
Some computational problems from
geometry of lattices

Mikhail Belolipetsky, Durham University

Dublin September, 2009



Plan

1. Automorphism groups

2. Minimal volume

3. Growth of lattices

4. Arithmetic reflection groups



Notations

H is a Lie group with Haar measure µ

Γ is a lattice in H
(i.e., a discrete subgroup of H such that µ(Γ\H) < ∞)

X = H/K is a symmetric space of H
M = Γ\X is a locally symmetric space

Fact: If Γ is torsion-free then M is a Riemannian manifold.

Examples:

I H = PSL(2,R), X = H/PSO(2) is the hyperbolic plane H 2,
the loc. sym. spaces are Riemann surface (possibly with
singularities)

I H = PO(n,1), X = H/PO(n) = H n, the loc. sym. spaces
are hyperbolic n-manifolds and orbifolds
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1. Automorphism groups

Given M = Γ\H/K , Aut(M )∼= NH(Γ)/Γ.

Theorem 1.1. (MB – A. Lubotzky’2005) For every n ≥ 2
and every finite group G there exist infinitely many compact
n-dimensional hyperbolic manifolds M with Aut(M )∼= G .

(This was known before for n = 2 (Greenberg’1974) and n = 3
(Kojima’1988).)

Problem 1.2. Given G describe explicitly at least one such M .
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Discussion:

I The proof of Thm. 1.1 is non constructive. It uses:

(a) Gromov–Piatetskii-Shapiro interbreeding construction of
non-arithmetic lattices;

(b) Strong approximation for lattices;
(c) Subgroup growth.

I Long – Reid paper [Math. Proc. Cambridge Philos. Soc. 138
(2005), 301–306] which deals only with asymmetric manifolds
also uses (a) and (b).

I Can do arithmetic instead (MB – C. Leininger, unpublished).

I Then can possibly use effective strong approximation. If this
works, subgroup growth should provide a computable upper
bound for µ(M ).
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Extremal casees:

I n = 2, G = {e} — known, see [B. Everitt, Glasgow Math. J.
39 (1997), 221–225].

I n = 2, G a Hurwitz group (maximal symmetry) — see e.g.
[M. Conder, An update on Hurwitz groups, preprint].
The least genus of such M is 3, and the corresponding
Riemann surface is the Klein quartic.

I other extremal surface automorphism groups (Wiman’1895,
Accola–Maclachlan’1968, MB’1997, MB–Gromadzki’2003,
MB–Jones’2005).

Problem 1.2(a). Find possible higher dimensional analogues of
these results.
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Two general questions:

Question 1.3. Does Thm. 1.1 generalise to the complex
hyperbolic case (H = PU(n,1))?

Question 1.4. Given arbitrary X does there exist an associated
asymmetric manifold M ?

(Not true for an arbitrary automorphism group G , the congruence
subgroup property can be an obstruction.)



2. Minimal volume

Question 2.1. Given a symmetric space X find the
corresponding locally symmetric space Mmin of the minimal
volume.

Remarks:

I For H 6= SL2 such Mmin exists by Wang’s theorem.

I Very little is known about the non-arithmetic case but a
folklore conjecture says that Mmin is always arithmetic.

I Can specialise the problem to arithmetic/non-arithmetic;
compact/non-compact; orbifolds/manifolds, etc.

Example: If X = H 2, Mmin is the unique compact arithmetic
orbifold corresponding to Γ = (2,3,7), the Hurwitz triangle group.
The non-compact Mmin = PSL(2,Z)\H 2 which is also arithmetic.
The smallest non-arithmetic orbifold is given by Γ = (2,3,13) (see
MB’1997).
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For X = H n, Mmin — arithmetic hyperbolic n-orbifold the
problem is solved:

Chinburg – Friedman’1986 (n = 3); MB’2004 (n ≥ 4, even); MB –
V. Emery, preprint (n ≥ 5, odd).

The smallest non-compact hyperbolic n-manifolds were
constructed by Ratcliffe – Tschantz’2000 (n = 4) and Everitt –
Ratcliffe – Tschantz’2005 (n = 6).

The problem of finding the smallest arithmetic hyperbolic
n-manifold remains open for all n ≥ 4 in the compact case and for
n = 5 or n ≥ 7 in the non-compact case.



For X = H n, Mmin — arithmetic hyperbolic n-orbifold the
problem is solved:

Chinburg – Friedman’1986 (n = 3); MB’2004 (n ≥ 4, even); MB –
V. Emery, preprint (n ≥ 5, odd).

The smallest non-compact hyperbolic n-manifolds were
constructed by Ratcliffe – Tschantz’2000 (n = 4) and Everitt –
Ratcliffe – Tschantz’2005 (n = 6).

