
$$ an arithmetic subgroup.

Γ_{1} is defined over \mathbb{Q}
Γ_{1} acts on hyperbolic plane:

the factor orbifold $\mathscr{O}_{1}=\mathscr{H}^{2} / \Gamma_{1}$

$$
\chi\left(\mathscr{O}_{1}\right)=-1 / 6=2 \zeta(-1)
$$

two examples of arithmetic 2-orbifolds

$\Gamma_{2}=\Delta(2,3,7) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.

two examples of arithmetic 2-orbifolds

$\Gamma_{2}=\Delta(2,3,7) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.
Γ_{2} defined over $k=\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$

two examples of arithmetic 2-orbifolds

$\Gamma_{2}=\Delta(2,3,7) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.
Γ_{2} defined over $k=\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$
Γ_{2} acts on hyperbolic plane:

two examples of arithmetic 2-orbifolds

$\Gamma_{2}=\Delta(2,3,7) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.
Γ_{2} defined over $k=\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$
Γ_{2} acts on hyperbolic plane:

the factor orbifold $\mathscr{O}_{2}=\mathscr{H}^{2} / \Gamma_{2}$

two examples of arithmetic 2-orbifolds

$\Gamma_{2}=\Delta(2,3,7) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.
Γ_{2} defined over $k=\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$
Γ_{2} acts on hyperbolic plane:

the factor orbifold $\mathscr{O}_{2}=\mathscr{H}^{2} / \Gamma_{2}$

$$
\chi\left(\mathscr{O}_{2}\right)=-1 / 42
$$

two examples of arithmetic 2-orbifolds

$\Gamma_{2}=\Delta(2,3,7) \subset \operatorname{PSL}(2, \mathbb{R})$, an arithmetic subgroup.
Γ_{2} defined over $k=\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$
Γ_{2} acts on hyperbolic plane:

the factor orbifold $\mathscr{O}_{2}=\mathscr{H}^{2} / \Gamma_{2}$

$$
\chi\left(\mathscr{O}_{2}\right)=-1 / 42=2^{-1} \zeta_{k}(-1)
$$

facts

- hyperbolic volume $\mu=2 \pi|\chi|$ (so $\mu\left(\mathscr{O}_{1}\right)=\frac{\pi}{3}, \mu\left(\mathscr{O}_{2}\right)=\frac{\pi}{21}$)

facts

- hyperbolic volume $\mu=2 \pi|\chi|$ (so $\mu\left(\mathscr{O}_{1}\right)=\frac{\pi}{3}, \mu\left(\mathscr{O}_{2}\right)=\frac{\pi}{21}$)
- $\mathscr{O}_{1}=\mathscr{H}^{2} / \operatorname{PSL}(2, \mathbb{Z})$ is the minimal non-compact 2-orbifold and
$\mathscr{O}_{2}=\mathscr{H}^{2} / \Delta(2,3,7)$ is the minimal compact 2-orbifold

facts

- hyperbolic volume $\mu=2 \pi|\chi|$ (so $\mu\left(\mathscr{O}_{1}\right)=\frac{\pi}{3}, \mu\left(\mathscr{O}_{2}\right)=\frac{\pi}{21}$)
- $\mathscr{O}_{1}=\mathscr{H}^{2} / \operatorname{PSL}(2, \mathbb{Z})$ is the minimal non-compact 2-orbifold and
$\mathscr{O}_{2}=\mathscr{H}^{2} / \Delta(2,3,7)$ is the minimal compact 2-orbifold
- $\mu\left(\mathscr{O}_{2}\right)<\mu\left(\mathscr{O}_{1}\right)($ "compact $<$ open")
- hyperbolic volume $\mu=2 \pi|\chi|$ (so $\mu\left(\mathscr{O}_{1}\right)=\frac{\pi}{3}, \mu\left(\mathscr{O}_{2}\right)=\frac{\pi}{21}$)
- $\mathscr{O}_{1}=\mathscr{H}^{2} / \operatorname{PSL}(2, \mathbb{Z})$ is the minimal non-compact 2 -orbifold and
$\mathscr{O}_{2}=\mathscr{H}^{2} / \Delta(2,3,7)$ is the minimal compact 2-orbifold
- $\mu\left(\mathscr{O}_{2}\right)<\mu\left(\mathscr{O}_{1}\right)$ ("compact $<$ open")
- \mathscr{O}_{1} and \mathscr{O}_{2} have smooth covers with $\chi=-1$ and -2 , resp.

