Growth of lattices

Mikhail Belolipetsky, IMPA

H — a non-compact connected simple Lie group

- H a non-compact connected simple Lie group
- μ a Haar measure on *H*

H — a non-compact connected simple Lie group μ — a Haar measure on H $X = K \setminus H$ — a symmetric space of H(here K is a maximal compact subgroup)

H — a non-compact connected simple Lie group

 μ — a Haar measure on *H*

$$X = K \setminus H$$
 — a symmetric space of H

(here *K* is a maximal compact subgroup)

A subgroup $\Gamma \leq H$ is called a *lattice* if it is discrete and has finite covolume. In this case X/Γ is a *locally symmetric space* (or *orbifold*), and it is a manifold if Γ is *torsion free*.

H — a non-compact connected simple Lie group

 μ — a Haar measure on *H*

$$X = K \setminus H$$
 — a symmetric space of H

(here *K* is a maximal compact subgroup)

A subgroup $\Gamma \leq H$ is called a *lattice* if it is discrete and has finite covolume. In this case X/Γ is a *locally symmetric space* (or *orbifold*), and it is a manifold if Γ is *torsion free*.

Examples

Let $H = PO(n, 1)^o$ and K = SO(n).

Then $X = K \setminus H \simeq \mathbb{H}^n$ is the hyperbolic *n*-space. If $\Gamma < H$ is a lattice, then X/Γ is a finite volume hyperbolic *n*-orbifold.

a lattice in $Isom(\mathbb{H}^2)$:

image from F. Klein's paper (1879)

a lattice in $Isom(\mathbb{H}^3)$:

image from W. Thurston's book

Arithmeticity and commensurability

Arithmeticity and commensurability

Arithmeticity and commensurability

Definition. Subgroups Γ_1 and Γ_2 of *H* are called *commensurable* if $\Gamma_0 = \Gamma_1 \cap \Gamma_2$ has finite index in Γ_1 and Γ_2 , i.e. if X/Γ_0 and X/Γ_1 have a common finite sheet cover.

Commensurator Comm_{*H*}(Γ) = { $h \in H \mid [\Gamma : \Gamma \cap h^{-1}\Gamma h] < \infty$ }.

Theorem (Margulis). A discrete subgroup $\Gamma \leq H$ is arithmetic if and only if Comm_H (Γ) is dense in H.

Theorem (Margulis). A discrete subgroup $\Gamma \leq H$ is arithmetic if and only if Comm_H (Γ) is dense in H.

Example. Let $H = SL_n(\mathbb{R})$ and $\Gamma = SL_n(\mathbb{Z})$. Then Comm_{*H*} (Γ) = SL_{*n*}(\mathbb{Q}), and it is dense in *H*.

Constructing non-arithmetic lattices is much harder!

 $L_H(x) = \#\{\text{conj. cls. of lattices } \Gamma < H \text{ with } \mu(H/\Gamma) < x\};$ $AL_H(x) = \#\{\text{ arithmetic lattices }\}$

 $L_H(x) = \#\{\text{conj. cls. of lattices } \Gamma < H \text{ with } \mu(H/\Gamma) < x\};$ $AL_H(x) = \#\{\text{ arithmetic lattices } \}$

Theorem (H. C. Wang'72). *If* H *is not locally isomorphic to* $PSL_2(\mathbb{R})$ *or* $PSL_2(\mathbb{C})$ *, then* $L_H(x)$ *is finite for every* x > 0*.*

 $L_H(x) = \#\{\text{conj. cls. of lattices } \Gamma < H \text{ with } \mu(H/\Gamma) < x\};$ $AL_H(x) = \#\{\text{ arithmetic lattices } \}$

Theorem (H. C. Wang'72). *If* H *is not locally isomorphic to* $PSL_2(\mathbb{R})$ *or* $PSL_2(\mathbb{C})$ *, then* $L_H(x)$ *is finite for every* x > 0*.*

Remark. This is *false* for PSL_2 , the volume spectrum here has accumulation points.

