Some computational problems from geometry of lattices

Mikhail Belolipetsky, Durham University

Dublin September, 2009

Plan

1. Automorphism groups
2. Minimal volume
3. Growth of lattices
4. Arithmetic reflection groups

Notations

H is a Lie group with Haar measure μ
Γ is a lattice in H
(i.e., a discrete subgroup of H such that $\mu(\Gamma \backslash H)<\infty$)

Notations

H is a Lie group with Haar measure μ
Γ is a lattice in H
(i.e., a discrete subgroup of H such that $\mu(\Gamma \backslash H)<\infty$)
$\mathscr{X}=H / K$ is a symmetric space of H
$\mathscr{M}=\Gamma \backslash \mathscr{X}$ is a locally symmetric space
Fact: If Γ is torsion-free then \mathscr{M} is a Riemannian manifold.

Notations

H is a Lie group with Haar measure μ
Γ is a lattice in H
(i.e., a discrete subgroup of H such that $\mu(\Gamma \backslash H)<\infty$)
$\mathscr{X}=H / K$ is a symmetric space of H
$\mathscr{M}=\Gamma \backslash \mathscr{X}$ is a locally symmetric space
Fact: If Γ is torsion-free then \mathscr{M} is a Riemannian manifold.

Examples:

- $H=\operatorname{PSL}(2, \mathbb{R}), \mathscr{X}=H / \operatorname{PSO}(2)$ is the hyperbolic plane \mathscr{H}^{2}, the loc. sym. spaces are Riemann surface (possibly with singularities)
- $H=\mathrm{PO}(n, 1), \mathscr{X}=H / \mathrm{PO}(n)=\mathscr{H}^{n}$, the loc. sym. spaces are hyperbolic n-manifolds and orbifolds

1. Automorphism groups

Given $\mathscr{M}=\Gamma \backslash H / K, \operatorname{Aut}(\mathscr{M}) \cong N_{H}(\Gamma) / \Gamma$.

1. Automorphism groups

Given $\mathscr{M}=\Gamma \backslash H / K, \operatorname{Aut}(\mathscr{M}) \cong N_{H}(\Gamma) / \Gamma$.
Theorem 1.1. (MB - A. Lubotzky'2005) For every $n \geq 2$ and every finite group G there exist infinitely many compact n-dimensional hyperbolic manifolds \mathscr{M} with $\operatorname{Aut}(\mathscr{M}) \cong G$.
(This was known before for $n=2$ (Greenberg'1974) and $n=3$
(Kojima'1988).)

1. Automorphism groups

Given $\mathscr{M}=\Gamma \backslash H / K$, Aut $(\mathscr{M}) \cong N_{H}(\Gamma) / \Gamma$.
Theorem 1.1. (MB - A. Lubotzky'2005) For every $n \geq 2$ and every finite group G there exist infinitely many compact n-dimensional hyperbolic manifolds \mathscr{M} with $\operatorname{Aut}(\mathscr{M}) \cong G$.
(This was known before for $n=2$ (Greenberg'1974) and $n=3$ (Kojima'1988).)

Problem 1.2. Given G describe explicitly at least one such \mathscr{M}.

Discussion:

- The proof of Thm. 1.1 is non constructive. It uses:
(a) Gromov-Piatetskii-Shapiro interbreeding construction of non-arithmetic lattices;
(b) Strong approximation for lattices;
(c) Subgroup growth.

Discussion:

- The proof of Thm. 1.1 is non constructive. It uses:
(a) Gromov-Piatetskii-Shapiro interbreeding construction of non-arithmetic lattices;
(b) Strong approximation for lattices;
(c) Subgroup growth.
- Long - Reid paper [Math. Proc. Cambridge Philos. Soc. 138 (2005), 301-306] which deals only with asymmetric manifolds also uses (a) and (b).

Discussion:

- The proof of Thm. 1.1 is non constructive. It uses:
(a) Gromov-Piatetskii-Shapiro interbreeding construction of non-arithmetic lattices;
(b) Strong approximation for lattices;
(c) Subgroup growth.
- Long - Reid paper [Math. Proc. Cambridge Philos. Soc. 138 (2005), 301-306] which deals only with asymmetric manifolds also uses (a) and (b).
- Can do arithmetic instead (MB - C. Leininger, unpublished).

