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Introduction

H — a non-compact connected simple Lie group

µ — a Haar measure on H
X = K\H — a symmetric space of H

(here K is a maximal compact subgroup)

A subgroup Γ 6 H is called a lattice if it is discrete and has finite
covolume. In this case X/Γ is a locally symmetric space (or orbifold),
and it is a manifold if Γ is torsion free.

Examples
Let H = PO(n,1)o and K = SO(n).
Then X = K\H 'Hn is the hyperbolic n-space. If Γ < H is a lattice,
then X/Γ is a finite volume hyperbolic n-orbifold.
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a lattice in Isom(H2):

image from F. Klein’s paper (1879)



a lattice in Isom(H3):

image from W. Thurston’s book



Arithmeticity and commensurability

H2/Γ0

H2/Γ1 H2/Γ2

Definition. Subgroups Γ1 and Γ2 of H are called commensurable if
Γ0 = Γ1∩Γ2 has finite index in Γ1 and Γ2, i.e. if X/Γ0 and X/Γ1 have
a common finite sheet cover.
Commensurator CommH (Γ) = {h ∈ H | [Γ : Γ∩h−1Γh]< ∞}.
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arithmeticity and commensurability

Theorem (Margulis). A discrete subgroup Γ 6 H is arithmetic
if and only if CommH (Γ) is dense in H.

Example. Let H = SLn(R) and Γ = SLn(Z). Then
CommH (Γ) = SLn(Q), and it is dense in H.

Constructing non-arithmetic lattices is much harder!
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qualitative results

LH(x) = #{conj. cls. of lattices Γ < H with µ(H/Γ)< x};

ALH(x) = #{ arithmetic lattices }

Theorem (H. C. Wang’72). If H is not locally isomorphic to
PSL2(R) or PSL2(C), then LH(x) is finite for every x > 0.

Remark. This is false for PSL2, the volume spectrum here has
accumulation points.

Theorem (Borel’81). For H ' PSL2(R) or PSL2(C), the function
ALH(x) is finite for every x > 0.

Question. What can we say about LH(x) and ALH(x) as functions of
x? In particular, what is the asymptotic behavior of these functions?
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motivation

(1) ’density of topologies’ in cosmology (cf. S. Carlip, Phys. Rev.
Letters (1997) and Class. Quant. Grav (1998));

(2) connection with distributions of primes, discriminants and class
numbers of algebraic number fields.
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previous work

Theorem (Burger - Gelander - Lubotzky - Mozes’02).
Let H = PO(m,1), m > 4. There exist positive real numbers a = a(m)
and b = b(m) such that for all x� 0,

ax logx 6 logL◦H(x)6 bx logx,

where L◦H(x) is the number of conjugacy classes of torsion free
lattices of covolume at most x.



previous work

Theorem (Goldfeld - Lubotzky - Nikolov - Pyber’05).
Let H be a simple Lie group of real rank at least 2. Assuming the
GRH and Serre’s conjecture, for every lattice Γ in H the limit

lim
n→∞

logsn(Γ)

(logn)2/ log logn

exists and equals a constant γ(H) which depends only on H and not
on Γ. The number γ(H) is an invariant which is easily computed from
the root system of H.

Conjecture. (Lubotzky et al.)
Under the assumptions of the theorem

lim
x→∞

logLH(x)
(logx)2/ log logx

= γ(H).
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results
Theorem 1. (B.-Gelander-Lubotzky-Shalev, 2010)
Let H = PSL2(R) endowed with the Haar measure induced from the
Riemanian measure of the hyperbolic plane H2. Then

lim
x→∞

logALH(x)
x logx

=
1

2π
.

Theorem 2. (BGLS, 2010)
Let H = PSL2(C) endowed with the Haar measure induced from the
Riemanian measure of the hyperbolic space H3. Then there exist
α,β > 0 such that for x� 0,

αx logx 6 logALH(x)6 βx logx.

Corollary. We can extend results of Borel-Prasad (Publ. IHES,
1989), B. (Duke Math. J., 2007), and Agol-B.-Storm-Whyte (Groups,
Geom., and Dynamics, 2008) to the SL2-case.
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on the proof of Theorem 1

Fix an arithmetic lattice Γ < PSL2(R).

Crucial Facts:
(1) Growth of lattices is dominated by the subgroup growth of Γ;
(2) Both volume of S =H2/Γ and the number of the finite sheet covers
of S are controlled by χ(Γ).

µ(H/Γ) =−2πχ(Γ) (by Gauss-Bonnet);

sn(Γ) = n−χ(Γ)n+o(1) (by Liebeck-Shalev).

Hence

s x
−2πχ(Γ)

(Γ) =

(
x

−2πχ(Γ)

)(−χ(Γ) 1
−2πχ(Γ)+o(1))x
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on the proof of Theorem 1 (continue)

s x
−2πχ(Γ)

(Γ) =

(
x

−2πχ(Γ)

)(−χ(Γ) 1
−2πχ(Γ)+o(1))x

= x(
1

2π
+o(1))x

This ’almost’ proves Theorem 1, except that the error term o(1)
depends on Γ! This can potentially change the asymptotic which
indeed happens in the higher rank Lie groups. One of the main results
of BGLS is a proof of the strong upper bounds for the error term. This
is achieved with a combination of algebraic, arithmetic, and
geometric techniques.
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results

Theorem 3. (B.-Lubotzky, 2012)
Let H be a simple Lie group of real rank at least 2. Then

(i) There exists a positive constant a such that LH(x)> xa logx for all
sufficiently large x.

(ii) Assuming the CSP and MP, there exists a positive constant b
such that LH(x)6 xb logx for all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the
existence of infinite class field towers of totally real fields as
established by Golod and Shafarevich.

Problem. Does lim
x→∞

logLH(x)
(logx)2 exist? And if so, what is its value?

Note: Theorem 3 disproves Lubotzky’s conjecture.
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results

ILH(x) = #{conj. cls. isospectral lattices Γ < H with µ(H/Γ)< x}

Theorem 4. (B.-Linowitz, 2016)
Let H be a simple Lie group of real rank at least 2. Then there exists a
positive constant c = c(H) such that

ILH(x)> xc logx/(log logx)2
,

and a bound of the same shape holds for torsion-free lattices.

Conjecture. There exists c = c(H)> 0 such that ILH(x)> xc logx, i.e.
the same growth type as the total number of lattices!
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results
Theorem 5. (B.-Lubotzky, 2017)
For a 2-generic simple Lie group H of real rank at least 2, we have

lim
x→∞

logLnu
H (x)

(logx)2/ log logx
= γ(H),

where γ(H) is an explicit constant and Lnu
H (x) is the number of

conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-generic means that H is not of type E6 or D4, and if it is of
type An, then n is of the form n = 2α −1 for some α ∈ N.

Conjecture. Theorem 5 applies to any semisimple Lie group of real
rank at least 2.

We prove that this conjecture is equivalent to:

Conjecture. Fix an integer d > 2 and a prime l. Then for number
fields k of degree d, rkl(Cl(k)) = o( logDk√

log logDk
).

(for l = d = 2 this follows from the Gauss theorem)
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