 $L_H(x) = \#\{\text{conj. cls. of lattices } \Gamma < H \text{ with } \mu(H/\Gamma) < x\};$ $AL_H(x) = \#\{\text{ arithmetic lattices } \}$

Theorem (H. C. Wang'72). *If H is not locally isomorphic to* $PSL_2(\mathbb{R})$ *or* $PSL_2(\mathbb{C})$ *, then* $L_H(x)$ *is finite for every* x > 0*.*

Remark. This is *false* for PSL_2 , the volume spectrum here has accumulation points.

Theorem (Borel'81). For $H \simeq \text{PSL}_2(\mathbb{R})$ or $\text{PSL}_2(\mathbb{C})$, the function $\text{AL}_H(x)$ is finite for every x > 0.

 $L_H(x) = \#\{\text{conj. cls. of lattices } \Gamma < H \text{ with } \mu(H/\Gamma) < x\};$ $AL_H(x) = \#\{\text{ arithmetic lattices } \}$

Theorem (H. C. Wang'72). *If* H *is not locally isomorphic to* $PSL_2(\mathbb{R})$ *or* $PSL_2(\mathbb{C})$ *, then* $L_H(x)$ *is finite for every* x > 0*.*

Remark. This is *false* for PSL_2 , the volume spectrum here has accumulation points.

Theorem (Borel'81). For $H \simeq \text{PSL}_2(\mathbb{R})$ or $\text{PSL}_2(\mathbb{C})$, the function $AL_H(x)$ is finite for every x > 0.

Question. What can we say about $L_H(x)$ and $AL_H(x)$ as functions of *x*? In particular, what is the asymptotic behavior of these functions?

motivation

(1) 'density of topologies' in cosmology (cf. S. Carlip, Phys. Rev. Letters (1997) and Class. Quant. Grav (1998));

motivation

- (1) 'density of topologies' in cosmology (cf. S. Carlip, Phys. Rev. Letters (1997) and Class. Quant. Grav (1998));
- (2) connection with distributions of *primes, discriminants and class numbers* of algebraic number fields.

Theorem (Burger - Gelander - Lubotzky - Mozes'02). Let H = PO(m, 1), $m \ge 4$. There exist positive real numbers a = a(m) and b = b(m) such that for all $x \gg 0$,

 $ax \log x \leq \log L_H^\circ(x) \leq bx \log x,$

where $L_H^{\circ}(x)$ is the number of conjugacy classes of torsion free lattices of covolume at most x.

previous work

Theorem (Goldfeld - Lubotzky - Nikolov - Pyber'05). Let H be a simple Lie group of real rank at least 2. Assuming the *GRH* and Serre's conjecture, for every lattice Γ in H the limit

 $\lim_{n\to\infty}\frac{\log s_n(\Gamma)}{(\log n)^2/\log\log n}$

exists and equals a constant $\gamma(H)$ which depends only on H and not on Γ . The number $\gamma(H)$ is an invariant which is easily computed from the root system of H.

previous work

Theorem (Goldfeld - Lubotzky - Nikolov - Pyber'05). Let H be a simple Lie group of real rank at least 2. Assuming the *GRH* and Serre's conjecture, for every lattice Γ in H the limit

 $\lim_{n\to\infty}\frac{\log s_n(\Gamma)}{(\log n)^2/\log\log n}$

exists and equals a constant $\gamma(H)$ which depends only on H and not on Γ . The number $\gamma(H)$ is an invariant which is easily computed from the root system of H.

