Hyperbolic orbifolds of small volume

Mikhail Belolipetsky IMPA

Friday, August 15. 16:00-16:45 2014 Seoul ICM
http://icm2014.org/
(IL5.2)

Volume in hyperbolic geometry

\mathscr{H}^{n} - the hyperbolic n-space
(e.g. the upper half space with the hyperbolic metric $d s^{2}=\frac{d w^{2}}{y^{2}}$).

Isom $\left(\mathscr{H}^{n}\right)$ - the group of isometries of \mathscr{H}^{n}.

Volume in hyperbolic geometry

\mathscr{H}^{n} - the hyperbolic n-space
(e.g. the upper half space with the hyperbolic metric $d s^{2}=\frac{d w^{2}}{y^{2}}$).

Isom $\left(\mathscr{H}^{n}\right)$ - the group of isometries of \mathscr{H}^{n}.
$\Gamma<\operatorname{Isom}\left(\mathscr{H}^{n}\right)$, a discrete subgroup $\Longrightarrow \mathscr{M}=\mathscr{H}^{n} / \Gamma$ is a
hyperbolic n-orbifold.
\mathscr{M} is a manifold $\Longleftrightarrow \Gamma$ is torsion free.

Volume in hyperbolic geometry

\mathscr{H}^{n} - the hyperbolic n-space
(e.g. the upper half space with the hyperbolic metric $d s^{2}=\frac{d w^{2}}{y^{2}}$).

Isom $\left(\mathscr{H}^{n}\right)$ - the group of isometries of \mathscr{H}^{n}.
$\Gamma<\operatorname{Isom}\left(\mathscr{H}^{n}\right)$, a discrete subgroup $\Longrightarrow \mathscr{M}=\mathscr{H}^{n} / \Gamma$ is a hyperbolic n-orbifold.
\mathscr{M} is a manifold $\Longleftrightarrow \Gamma$ is torsion free.

We will discuss finite volume hyperbolic n-manifolds and orbifolds.

Volume in hyperbolic geometry

For n even:
$\operatorname{Vol}(\mathscr{M})=\frac{\operatorname{Vol}\left(\mathbf{S}^{n}\right)}{2} \cdot(-1)^{n / 2} \chi(\mathscr{M}) \quad($ Chern-Gauss-Bonnet Theorem $)$

Volume in hyperbolic geometry

For n even:
$\operatorname{Vol}(\mathscr{M})=\frac{\operatorname{Vol}\left(\mathbf{S}^{n}\right)}{2} \cdot(-1)^{n / 2} \chi(\mathscr{M}) \quad($ Chern-Gauss-Bonnet Theorem $)$

For $n \geqslant 3$ finite volume hyperbolic n-orbifolds are rigid (Mostow-Prasad rigidity) \Longrightarrow volume is a topological invariant.

Volume in hyperbolic geometry

For n even:
$\operatorname{Vol}(\mathscr{M})=\frac{\operatorname{Vol}\left(\mathbf{S}^{n}\right)}{2} \cdot(-1)^{n / 2} \chi(\mathscr{M})$
(Chern-Gauss-Bonnet Theorem)

For $n \geqslant 3$ finite volume hyperbolic n-orbifolds are rigid
(Mostow-Prasad rigidity) \Longrightarrow volume is a topological invariant.

If \mathscr{M} is an oriented connected hyperbolic n-manifold,

$$
\operatorname{Vol}(\mathscr{M})=v_{n}\|\mathscr{M}\| \quad(\text { Gromov-Thurston })
$$

\Longrightarrow volume is a measure of complexity.

Volume in hyperbolic geometry

(Callahan-Dean-Weeks'1999)

Volume in hyperbolic geometry

Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of hyperbolic 3-manifolds are not all rationally related.

Volume in hyperbolic geometry

Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of hyperbolic 3-manifolds are not all rationally related.

For even n the volumes are rationally related by the Gauss-Bonnet theorem.

Volume in hyperbolic geometry

Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of hyperbolic 3-manifolds are not all rationally related.