facts

- hyperbolic volume $\mu=2 \pi|\chi|$ (so $\mu\left(\mathscr{O}_{1}\right)=\frac{\pi}{3}, \mu\left(\mathscr{O}_{2}\right)=\frac{\pi}{21}$)
- $\mathscr{O}_{1}=\mathscr{H}^{2} / \operatorname{PSL}(2, \mathbb{Z})$ is the minimal non-compact 2 -orbifold and
$\mathscr{O}_{2}=\mathscr{H}^{2} / \Delta(2,3,7)$ is the minimal compact 2-orbifold
- $\mu\left(\mathscr{O}_{2}\right)<\mu\left(\mathscr{O}_{1}\right)($ "compact $<$ open")
- \mathscr{O}_{1} and \mathscr{O}_{2} have smooth covers with $\chi=-1$ and -2 , resp.

dimension 4

dimension 4

120 -cell in \mathscr{H}^{4} :

dimension 4

120-cell in \mathscr{H}^{4} :

M. Davis: One can identify opposite dodecahedral faces of the $120-c e l l$ to obtain a compact hyperbolic 4-manifold \mathscr{M}.

dimension 4

$$
\chi(\mathscr{M})=26
$$

dimension 4

$$
\chi(\mathscr{M})=26
$$

Question. Can one get smaller?

dimension 4

$$
\chi(\mathscr{M})=26
$$

Question. Can one get smaller?
J. Ratcliffe, S. Tschantz: There exists a non-compact hyperbolic 4-manifold with $\chi=1$ (geometric construction).

dimension 4

$$
\chi(\mathscr{M})=26
$$

Question. Can one get smaller?
J. Ratcliffe, S. Tschantz: There exists a non-compact hyperbolic 4-manifold with $\chi=1$ (geometric construction).

The 120 -cell can be subdivided into 14400 Coxeter simplexes
[$5,3,3,5$], it can also be subdivided into $26 \cdot 14400$ simplexes
[$5,3,3,3$] although not in a regular way.

dimension 4

$$
\chi(\mathscr{M})=26
$$

Question. Can one get smaller?
J. Ratcliffe, S. Tschantz: There exists a non-compact hyperbolic 4-manifold with $\chi=1$ (geometric construction).

The 120 -cell can be subdivided into 14400 Coxeter simplexes [$5,3,3,5]$, it can also be subdivided into $26 \cdot 14400$ simplexes [$5,3,3,3$] although not in a regular way.

THEOREM. (M.B.) If there exists a compact arithmetic hyperbolic 4-manifold with $\chi<22$, then it can be triangulated into [5,3,3,3] Coxeter simplexes.

dimension 4

$$
\chi(\mathscr{M})=26
$$

Question. Can one get smaller?
J. Ratcliffe, S. Tschantz: There exists a non-compact hyperbolic 4-manifold with $\chi=1$ (geometric construction).

The 120 -cell can be subdivided into 14400 Coxeter simplexes
[$5,3,3,5]$, it can also be subdivided into $26 \cdot 14400$ simplexes [$5,3,3,3$] although not in a regular way.

THEOREM. (M.B.) If there exists a compact arithmetic hyperbolic 4-manifold with $\chi<22$, then it can be triangulated into [5,3,3,3] Coxeter simplexes.

This reduces the problem to a finite computation

dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic 4-manifold with $\chi=16$ whose fundamental group is a torsion free subgroup of the $[5,3,3,3]$ Coxeter group, i.e. it can be triangulated into $[5,3,3,3]$-simplexes (computational construction).

dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic 4-manifold with $\chi=16$ whose fundamental group is a torsion free subgroup of the $[5,3,3,3]$ Coxeter group, i.e. it can be triangulated into $[5,3,3,3]$-simplexes (computational construction).
C. Long (PhD Thesis, Southampton 2007): Two more examples with $\chi=16$ (computational construction).

dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic 4-manifold with $\chi=16$ whose fundamental group is a torsion free subgroup of the $[5,3,3,3]$ Coxeter group, i.e. it can be triangulated into $[5,3,3,3]$-simplexes (computational construction).
C. Long (PhD Thesis, Southampton 2007): Two more examples with $\chi=16$ (computational construction).