Conjecture. (Lubotzky et al.) Under the assumptions of the theorem

$$\lim_{x\to\infty}\frac{\log \mathcal{L}_H(x)}{(\log x)^2/\log\log x}=\gamma(H).$$

Theorem 1. (B.-Gelander-Lubotzky-Shalev, 2010) Let $H = PSL_2(\mathbb{R})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic plane \mathbb{H}^2 . Then

$$\lim_{x \to \infty} \frac{\log \operatorname{AL}_H(x)}{x \log x} = \frac{1}{2\pi}$$

Theorem 1. (B.-Gelander-Lubotzky-Shalev, 2010) Let $H = PSL_2(\mathbb{R})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic plane \mathbb{H}^2 . Then

$$\lim_{x \to \infty} \frac{\log \operatorname{AL}_H(x)}{x \log x} = \frac{1}{2\pi}.$$

Theorem 2. (BGLS, 2010)

Let $H = \text{PSL}_2(\mathbb{C})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic space \mathbb{H}^3 . Then there exist $\alpha, \beta > 0$ such that for $x \gg 0$,

 $\alpha x \log x \leq \log \operatorname{AL}_H(x) \leq \beta x \log x.$

Theorem 1. (B.-Gelander-Lubotzky-Shalev, 2010) Let $H = PSL_2(\mathbb{R})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic plane \mathbb{H}^2 . Then

$$\lim_{x \to \infty} \frac{\log \operatorname{AL}_H(x)}{x \log x} = \frac{1}{2\pi}.$$

Theorem 2. (BGLS, 2010)

Let $H = \text{PSL}_2(\mathbb{C})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic space \mathbb{H}^3 . Then there exist $\alpha, \beta > 0$ such that for $x \gg 0$,

 $\alpha x \log x \leq \log \operatorname{AL}_H(x) \leq \beta x \log x.$

Corollary. We can extend results of Borel-Prasad (Publ. IHES, 1989), B. (Duke Math. J., 2007), and Agol-B.-Storm-Whyte (Groups, Geom., and Dynamics, 2008) to the SL₂-case.

Fix an arithmetic lattice $\Gamma < PSL_2(\mathbb{R})$.

Fix an arithmetic lattice $\Gamma < PSL_2(\mathbb{R})$.

Crucial Facts:

(1) Growth of lattices is dominated by the subgroup growth of Γ ; (2) Both volume of $S = \mathbb{H}^2/\Gamma$ and the number of the finite sheet covers of S are controlled by $\chi(\Gamma)$.

Fix an arithmetic lattice $\Gamma < PSL_2(\mathbb{R})$.

Crucial Facts:

(1) Growth of lattices is dominated by the subgroup growth of Γ ; (2) Both volume of $S = \mathbb{H}^2/\Gamma$ and the number of the finite sheet covers of S are controlled by $\chi(\Gamma)$.

 $\mu(H/\Gamma) = -2\pi \chi(\Gamma)$ (by Gauss-Bonnet);

 $s_n(\Gamma) = n^{-\chi(\Gamma)n+o(1)}$ (by Liebeck-Shalev).

Fix an arithmetic lattice $\Gamma < PSL_2(\mathbb{R})$.

Crucial Facts:

(1) Growth of lattices is dominated by the subgroup growth of Γ ; (2) Both volume of $S = \mathbb{H}^2/\Gamma$ and the number of the finite sheet covers of S are controlled by $\chi(\Gamma)$.

$$\mu(H/\Gamma) = -2\pi \chi(\Gamma)$$
 (by Gauss-Bonnet);
 $s_n(\Gamma) = n^{-\chi(\Gamma)n+o(1)}$ (by Liebeck-Shalev).

Hence

$$s_{\frac{x}{-2\pi\chi(\Gamma)}}(\Gamma) = \left(\frac{x}{-2\pi\chi(\Gamma)}\right)^{(-\chi(\Gamma)\frac{1}{-2\pi\chi(\Gamma)}+o(1))x}$$

on the proof of Theorem 1 (continue)

$$s_{\frac{x}{-2\pi\chi(\Gamma)}}(\Gamma) = \left(\frac{x}{-2\pi\chi(\Gamma)}\right)^{(-\chi(\Gamma)\frac{1}{-2\pi\chi(\Gamma)}+o(1))x}$$