For even n the volumes are rationally related by the Gauss-Bonnet theorem.

The problem (restricted to arithmetic manifolds) is connected with difficult open problems in number theory about rational independence of certain Dedekind ζ-values.

Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

- (Siegel, 1945) Raised the problem and solved it for $n=2$.

Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

- (Siegel, 1945) Raised the problem and solved it for $n=2$.
- (Kazhdan-Margulis, 1968) Proved the existence of the lower bound in general.

Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic n-orbifold is bounded below and find the minimal volume n-orbifolds and manifolds.

- (Siegel, 1945) Raised the problem and solved it for $n=2$.
- (Kazhdan-Margulis, 1968) Proved the existence of the lower bound in general.
- (B., B.-Emery) Minimal volume arithmetic hyperbolic n-orbifolds for $n \geqslant 4$.

Arithmeticity and volume: Example

\mathscr{H}^{2} - the hyperbolic plane with the Poincaré metric.
$\operatorname{Isom}^{+}\left(\mathscr{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$.
$\Gamma=\operatorname{PSL}(2, \mathbb{Z})<\operatorname{PSL}(2, \mathbb{R})$, a discrete subgroup.
Γ acts on hyperbolic plane with $\mathscr{O}=\mathscr{H}^{2} / \Gamma$.

Arithmeticity and volume: Example

\mathscr{H}^{2} - the hyperbolic plane with the Poincaré metric.
$\operatorname{Isom}^{+}\left(\mathscr{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$.
$\Gamma=\operatorname{PSL}(2, \mathbb{Z})<\operatorname{PSL}(2, \mathbb{R})$, a discrete subgroup.
Γ acts on hyperbolic plane with $\mathscr{O}=\mathscr{H}^{2} / \Gamma$.

Arithmeticity and volume: Example

\mathscr{H}^{2} - the hyperbolic plane with the Poincaré metric.
$\operatorname{Isom}^{+}\left(\mathscr{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$.
$\Gamma=\operatorname{PSL}(2, \mathbb{Z})<\operatorname{PSL}(2, \mathbb{R})$, a discrete subgroup.
Γ acts on hyperbolic plane with $\mathscr{O}=\mathscr{H}^{2} / \Gamma$.

$$
\begin{aligned}
& \operatorname{Vol}(\mathscr{O})=\iint_{\mathscr{F}} \frac{d x d y}{y^{2}}=-2 \pi \chi(\mathscr{O}) \\
& =\frac{1}{\pi} \prod_{\text {primes }} \frac{p^{3}}{\# \operatorname{PSL}_{2}\left(\mathbb{F}_{p}\right)}=4 \pi|\zeta(-1)|=\frac{\pi}{3} .
\end{aligned}
$$

Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.
Let $\mathrm{P}=\left(\mathrm{P}_{v}\right)_{v \in V_{\mathrm{f}}}$ a collection of parahoric subgroups $\mathrm{P}_{v} \subset \mathrm{G}\left(k_{v}\right)$, where v runs through all finite places of k and k_{v} denotes the non-archimedean completion of the field. The family P is called coherent if $\prod_{v \in V_{\mathrm{f}}} \mathrm{P}_{v}$ is an open subgroup of the finite adèle group $\mathrm{G}\left(\mathbb{A}_{f}(k)\right)$. The group

$$
\Lambda=\mathrm{G}(k) \cap \prod_{v \in V_{\mathrm{f}}} \mathrm{P}_{v}
$$

is called the principal arithmetic subgroup of $\mathrm{G}(k)$ associated to P .

Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.
Let $\mathrm{P}=\left(\mathrm{P}_{v}\right)_{v \in V_{\mathrm{f}}}$ a collection of parahoric subgroups $\mathrm{P}_{v} \subset \mathrm{G}\left(k_{v}\right)$, where v runs through all finite places of k and k_{v} denotes the non-archimedean completion of the field. The family P is called coherent if $\prod_{v \in V_{\mathrm{f}}} \mathrm{P}_{v}$ is an open subgroup of the finite adèle group $\mathrm{G}\left(\mathbb{A}_{f}(k)\right)$. The group

$$
\Lambda=\mathrm{G}(k) \cap \prod_{v \in V_{\mathrm{f}}} \mathrm{P}_{v}
$$

is called the principal arithmetic subgroup of $\mathrm{G}(k)$ associated to P .
Example. $\mathrm{SL}_{n}(\mathbb{Z})=\mathrm{SL}_{n}(\mathbb{Q}) \cap \prod_{p \text { prime }} \mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$,

Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.
Let $\mathrm{P}=\left(\mathrm{P}_{v}\right)_{v \in V_{\mathrm{f}}}$ a collection of parahoric subgroups $\mathrm{P}_{v} \subset \mathrm{G}\left(k_{v}\right)$, where v runs through all finite places of k and k_{v} denotes the non-archimedean completion of the field. The family P is called coherent if $\prod_{v \in V_{\mathrm{f}}} \mathrm{P}_{v}$ is an open subgroup of the finite adèle group $\mathrm{G}\left(\mathbb{A}_{f}(k)\right)$. The group

$$
\Lambda=\mathrm{G}(k) \cap \prod_{v \in V_{\mathrm{f}}} \mathrm{P}_{v}
$$

is called the principal arithmetic subgroup of $\mathrm{G}(k)$ associated to P .
Example. $\mathrm{SL}_{n}(\mathbb{Z})=\mathrm{SL}_{n}(\mathbb{Q}) \cap \prod_{p \text { prime }} \mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$,
Every maximal arithmetic subgroup is a normalizer of a principal arithmetic subgroup.

Groups versus covers

If $\Gamma_{1}<\Gamma_{0}$, then

$$
\begin{aligned}
\mathscr{O}_{1}= & \mathscr{H}^{n} / \Gamma_{1} \\
& \downarrow \text { cover } \\
\mathscr{O}_{0}= & \mathscr{H}^{n} / \Gamma_{0}
\end{aligned}
$$

Groups versus covers

If $\Gamma_{1}<\Gamma_{0}$, then

$$
\begin{aligned}
\mathscr{O}_{1}= & \mathscr{H}^{n} / \Gamma_{1} \\
& \downarrow \text { cover } \\
\mathscr{O}_{0}= & \mathscr{H}^{n} / \Gamma_{0}
\end{aligned}
$$

Corollary. Minimal volume orbifolds correspond to maximal discrete subgroups.

Arithmeticity and volume

Borel-Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

Arithmeticity and volume

Borel-Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

The volume of G / Γ can be computed using volume formulas:

Arithmeticity and volume

Borel-Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

The volume of G / Γ can be computed using volume formulas:

- G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups (Ann. Sci. École Norm. Sup., 1971)
- A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds (Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1981)
- G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups (Inst. Hautes Études Sci. Publ. Math., 1989)
- B. Gross, On the motive of a reductive group (Invent. Math., 1997)

Arithmeticity and volume

Borel-Harish-Chandra Theorem. Arithmetic subgroups are discrete and have finite covolume.

The volume of G / Γ can be computed using volume formulas:

$$
\mathscr{O}=\mathscr{H}^{2} / \operatorname{PSL}(2, \mathbb{Z})
$$

$$
\operatorname{Vol}(\mathscr{O})=\frac{1}{\pi} \Pi_{\text {primes }} \frac{p^{3}}{\# \text { PLL }_{2}\left(\mathbb{F}_{p}\right)}=4 \pi|\zeta(-1)|
$$

Results about minimal volume

$$
H=\mathrm{PO}(n, 1)^{\circ}=\operatorname{Isom}^{+}\left(\mathscr{H}^{n}\right)
$$

Results about minimal volume

$H=\operatorname{PO}(n, 1)^{\circ}=\operatorname{Isom}^{+}\left(\mathscr{H}^{n}\right)$
Theorem 1. (B.'2004, B.-Emery'2012) For every dimension $n \geqslant 4$ there exists a unique cocompact arithmetic subgroup $\Gamma_{0}^{n}<H$ of the smallest covolume. It is defined over $k_{0}=\mathbb{Q}[\sqrt{5}]$ and has

$$
\operatorname{Vol}\left(\mathscr{H}^{n} / \Gamma_{0}^{n}\right)=\omega_{c}(n)
$$