Question. Is there any nice geometry beyond these examples?

dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic 4-manifold with $\chi=16$ whose fundamental group is a torsion free subgroup of the $[5,3,3,3]$ Coxeter group, i.e. it can be triangulated into $[5,3,3,3]$-simplexes (computational construction).
C. Long (PhD Thesis, Southampton 2007): Two more examples with $\chi=16$ (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get $\chi=2$ for a compact orientable hyperbolic 4-manifold?

dimension 4

M. Conder and C. Maclachlan: There exists a compact hyperbolic 4-manifold with $\chi=16$ whose fundamental group is a torsion free subgroup of the $[5,3,3,3]$ Coxeter group, i.e. it can be triangulated into $[5,3,3,3]$-simplexes (computational construction).
C. Long (PhD Thesis, Southampton 2007): Two more examples with $\chi=16$ (computational construction).

Question. Is there any nice geometry beyond these examples?

Question. Can one eventually get $\chi=2$ for a compact orientable hyperbolic 4-manifold?

Note: This is certainly not the case for high dimensions if restricted to arithmetic manifolds and most likely also for arbitrary manifolds.

n-dimensional case

Theorem. (M.B.) Let $n=2 r \geq 4$.
A. There exists a unique compact minimal arithmetic n-orbifold $\mathscr{O}_{\text {min }}^{n}$. It is defined over the field $k=\mathbb{Q}[\sqrt{5}]$ and has Euler characteristic

$$
\left|\chi\left(\mathscr{O}_{\min }^{n}\right)\right|=\frac{\lambda(r)}{4^{r-1}} \prod_{i=1}^{r}\left|\zeta_{k}(1-2 i)\right|
$$

$\lambda(r)=1$ if r is even and $\lambda(r)=\frac{4^{r}-1}{2}$ if r is odd.
B. There exists a unique non-compact minimal arithmetic n-orbifold $\mathscr{O}_{\text {min }}^{\prime n}$ which is defined over \mathbb{Q} and has

$$
\left|\chi\left(\mathscr{O}_{\min }^{\prime n}\right)\right|=\frac{\lambda^{\prime}(r)}{2^{r-2}} \prod_{i=1}^{r}|\zeta(1-2 i)|
$$

$\lambda^{\prime}(r)=1$ if $r \equiv 0,1(\bmod 4)$ and $\lambda^{\prime}(r)=\frac{2^{r}-1}{2}$ if $r \equiv 2,3(\bmod 4)$.

remarks

- the field of definition of the smallest compact 2-orbifold is the cubic field $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$, starting from $n=4$ the field switch to $\mathbb{Q}[\sqrt{5}]$ and stabilize

remarks

- the field of definition of the smallest compact 2-orbifold is the cubic field $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$, starting from $n=4$ the field switch to $\mathbb{Q}[\sqrt{5}]$ and stabilize
- for $n \geq 6,\left|\chi\left(\mathscr{O}_{\text {min }}^{n}\right)\right|>\left|\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)\right|($ "compact $>$ open!")

remarks

- the field of definition of the smallest compact 2-orbifold is the cubic field $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$, starting from $n=4$ the field switch to $\mathbb{Q}[\sqrt{5}]$ and stabilize
- for $n \geq 6,\left|\chi\left(\mathscr{O}_{\text {min }}^{n}\right)\right|>\left|\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)\right|($ "compact $>$ open!")
- the Euler characteristic reaches its absolute minimum in dimension $n=16$ with $\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)=1.0589 \ldots \cdot 10^{-15}$ and then grows super-exponentially with n

remarks

- the field of definition of the smallest compact 2-orbifold is the cubic field $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$, starting from $n=4$ the field switch to $\mathbb{Q}[\sqrt{5}]$ and stabilize
- for $n \geq 6,\left|\chi\left(\mathscr{O}_{\text {min }}^{n}\right)\right|>\left|\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)\right|($ "compact $>$ open!")
- the Euler characteristic reaches its absolute minimum in dimension $n=16$ with $\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)=1.0589 \ldots \cdot 10^{-15}$ and then grows super-exponentially with n
- these asymptotic results are significantly stronger then the ones which are known from the geometric considerations (cf. Gromov)

