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Volume in hyperbolic geometry

H n – the hyperbolic n-space
(e.g. the upper half space with the hyperbolic metric ds2 = dw2

y2 ).

Isom(H n) – the group of isometries of H n.

Γ < Isom(H n), a discrete subgroup =⇒ M = H n/Γ is a

hyperbolic n-orbifold.

M is a manifold ⇐⇒ Γ is torsion free.

We will discuss finite volume hyperbolic n-manifolds and orbifolds.
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Volume in hyperbolic geometry

For n even:

Vol(M )=
Vol(Sn)

2
·(−1)n/2

χ(M ) (Chern–Gauss–Bonnet Theorem)

For n > 3 finite volume hyperbolic n-orbifolds are rigid
(Mostow–Prasad rigidity) =⇒ volume is a topological invariant.

If M is an oriented connected hyperbolic n-manifold,

Vol(M ) = νn‖M ‖ (Gromov–Thurston)

=⇒ volume is a measure of complexity.
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Volume in hyperbolic geometry

(Callahan–Dean–Weeks’1999)



Volume in hyperbolic geometry

Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of
hyperbolic 3-manifolds are not all rationally related.

For even n the volumes are rationally related by the Gauss–Bonnet
theorem.

The problem (restricted to arithmetic manifolds) is connected with
difficult open problems in number theory about rational independence
of certain Dedekind ζ -values.
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Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic
n-orbifold is bounded below and find the minimal volume n-orbifolds
and manifolds.

I (Siegel, 1945) Raised the problem and solved it for n = 2.

I (Kazhdan–Margulis, 1968) Proved the existence of the lower
bound in general.

I (B., B.–Emery) Minimal volume arithmetic hyperbolic
n-orbifolds for n > 4.
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Arithmeticity and volume: Example

H 2 – the hyperbolic plane with
the Poincaré metric.

Isom+(H 2) = PSL(2,R).

Γ = PSL(2,Z)< PSL(2,R),
a discrete subgroup.

Γ acts on hyperbolic plane
with O = H 2/Γ.

Vol(O) =
∫∫
F

dxdy
y2 =−2πχ(O)

=
1
π

∏
primes

p3

#PSL2(Fp)
= 4π|ζ (−1)|= π

3
.
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Isom+(H 2) = PSL(2,R).

Γ = PSL(2,Z)< PSL(2,R),
a discrete subgroup.

Γ acts on hyperbolic plane
with O = H 2/Γ.

Vol(O) =
∫∫
F

dxdy
y2 =−2πχ(O)

=
1
π

∏
primes

p3

#PSL2(Fp)
= 4π|ζ (−1)|= π

3
.



Arithmeticity and volume: Definitions

Let G be an algebraic group defined over a number field k.

Let P = (Pv)v∈Vf a collection of parahoric subgroups Pv ⊂ G(kv),
where v runs through all finite places of k and kv denotes the
non-archimedean completion of the field. The family P is called
coherent if ∏v∈Vf

Pv is an open subgroup of the finite adèle group
G(Af (k)). The group

Λ = G(k)∩∏
v∈Vf

Pv

is called the principal arithmetic subgroup of G(k) associated to P.

Example. SLn(Z) = SLn(Q)∩∏p prime SLn(Zp),

Every maximal arithmetic subgroup is a normalizer of a principal
arithmetic subgroup.
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Groups versus covers

If Γ1 < Γ0, then
O1 = H n/Γ1

cover
��

O0 = H n/Γ0

Corollary. Minimal volume orbifolds correspond to maximal discrete
subgroups.
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Arithmeticity and volume

Borel–Harish-Chandra Theorem. Arithmetic subgroups are discrete
and have finite covolume.

The volume of G/Γ can be computed using volume formulas:

I G. Harder, A Gauss–Bonnet formula for discrete arithmetically
defined groups (Ann. Sci. École Norm. Sup., 1971)

I A. Borel, Commensurability classes and volumes of hyperbolic
3-manifolds (Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1981)

I G. Prasad, Volumes of S-arithmetic quotients of semi-simple
groups (Inst. Hautes Études Sci. Publ. Math., 1989)

I B. Gross, On the motive of a reductive group
(Invent. Math., 1997)
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Arithmeticity and volume

Borel–Harish-Chandra Theorem. Arithmetic subgroups are discrete
and have finite covolume.