Results about minimal volume

$H=\operatorname{PO}(n, 1)^{\circ}=\operatorname{Isom}^{+}\left(\mathscr{H}^{n}\right)$
Theorem 1. (B.'2004, B.-Emery'2012) For every dimension $n \geqslant 4$ there exists a unique cocompact arithmetic subgroup $\Gamma_{0}^{n}<H$ of the smallest covolume. It is defined over $k_{0}=\mathbb{Q}[\sqrt{5}]$ and has

$$
\operatorname{Vol}\left(\mathscr{H}^{n} / \Gamma_{0}^{n}\right)=\omega_{c}(n)
$$

Theorem 2. (B.'2004, B.-Emery'2012) For every dimension $n \geqslant 4$ there exists a unique non-cocompact arithmetic subgroup $\Gamma_{1}^{n}<H$ of the smallest covolume. It is defined over $k_{1}=\mathbb{Q}$ and has

$$
\operatorname{Vol}\left(\mathscr{H}^{n} / \Gamma_{1}^{n}\right)=\omega_{n c}(n)
$$

$n=2 r, r$ even:

$$
\omega_{c}(n)=\frac{4 \cdot 5^{r^{2}+r / 2} \cdot(2 \pi)^{r}}{(2 r-1)!!} \prod_{i=1}^{r} \frac{(2 i-1)!^{2}}{(2 \pi)^{4 i}} \zeta_{k_{0}}(2 i) ;
$$

$n=2 r, r$ odd:

$$
\omega_{c}(n)=\frac{2 \cdot 5^{r^{2}+r / 2} \cdot(2 \pi)^{r} \cdot(4 r-1)}{(2 r-1)!!} \prod_{i=1}^{r} \frac{(2 i-1)!^{2}}{(2 \pi)^{4 i}} \zeta_{k_{0}}(2 i) ;
$$

(B.'2004)
$n=2 r-1$:

$$
\omega_{c}(n)=\frac{5^{r^{2}-r / 2} \cdot 11^{r-1 / 2} \cdot(r-1)!}{2^{2 r-1} \pi^{r}} L_{\ell_{0} \mid k_{0}}(r) \prod_{i=1}^{r-1} \frac{(2 i-1)!^{2}}{(2 \pi)^{4 i}} \zeta_{k_{0}}(2 i),
$$

where $k_{0}=\mathbb{Q}[\sqrt{5}]$ and l_{0} is the quartic field with a defining polynomial $x^{4}-x^{3}+2 x-1$.
(B.-Emery'2012)
$n=2 r, r$ even:

$$
\omega_{c}(n)=\frac{4 \cdot 5^{r^{2}+r / 2} \cdot(2 \pi)^{r}}{(2 r-1)!!} \prod_{i=1}^{r} \frac{(2 i-1)!^{2}}{(2 \pi)^{4 i}} \zeta_{k_{0}}(2 i) ;
$$

$n=2 r, r$ odd:

$$
\omega_{c}(n)=\frac{2 \cdot 5^{r^{2}+r / 2} \cdot(2 \pi)^{r} \cdot(4 r-1)}{(2 r-1)!!} \prod_{i=1}^{r} \frac{(2 i-1)!^{2}}{(2 \pi)^{4 i}} \zeta_{k_{0}}(2 i) ;
$$