remarks

- the field of definition of the smallest compact 2-orbifold is the cubic field $\mathbb{Q}\left[\cos \left(\frac{2 \pi}{7}\right)\right]$, starting from $n=4$ the field switch to $\mathbb{Q}[\sqrt{5}]$ and stabilize
- for $n \geq 6,\left|\chi\left(\mathscr{O}_{\text {min }}^{n}\right)\right|>\left|\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)\right|($ "compact $>$ open!")
- the Euler characteristic reaches its absolute minimum in dimension $n=16$ with $\chi\left(\mathscr{O}_{\text {min }}^{\prime n}\right)=1.0589 \ldots \cdot 10^{-15}$ and then grows super-exponentially with n
- these asymptotic results are significantly stronger then the ones which are known from the geometric considerations (cf. Gromov)

growth of χ

proofs

Let k be a number field, $\mathrm{G}-\mathrm{an}$ algebraic group $/ k$ such that for $v_{0} \in V_{\infty}(k): \mathrm{G}\left(k_{v_{0}}\right) \cong \mathrm{SO}(1, n)$; for $v \in V_{\infty} \backslash\left\{v_{0}\right\}: \mathrm{G}\left(k_{v}\right) \cong \mathrm{SO}(n+1)$.

proofs

Let k be a number field, $\mathrm{G}-\mathrm{an}$ algebraic group $/ k$ such that for $v_{0} \in V_{\infty}(k): \mathrm{G}\left(k_{v_{0}}\right) \cong \mathrm{SO}(1, n)$; for $v \in V_{\infty} \backslash\left\{v_{0}\right\}: \mathrm{G}\left(k_{v}\right) \cong \mathrm{SO}(n+1)$.
$\Lambda=\mathrm{G}(k) \cap \prod_{v \in V_{f}} \mathrm{G}\left(k_{v}\right)$ is a principal arithmetic subgroup of G .

proofs

Let k be a number field, $\mathrm{G}-$ an algebraic group $/ k$ such that for $v_{0} \in V_{\infty}(k): \mathrm{G}\left(k_{v_{0}}\right) \cong \mathrm{SO}(1, n)$; for $v \in V_{\infty} \backslash\left\{v_{0}\right\}: \mathrm{G}\left(k_{v}\right) \cong \mathrm{SO}(n+1)$.
$\Lambda=\mathrm{G}(k) \cap \prod_{v \in V_{f}} \mathrm{G}\left(k_{v}\right)$ is a principal arithmetic subgroup of G .
Let $\mu^{E P}$ is the Euler-Poincaré measure in the sense of Serre on $\mathrm{G}\left(\mathbb{A}_{k}\right)$. Then

$$
|\chi(\mathrm{G} / \Lambda)|=\mu^{E P}(\mathrm{G} / \Lambda)
$$

proofs

Let k be a number field, $\mathrm{G}-$ an algebraic group $/ k$ such that for $v_{0} \in V_{\infty}(k): \mathrm{G}\left(k_{v_{0}}\right) \cong \mathrm{SO}(1, n)$; for $v \in V_{\infty} \backslash\left\{v_{0}\right\}: \mathrm{G}\left(k_{v}\right) \cong \mathrm{SO}(n+1)$.
$\Lambda=\mathrm{G}(k) \cap \prod_{v \in V_{f}} \mathrm{G}\left(k_{v}\right)$ is a principal arithmetic subgroup of G .
Let $\mu^{E P}$ is the Euler-Poincaré measure in the sense of Serre on $\mathrm{G}\left(\mathbb{A}_{k}\right)$. Then

$$
|\chi(\mathrm{G} / \Lambda)|=\mu^{E P}(\mathrm{G} / \Lambda)
$$

We can compute $\mu^{E P}(\mathrm{G} / \Lambda)$ using Prasad's volume formula.