The problem of finding the smallest arithmetic hyperbolic
n-manifold remains open for all n ≥ 4 in the compact case and for
n = 5 or n ≥ 7 in the non-compact case.



For X = H n, Mmin — arithmetic hyperbolic n-orbifold the
problem is solved:

Chinburg – Friedman’1986 (n = 3); MB’2004 (n ≥ 4, even); MB –
V. Emery, preprint (n ≥ 5, odd).

The smallest non-compact hyperbolic n-manifolds were
constructed by Ratcliffe – Tschantz’2000 (n = 4) and Everitt –
Ratcliffe – Tschantz’2005 (n = 6).

The problem of finding the smallest arithmetic hyperbolic
n-manifold remains open for all n ≥ 4 in the compact case and for
n = 5 or n ≥ 7 in the non-compact case.



Problem 2.2. Find a compact arithmetic hyperbolic 4-manifold
M o

min of minimal volume. Is it unique?

Some results:

I M. Davis [Proc. Amer. Math. Soc. 93 (1985), 325–328]
constructed orientable M with χ(M ) = 26.

I In MB’2004 it is shown that the group of M o
min is a subgroup

of a Coxeter group

I Conder – Maclachlan [Proc. Amer. Math. Soc. 133 (2005),
2469–2476] constructed such orientable M with χ(M ) = 16.

I C. Long [Bull. Lond. Math. Soc. 40 (2008), 913–916]
produced other eight examples with χ = 16.
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Davis’ example:

Can identify opposite
dodecahedral faces of
the 120-cell in H 4 to
obtain a compact
hyperbolic manifold M .

Simpler Problem: Is it the 4-dimensional analogue of the Klein
quartic?
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3. Growth of lattices

Let ALH(x) be the number of conjugacy classes of arithmetic
lattices in H of covolume at most x .

Theorem 3.1. (MB – Gelander – Lubotzky – Shalev’2008)
Let H = PSL(2,R) endowed with the Haar measure induced from
the Riemanian measure of the hyperbolic plane H 2. Then

lim
x→∞

log ALH(x)

x log x
=

1

2π
.

Theorem 3.2. (MB – Lubotzky’2009)
Let H be a simple Lie group of real rank at least 2. Then there
exist constants a, b > 0 such that

xa logx ≤ ALH(x)≤ xb logx

for all x ≥ X0.
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Problem 3.3. Compute a, b and X0 for given H, µ.

Remark: Can use the proof of Thm. 3.2, but

I not easy to compute;

I far from sharp.

Problem 3.4. Does lim
x→∞

log ALH(x)

(log x)2
for H as in Thm. 3.2 exist?

And if so, what is its value?

Problem 3.5. What can we say about the behavior of the
function ALH(x) for small values of x?
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Some results on Probl. 3.5:

I MB [Duke Math. J. 140 (2007), 1–33] give information about
the smallest value of x for which ALH(x) is non-zero (i.e., the
minimal volume) in a general setting.

I Long – Maclachlan – Reid [Pure Appl. Math. Q. 2 (2006),
569–599] give some quantitative results on Arithmetic
Fuchsian groups of genus zero. This can be used to get
bounds on ALH(x) for H = PSL(2,R) and small x .

I Maclachlan – Rosenberger [Comensurability classes of
arithmetic Fuchsian surface groups of genus 2, preprint] give
complete description of the comm. classes for signature (2;–).
This again can be used to get bounds on ALH(x) for
H = PSL(2,R) and small x .
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4. Arithmetic reflection groups

Some history:

Theorem 4.1. (Vinberg’1981) Arithmetic hyperbolic reflection
groups do not exist in dimensions ≥ 30.

Theorem 4.2. (Nikulin’1981) The number of maximal arithmetic
hyperbolic reflection groups is finite in each dimension n ≥ 10.

What remained was to understand the general picture for the small
dimensions.
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Recent results:

Theorem 4.3. (Long–Maclachlan–Reid’2005) The number of
maximal arithmetic reflection groups is finite in dimension 2.

Theorem 4.4. (Agol’2005) The number of maximal arithmetic
reflection groups is finite in dimension 3.

Theorem 4.5. (Agol–MB–Storm–Whyte; Nikulin’∼2006) There
are only finitely many maximal arithmetic hyperbolic reflection
groups in all dimensions.
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Problem 4.6. Classify arithmetic hyperbolic reflection groups.

Remarks:

I There are some results due to Vinberg, Nikulin, Bugaenko,
Borcherds and Allcock.

I In higher dimensions the number of groups should be much
smaller than for n = 2 or 3 which makes them potentially
easier to handle.

I With an additional assumption that maximal reflection
subgroups should be congruence our proof of Thm. 4.5
becomes effective.

Question 4.7. Does there exist any maximal arithmetic
hyperbolic reflection group which is not congruence?
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