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Isom(#") — the group of isometries of F".

I' < Isom ("), a discrete subgroup —> .# = " /T is a
hyperbolic n-orbifold.

A is a manifold <= I is torsion free.

We will discuss finite volume hyperbolic n-manifolds and orbifolds.
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For n even:

_ Vol(S")

Vol(A) >

(=1)"?y(.#) (Chern-Gauss—Bonnet Theorem)

For n > 3 finite volume hyperbolic n-orbifolds are rigid
(Mostow—Prasad rigidity) = volume is a topological invariant.

If ./ is an oriented connected hyperbolic n-manifold,
Vol(A') = vy||-#|| (Gromov—Thurston)

=—> volume is a measure of complexity.
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Problem 23. (Thurston, Bull. AMS, 1982) Show that volumes of
hyperbolic 3-manifolds are not all rationally related.

For even n the volumes are rationally related by the Gauss—Bonnet
theorem.

The problem (restricted to arithmetic manifolds) is connected with
difficult open problems in number theory about rational independence
of certain Dedekind {-values.
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Volume in hyperbolic geometry

Minimal Volume Problem. Show that the volume of a hyperbolic
n-orbifold is bounded below and find the minimal volume n-orbifolds
and manifolds.

> (Siegel, 1945) Raised the problem and solved it for n = 2.

» (Kazhdan—Margulis, 1968) Proved the existence of the lower
bound in general.

» (B., B._Emery) Minimal volume arithmetic hyperbolic
n-orbifolds for n > 4.
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Arithmeticity and volume: Definitions
Let G be an algebraic group defined over a number field k.

Let P = (P,),cy; a collection of parahoric subgroups P, C G(k,),
where v runs through all finite places of £ and k, denotes the
non-archimedean completion of the field. The family P is called
coherent if [],cy, Py is an open subgroup of the finite adele group
G(Af(k)). The group

A=G(k)nJ]P.

veVr

is called the principal arithmetic subgroup of G(k) associated to P.
Example. SL,(Z) = SL,(Q) N1, prime SLa(Zp),

Every maximal arithmetic subgroup is a normalizer of a principal
arithmetic subgroup.
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Corollary. Minimal volume orbifolds correspond to maximal discrete
subgroups.
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Borel-Harish-Chandra Theorem. Arithmetic subgroups are discrete
and have finite covolume.

The volume of G/I" can be computed using volume formulas:

» G. Harder, A Gauss—Bonnet formula for discrete arithmetically
defined groups (Ann. Sci. Ecole Norm. Sup., 1971)

» A. Borel, Commensurability classes and volumes of hyperbolic
3-manifolds (Ann. Scuola Norm. Sup. Pisa CI. Sci., 1981)

> G. Prasad, Volumes of S-arithmetic quotients of semi-simple
groups (Inst. Hautes Etudes Sci. Publ. Math., 1989)

» B. Gross, On the motive of a reductive group
(Invent. Math., 1997)



Arithmeticity and volume

Borel-Harish-Chandra Theorem. Arithmetic subgroups are discrete
and have finite covolume.

The volume of G /T can be computed using volume formulas:

0 = #*/PSL(2,7Z)

v Vol(&) = L Tprimes gesiaqey = 471¢(—1)]
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Theorem 1. (B.’2004, B.—Emery’2012) For every dimension n > 4
there exists a unique cocompact arithmetic subgroup I'y < H of the
smallest covolume. It is defined over ko = Q[v/5] and has

Vol(#" /T = a,(n).

Theorem 2. (B.’2004, B.—Emery’2012) For every dimension n > 4
there exists a unique non-cocompact arithmetic subgroup I'f < H of
the smallest covolume. It is defined over ki = Q and has

VO](L%ﬂn/rrll) - wnc(n)'
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Proofs use

» Prasad’s volume formula
» Galois cohomology of algebraic groups
» Bruhat-Tits theory

» Bounds for discriminants and class numbers (Odlyzko bounds,
Brauer—Siegel theorem, Zimmert’s bound for regulator)
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The minimal volume compact/non-compact arithmetic
hyperbolic n-orbifold in any dimension n is unique.

v

The values w:(n), Wyc(n), and w:(n)/wy.(n) grow
super-exponentially.

v

For n =2r > 12 the compact arithmetic manifolds have
x1>2

(in fact, this is true for all even n > 6 — Emery’2014).

v

Forn > 5 we have @.(n) > @y(n) (“compact > open”).
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Conjecture. (B.—Emery) Let .# be a compact hyperbolic manifold
of dimension n # 3. Then there exists a noncompact hyperbolic
n-manifold N whose volume is smaller than the volume of A .

The conjecture is true for
n =72 —easy
n = 4 — follows from Ratcliffe-Tschantz’2000
n = 6 — follows from Everitt—Ratcliffe-Tschantz’2012
arithmetic manifolds of dimension n > 30 (B.—Emery’2013)
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Lemma. (Margulis) For every dimension n there is a constant
U = U, > 0 such that for every discrete group T" < Isom(") and
every x € F¢", the group

Lu(x) =(vel | dist(x, y(x)) < u)
has an abelian subgroup of finite index.

Theorem. (Gelander) Given a hyperbolic n-orbifold 0", we have

2v(0.25¢)?

Vol(om) > 0250
ol(0") 2 =1 25e)

€ :min{li%,l}.

Proposition. There exists a constant C > 0 such that 1, < %
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Corollary. The lower bound for the volume decreases
super-exponentially with 7.

Remark. The same is true for the bound of Adeboye—Wei obtained
by quantifying the proof of the Kazhdan—Margulis Theorem.

Conjecture. The minimal volume hyperbolic n-orbifold (manifold) is
arithmetic.

It follows from the conjecture that we expect the minimal volume to
grow super-exponentially but so far we can prove only
super-exponentially decreasing bounds!