on the proof of Theorem 1 (continue)

$$s_{\frac{x}{-2\pi\chi(\Gamma)}}(\Gamma) = \left(\frac{x}{-2\pi\chi(\Gamma)}\right)^{(-\chi(\Gamma)\frac{1}{-2\pi\chi(\Gamma)}+o(1))x} = x^{(\frac{1}{2\pi}+o(1))x}$$

on the proof of Theorem 1 (continue)

$$s_{\frac{x}{-2\pi\chi(\Gamma)}}(\Gamma) = \left(\frac{x}{-2\pi\chi(\Gamma)}\right)^{(-\chi(\Gamma)\frac{1}{-2\pi\chi(\Gamma)}+o(1))x} = x^{(\frac{1}{2\pi}+o(1))x}$$

This 'almost' proves Theorem 1, except that the *error term* o(1) depends on Γ ! This can potentially change the asymptotic which indeed happens in the higher rank Lie groups. One of the main results of BGLS is a proof of the strong upper bounds for the error term. This is achieved with a combination of *algebraic, arithmetic, and geometric techniques*.

Theorem 3. (B.-Lubotzky, 2012)

Let H be a simple Lie group of real rank at least 2. Then

- (i) There exists a positive constant a such that $L_H(x) \ge x^{a \log x}$ for all sufficiently large x.
- (ii) Assuming the CSP and MP, there exists a positive constant b such that $L_H(x) \leq x^{b\log x}$ for all sufficiently large x.

Theorem 3. (B.-Lubotzky, 2012)

Let H be a simple Lie group of real rank at least 2. Then

- (i) There exists a positive constant a such that $L_H(x) \ge x^{a \log x}$ for all sufficiently large x.
- (ii) Assuming the CSP and MP, there exists a positive constant b such that $L_H(x) \leq x^{b\log x}$ for all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the existence of infinite class field towers of totally real fields as established by Golod and Shafarevich.

Theorem 3. (B.-Lubotzky, 2012)

Let H be a simple Lie group of real rank at least 2. Then

- (i) There exists a positive constant a such that $L_H(x) \ge x^{a \log x}$ for all sufficiently large x.
- (ii) Assuming the CSP and MP, there exists a positive constant b such that $L_H(x) \leq x^{b\log x}$ for all sufficiently large x.

A crucial ingredient in the proof of part (i) of the theorem is the existence of infinite class field towers of totally real fields as established by Golod and Shafarevich.

Problem. Does
$$\lim_{x\to\infty} \frac{\log L_H(x)}{(\log x)^2}$$
 exist? And if so, what is its value?

Note: Theorem 3 disproves Lubotzky's conjecture.

IL_{*H*}(*x*) = #{conj. cls. isospectral lattices $\Gamma < H$ with $\mu(H/\Gamma) < x$ }

Theorem 4. (B.-Linowitz, 2016) Let *H* be a simple Lie group of real rank at least 2. Then there exists a positive constant c = c(H) such that

 $\mathrm{IL}_{H}(x) \geqslant x^{c \log x/(\log \log x)^{2}},$

and a bound of the same shape holds for torsion-free lattices.

IL_{*H*}(*x*) = #{conj. cls. isospectral lattices $\Gamma < H$ with $\mu(H/\Gamma) < x$ }

Theorem 4. (B.-Linowitz, 2016) Let *H* be a simple Lie group of real rank at least 2. Then there exists a positive constant c = c(H) such that

 $\mathrm{IL}_{H}(x) \geqslant x^{c \log x/(\log \log x)^{2}},$

and a bound of the same shape holds for torsion-free lattices.

Conjecture. There exists c = c(H) > 0 such that $IL_H(x) \ge x^{c \log x}$, i.e. the same growth type as the total number of lattices!