The volume of G/Γ can be computed using volume formulas:

O = H 2/PSL(2,Z)

Vol(O) = 1
π

∏primes
p3

#PSL2(Fp)
= 4π|ζ (−1)|



Results about minimal volume

H = PO(n,1)◦ = Isom+(H n)

Theorem 1. (B.’2004, B.–Emery’2012) For every dimension n > 4
there exists a unique cocompact arithmetic subgroup Γn

0 < H of the
smallest covolume. It is defined over k0 =Q[

√
5] and has

Vol(H n/Γ
n
0) = ωc(n).

Theorem 2. (B.’2004, B.–Emery’2012) For every dimension n > 4
there exists a unique non-cocompact arithmetic subgroup Γn

1 < H of
the smallest covolume. It is defined over k1 =Q and has

Vol(H n/Γ
n
1) = ωnc(n).
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n = 2r, r even:

ωc(n) =
4 ·5r2+r/2 · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i);

n = 2r, r odd:

ωc(n) =
2 ·5r2+r/2 · (2π)r · (4r−1)

(2r−1)!!

r

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i);

(B.’2004)

n = 2r−1:

ωc(n) =
5r2−r/2 ·11r−1/2 · (r−1)!

22r−1πr L`0|k0(r)
r−1

∏
i=1

(2i−1)!2

(2π)4i ζk0(2i),

where k0 =Q[
√

5] and l0 is the quartic field with a defining
polynomial x4− x3 +2x−1.

(B.–Emery’2012)
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n = 2r, r ≡ 0, 1 (mod 4):

ωnc(n) =
4 · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!
(2π)2i ζ (2i);

n = 2r, r ≡ 2, 3 (mod 4):

ωnc(n) =
2 · (2r−1) · (2π)r

(2r−1)!!

r

∏
i=1

(2i−1)!
(2π)2i ζ (2i); (B.)

n = 2r−1, r even:

ωnc(n) =
3r−1/2

2r−1 L`1|Q(r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i), where `1 =Q[

√
−3];

n = 2r−1, r ≡ 1 (mod 4):

ωnc(n) =
1

2r−2 ζ (r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i);

n = 2r−1, r ≡ 3 (mod 4):

ωnc(n) =
(2r−1)(2r−1−1)

3 ·2r−1 ζ (r)
r−1

∏
i=1

(2i−1)!
(2π)2i ζ (2i); (B.–Emery)



Proofs use

I Prasad’s volume formula

I Galois cohomology of algebraic groups

I Bruhat–Tits theory

I Bounds for discriminants and class numbers (Odlyzko bounds,
Brauer–Siegel theorem, Zimmert’s bound for regulator)



Growth of minimal volume



Corollaries

I The minimal volume compact/non-compact arithmetic
hyperbolic n-orbifold in any dimension n is unique.

I The values ωc(n), ωnc(n), and ωc(n)/ωnc(n) grow
super-exponentially.

I For n = 2r > 12 the compact arithmetic manifolds have

|χ|> 2

(in fact, this is true for all even n > 6 — Emery’2014).

I For n > 5 we have ωc(n)> ωnc(n) (“compact > open”).
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Corollaries

Conjecture. (B.–Emery) Let M be a compact hyperbolic manifold
of dimension n 6= 3. Then there exists a noncompact hyperbolic
n-manifold N whose volume is smaller than the volume of M .

The conjecture is true for

n = 2 – easy

n = 4 – follows from Ratcliffe–Tschantz’2000

n = 6 – follows from Everitt–Ratcliffe-Tschantz’2012

arithmetic manifolds of dimension n > 30 (B.–Emery’2013)
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Minimal volume without arithmeticity

Lemma. (Margulis) For every dimension n there is a constant
µ = µn > 0 such that for every discrete group Γ < Isom(H n) and
every x ∈H n, the group

Γµ(x) = 〈γ ∈ Γ | dist(x,γ(x))6 µ〉

has an abelian subgroup of finite index.

Theorem. (Gelander) Given a hyperbolic n-orbifold On, we have

Vol(On)>
2v(0.25ε)2

v(1.25ε)
, ε = min{µn

10
,1}.

Proposition. There exists a constant C > 0 such that µn 6 C√
n .
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Minimal volume without arithmeticity

Corollary. The lower bound for the volume decreases
super-exponentially with n.

Remark. The same is true for the bound of Adeboye–Wei obtained
by quantifying the proof of the Kazhdan–Margulis Theorem.

Conjecture. The minimal volume hyperbolic n-orbifold (manifold) is
arithmetic.

It follows from the conjecture that we expect the minimal volume to
grow super-exponentially but so far we can prove only
super-exponentially decreasing bounds!
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