(B.'2004)
$n=2 r-1$:

$$
\omega_{c}(n)=\frac{5^{r^{2}-r / 2} \cdot 11^{r-1 / 2} \cdot(r-1)!}{2^{2 r-1} \pi^{r}} L_{\ell_{0} \mid k_{0}}(r) \prod_{i=1}^{r-1} \frac{(2 i-1)!^{2}}{(2 \pi)^{4 i}} \zeta_{k_{0}}(2 i),
$$

where $k_{0}=\mathbb{Q}[\sqrt{5}]$ and l_{0} is the quartic field with a defining polynomial $x^{4}-x^{3}+2 x-1$.
(B.-Emery'2012)
$n=2 r, r \equiv 0,1(\bmod 4):$

$$
\omega_{n c}(n)=\frac{4 \cdot(2 \pi)^{r}}{(2 r-1)!!} \prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}} \zeta(2 i) ;
$$

$n=2 r, r \equiv 2,3(\bmod 4):$

$$
\begin{equation*}
\omega_{n c}(n)=\frac{2 \cdot\left(2^{r}-1\right) \cdot(2 \pi)^{r}}{(2 r-1)!!} \prod_{i=1}^{r} \frac{(2 i-1)!}{(2 \pi)^{2 i}} \zeta(2 i) ; \tag{B.}
\end{equation*}
$$

$n=2 r-1, r$ even:

$$
\begin{aligned}
& \omega_{n c}(n)=\frac{3^{r-1 / 2}}{2^{r-1}} L_{\ell_{1} \mid \mathbb{Q}}(r) \prod_{i=1}^{r-1} \frac{(2 i-1)!}{(2 \pi)^{2 i}} \zeta(2 i), \text { where } \ell_{1}=\mathbb{Q}[\sqrt{-3}] ; \\
& n=2 r-1, r \equiv 1(\bmod 4):
\end{aligned}
$$

$$
\omega_{n c}(n)=\frac{1}{2^{r-2}} \zeta(r) \prod_{i=1}^{r-1} \frac{(2 i-1)!}{(2 \pi)^{2 i}} \zeta(2 i)
$$

$$
n=2 r-1, r \equiv 3(\bmod 4):
$$

$$
\omega_{n c}(n)=\frac{\left(2^{r}-1\right)\left(2^{r-1}-1\right)}{3 \cdot 2^{r-1}} \zeta(r) \prod_{i=1}^{r-1} \frac{(2 i-1)!}{(2 \pi)^{2 i}} \zeta(2 i)
$$

Proofs use

- Prasad's volume formula
- Galois cohomology of algebraic groups
- Bruhat-Tits theory
- Bounds for discriminants and class numbers (Odlyzko bounds, Brauer-Siegel theorem, Zimmert's bound for regulator)

Growth of minimal volume

Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.

Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.
- The values $\omega_{c}(n), \omega_{n c}(n)$, and $\omega_{c}(n) / \omega_{n c}(n)$ grow super-exponentially.

Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.
- The values $\omega_{c}(n), \omega_{n c}(n)$, and $\omega_{c}(n) / \omega_{n c}(n)$ grow super-exponentially.
- For $n=2 r \geqslant 12$ the compact arithmetic manifolds have

$$
|\chi|>2
$$

(in fact, this is true for all even $n \geqslant 6$ - Emery'2014).

Corollaries

- The minimal volume compact/non-compact arithmetic hyperbolic n-orbifold in any dimension n is unique.
- The values $\omega_{c}(n), \omega_{n c}(n)$, and $\omega_{c}(n) / \omega_{n c}(n)$ grow super-exponentially.
- For $n=2 r \geqslant 12$ the compact arithmetic manifolds have

$$
|\chi|>2
$$

(in fact, this is true for all even $n \geqslant 6$ - Emery'2014).

- For $n \geqslant 5$ we have $\omega_{c}(n)>\omega_{n c}(n)$ ("compact > open").

Corollaries

Conjecture. (B.-Emery) Let \mathscr{M} be a compact hyperbolic manifold of dimension $n \neq 3$. Then there exists a noncompact hyperbolic n-manifold \mathscr{N} whose volume is smaller than the volume of \mathscr{M}.

Corollaries

Conjecture. (B.-Emery) Let \mathscr{M} be a compact hyperbolic manifold of dimension $n \neq 3$. Then there exists a noncompact hyperbolic n-manifold \mathscr{N} whose volume is smaller than the volume of \mathscr{M}.