Theorem 5. (B.-Lubotzky, 2017)

For a 2-generic simple Lie group H of real rank at least 2, we have

$$\lim_{x \to \infty} \frac{\log \mathcal{L}_{H}^{nu}(x)}{(\log x)^{2}/\log \log x} = \gamma(H),$$

where $\gamma(H)$ is an explicit constant and $L_H^{nu}(x)$ is the number of conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-*generic* means that *H* is not of type E_6 or D_4 , and if it is of type A_n , then *n* is of the form $n = 2^{\alpha} - 1$ for some $\alpha \in \mathbb{N}$.

Theorem 5. (B.-Lubotzky, 2017)

For a 2-generic simple Lie group H of real rank at least 2, we have

$$\lim_{x\to\infty} \frac{\log \mathcal{L}_H^{nu}(x)}{(\log x)^2/\log \log x} = \gamma(H),$$

where $\gamma(H)$ is an explicit constant and $L_H^{nu}(x)$ is the number of conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-*generic* means that *H* is not of type E_6 or D_4 , and if it is of type A_n , then *n* is of the form $n = 2^{\alpha} - 1$ for some $\alpha \in \mathbb{N}$.

Conjecture. Theorem 5 applies to any semisimple Lie group of real rank at least 2.

Theorem 5. (B.-Lubotzky, 2017)

For a 2-generic simple Lie group H of real rank at least 2, we have

$$\lim_{x\to\infty} \frac{\log \mathcal{L}_H^{nu}(x)}{(\log x)^2/\log \log x} = \gamma(H),$$

where $\gamma(H)$ is an explicit constant and $L_H^{nu}(x)$ is the number of conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-*generic* means that *H* is not of type E_6 or D_4 , and if it is of type A_n , then *n* is of the form $n = 2^{\alpha} - 1$ for some $\alpha \in \mathbb{N}$.

Conjecture. Theorem 5 applies to any semisimple Lie group of real rank at least 2.

We prove that this conjecture is *equivalent to:*

Conjecture. Fix an integer $d \ge 2$ and a prime *l*. Then for number fields *k* of degree *d*, $\operatorname{rk}_l(\operatorname{Cl}(k)) = o(\frac{\log D_k}{\sqrt{\log \log D_k}})$.

Theorem 5. (B.-Lubotzky, 2017)

For a 2-generic simple Lie group H of real rank at least 2, we have

$$\lim_{x\to\infty} \frac{\log \mathcal{L}_H^{nu}(x)}{(\log x)^2/\log\log x} = \gamma(H),$$

where $\gamma(H)$ is an explicit constant and $L_H^{nu}(x)$ is the number of conjugacy classes of non-uniform lattices in H of covolume at most x.

Here 2-*generic* means that *H* is not of type E_6 or D_4 , and if it is of type A_n , then *n* is of the form $n = 2^{\alpha} - 1$ for some $\alpha \in \mathbb{N}$.

Conjecture. Theorem 5 applies to any semisimple Lie group of real rank at least 2.

We prove that this conjecture is *equivalent to:*

Conjecture. Fix an integer $d \ge 2$ and a prime *l*. Then for number fields *k* of degree *d*, $\operatorname{rk}_l(\operatorname{Cl}(k)) = o(\frac{\log D_k}{\sqrt{\log \log D_k}})$.

(for l = d = 2 this follows from the Gauss theorem)

references

- Counting maximal arithmetic subgroups, (with an appendix by Jordan Ellenberg and Akshay Venkatesh), Duke Math. J. 140 (2007), no. 1, 1–33.
- [2] Counting arithmetic lattices and surfaces, with Tsachik Gelander, Alex Lubotzky and Aner Shalev, Ann. of Math. 172 (2010), 2197–2221.
- [3] *Manifolds counting and class field towers*, with Alex Lubotzky, Adv. Math. **229** (2012), 3123–3146.
- [4] Counting isospectral manifolds, with Benjamin Linowitz, arXiv:1604.03849 [math.DG], submitted.
- [5] *Counting non-uniform lattices*, with Alex Lubotzky, arXiv:1706.02180 [math.GR], submitted.

Thank You