proofs

Prasad's formula:

$$
\mu^{E P}(\Lambda \backslash G)=2 \mathscr{D}_{k}^{\frac{1}{2} \operatorname{dim} G}\left(\prod_{i=1}^{r} \frac{m_{i}!}{(2 \pi)^{m_{i}+1}}\right)^{[k: \mathbb{Q}]} \tau_{k}(G) \mathscr{E} \prod_{v \in T} \lambda_{v}
$$

proofs

Prasad's formula:

$$
\mu^{E P}(\Lambda \backslash G)=2 \mathscr{D}_{k}^{\frac{1}{2} \operatorname{dim} G}\left(\prod_{i=1}^{r} \frac{m_{i}!}{(2 \pi)^{m_{i}+1}}\right)^{[k: \mathbb{Q}]} \tau_{k}(G) \mathscr{E} \prod_{v \in T} \lambda_{v}
$$

- \mathscr{D}_{k} is the discriminant of k;
- $r=n / 2$, the absolute rank of G;
- dimension $\operatorname{dim} G=2 r^{2}+r$ and Lie exponents $m_{i}=2 i-1$;
- the Tamagawa number $\tau_{k}(G)=2$;
- \mathscr{E} is an Euler product which in our case is given by $\mathscr{E}=\zeta_{k}(2) \cdot \ldots \cdot \zeta_{k}(2 r)$;
- $\lambda_{v} \in \mathbb{Q}$ are local densities in v from finite set $T \subset V_{f}$

proofs

assume r is large (e.g. $r \geq 30$)

proofs

assume r is large (e.g. $r \geq 30$)
$|\chi(\mathrm{G} / \Lambda)|=C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]} \mathscr{E} \prod_{v \in T} \lambda_{v}$

proofs

assume r is large (e.g. $r \geq 30$)

$$
\begin{aligned}
& |\chi(\mathrm{G} / \Lambda)|=C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]} \mathscr{E} \prod_{v \in T} \lambda_{v}> \\
& C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]}
\end{aligned}
$$

proofs

assume r is large (e.g. $r \geq 30$)

$$
\begin{aligned}
& |\chi(\mathrm{G} / \Lambda)|=C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]} \mathscr{E} \prod_{v \in T} \lambda_{v}> \\
& C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]}>C \mathscr{D}_{k}^{r^{2}+r / 2}(2 r-1)!
\end{aligned}
$$

proofs

assume r is large (e.g. $r \geq 30$)

$$
\begin{aligned}
& |\chi(\mathrm{G} / \Lambda)|=C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]} \mathscr{E} \prod_{v \in T} \lambda_{v}> \\
& C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]}>C \mathscr{D}_{k}^{r^{2}+r / 2}(2 r-1)!
\end{aligned}
$$

this bound grows super-exponentially with n and has its minimum on $k=\mathbb{Q}$

proofs

assume r is large (e.g. $r \geq 30$)
$|\chi(\mathrm{G} / \Lambda)|=C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]} \mathscr{E} \prod_{v \in T} \lambda_{v}>$
$C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]}>C \mathscr{D}_{k}^{r^{2}+r / 2}(2 r-1)!$
this bound grows super-exponentially with n and has its minimum on $k=\mathbb{Q}$
by Godement compactness criterion if $k=\mathbb{Q}$ and $n \geq 4$, then Λ is non-cocompact

proofs

assume r is large (e.g. $r \geq 30$)
$|\chi(\mathrm{G} / \Lambda)|=C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]} \mathscr{E} \prod_{v \in T} \lambda_{v}>$
$C \mathscr{D}_{k}^{r^{2}+r / 2}\left(\prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}}\right)^{[k: \mathbb{Q}]}>C \mathscr{D}_{k}^{r^{2}+r / 2}(2 r-1)!$
this bound grows super-exponentially with n and has its minimum on $k=\mathbb{Q}$
by Godement compactness criterion if $k=\mathbb{Q}$ and $n \geq 4$, then Λ is non-cocompact
low dimensions, maximal arithmetic subgroups and precise formulas require much more care

references

[1] M. Belolipetsky, On volumes of arithmetic quotients of SO(1,n), arXiv: math.NT/0306423, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 3 (2004), 749-770.
[2] M. Belolipetsky, Addendum to: On volumes of arithmetic quotients of SO(1,n), arXiv: math.NT /0610177, Ann. Scuola Norm. Sup. Pisa CI. Sci., to appear.