The conjecture is true for

$$
\begin{aligned}
& n=2 \text { - easy } \\
& n=4 \text { - follows from Ratcliffe-Tschantz'2000 } \\
& n=6 \text { - follows from Everitt-Ratcliffe-Tschantz'2012 } \\
& \text { arithmetic manifolds of dimension } n \geqslant 30 \text { (B.-Emery'2013) }
\end{aligned}
$$

Minimal volume without arithmeticity

Lemma. (Margulis) For every dimension n there is a constant $\mu=\mu_{n}>0$ such that for every discrete group $\Gamma<\operatorname{Isom}\left(\mathscr{H}^{n}\right)$ and every $x \in \mathscr{H}^{n}$, the group

$$
\Gamma_{\mu}(x)=\langle\gamma \in \Gamma \mid \operatorname{dist}(x, \gamma(x)) \leqslant \mu\rangle
$$

has an abelian subgroup of finite index.

Minimal volume without arithmeticity

Lemma. (Margulis) For every dimension n there is a constant $\mu=\mu_{n}>0$ such that for every discrete group $\Gamma<\operatorname{Isom}\left(\mathscr{H}^{n}\right)$ and every $x \in \mathscr{H}^{n}$, the group

$$
\Gamma_{\mu}(x)=\langle\gamma \in \Gamma \mid \operatorname{dist}(x, \gamma(x)) \leqslant \mu\rangle
$$

has an abelian subgroup of finite index.
Theorem. (Gelander) Given a hyperbolic n-orbifold \mathscr{O}^{n}, we have

$$
\operatorname{Vol}\left(\mathscr{O}^{n}\right) \geqslant \frac{2 v(0.25 \varepsilon)^{2}}{v(1.25 \varepsilon)}, \quad \varepsilon=\min \left\{\frac{\mu_{n}}{10}, 1\right\}
$$

Minimal volume without arithmeticity

Lemma. (Margulis) For every dimension n there is a constant $\mu=\mu_{n}>0$ such that for every discrete group $\Gamma<\operatorname{Isom}\left(\mathscr{H}^{n}\right)$ and every $x \in \mathscr{H}^{n}$, the group

$$
\Gamma_{\mu}(x)=\langle\gamma \in \Gamma \mid \operatorname{dist}(x, \gamma(x)) \leqslant \mu\rangle
$$

has an abelian subgroup of finite index.
Theorem. (Gelander) Given a hyperbolic n-orbifold \mathscr{O}^{n}, we have

$$
\operatorname{Vol}\left(\mathscr{O}^{n}\right) \geqslant \frac{2 v(0.25 \varepsilon)^{2}}{v(1.25 \varepsilon)}, \quad \varepsilon=\min \left\{\frac{\mu_{n}}{10}, 1\right\}
$$

Proposition. There exists a constant $C>0$ such that $\mu_{n} \leqslant \frac{C}{\sqrt{n}}$.

Minimal volume without arithmeticity

Corollary. The lower bound for the volume decreases super-exponentially with n.

Minimal volume without arithmeticity

Corollary. The lower bound for the volume decreases super-exponentially with n.

Remark. The same is true for the bound of Adeboye-Wei obtained by quantifying the proof of the Kazhdan-Margulis Theorem.

Minimal volume without arithmeticity

Corollary. The lower bound for the volume decreases super-exponentially with n.

Remark. The same is true for the bound of Adeboye-Wei obtained by quantifying the proof of the Kazhdan-Margulis Theorem.

Conjecture. The minimal volume hyperbolic n-orbifold (manifold) is arithmetic.

Minimal volume without arithmeticity

Corollary. The lower bound for the volume decreases super-exponentially with n.

Remark. The same is true for the bound of Adeboye-Wei obtained by quantifying the proof of the Kazhdan-Margulis Theorem.

Conjecture. The minimal volume hyperbolic n-orbifold (manifold) is arithmetic.

It follows from the conjecture that we expect the minimal volume to grow super-exponentially but so far we can prove only super-exponentially decreasing bounds!