Discussion:

- The proof of Thm. 1.1 is non constructive. It uses:
(a) Gromov-Piatetskii-Shapiro interbreeding construction of non-arithmetic lattices;
(b) Strong approximation for lattices;
(c) Subgroup growth.
- Long - Reid paper [Math. Proc. Cambridge Philos. Soc. 138 (2005), 301-306] which deals only with asymmetric manifolds also uses (a) and (b).
- Can do arithmetic instead (MB - C. Leininger, unpublished).
- Then can possibly use effective strong approximation. If this works, subgroup growth should provide a computable upper bound for $\mu(\mathscr{M})$.
- $n=2, G=\{e\}$ - known, see [B. Everitt, Glasgow Math. J. 39 (1997), 221-225].
- $n=2, G$ a Hurwitz group (maximal symmetry) - see e.g. [M. Conder, An update on Hurwitz groups, preprint]. The least genus of such \mathscr{M} is 3 , and the corresponding Riemann surface is the Klein quartic.
- other extremal surface automorphism groups (Wiman'1895, Accola-Maclachlan'1968, MB'1997, MB-Gromadzki'2003, MB-Jones'2005).
- $n=2, G=\{e\}$ - known, see [B. Everitt, Glasgow Math. J. 39 (1997), 221-225].
- $n=2, G$ a Hurwitz group (maximal symmetry) - see e.g. [M. Conder, An update on Hurwitz groups, preprint]. The least genus of such \mathscr{M} is 3 , and the corresponding Riemann surface is the Klein quartic.
- other extremal surface automorphism groups (Wiman'1895, Accola-Maclachlan'1968, MB'1997, MB-Gromadzki'2003, MB-Jones'2005).

Problem 1.2(a). Find possible higher dimensional analogues of these results.

Two general questions:

Question 1.3. Does Thm. 1.1 generalise to the complex hyperbolic case $(H=\operatorname{PU}(n, 1))$?

Question 1.4. Given arbitrary \mathscr{X} does there exist an associated asymmetric manifold \mathscr{M} ?
(Not true for an arbitrary automorphism group G, the congruence subgroup property can be an obstruction.)

2. Minimal volume

Question 2.1. Given a symmetric space \mathscr{X} find the corresponding locally symmetric space $\mathscr{M}_{\text {min }}$ of the minimal volume.

2. Minimal volume

Question 2.1. Given a symmetric space \mathscr{X} find the corresponding locally symmetric space $\mathscr{M}_{\text {min }}$ of the minimal volume.

Remarks:

- For $H \neq \mathrm{SL}_{2}$ such $\mathscr{M}_{\text {min }}$ exists by Wang's theorem.

2. Minimal volume

Question 2.1. Given a symmetric space \mathscr{X} find the corresponding locally symmetric space $\mathscr{M}_{\text {min }}$ of the minimal volume.

Remarks:

- For $H \neq \mathrm{SL}_{2}$ such $\mathscr{M}_{\text {min }}$ exists by Wang's theorem.
- Very little is known about the non-arithmetic case but a folklore conjecture says that $\mathscr{M}_{\min }$ is always arithmetic.

2. Minimal volume

Question 2.1. Given a symmetric space \mathscr{X} find the corresponding locally symmetric space $\mathscr{M}_{\text {min }}$ of the minimal volume.

Remarks:

- For $H \neq \mathrm{SL}_{2}$ such $\mathscr{M}_{\text {min }}$ exists by Wang's theorem.
- Very little is known about the non-arithmetic case but a folklore conjecture says that $\mathscr{M}_{\text {min }}$ is always arithmetic.
- Can specialise the problem to arithmetic/non-arithmetic; compact/non-compact; orbifolds/manifolds, etc.

2. Minimal volume

Question 2.1. Given a symmetric space \mathscr{X} find the corresponding locally symmetric space $\mathscr{M}_{\text {min }}$ of the minimal volume.

Remarks:

- For $H \neq \mathrm{SL}_{2}$ such $\mathscr{M}_{\text {min }}$ exists by Wang's theorem.
- Very little is known about the non-arithmetic case but a folklore conjecture says that $\mathscr{M}_{\text {min }}$ is always arithmetic.
- Can specialise the problem to arithmetic/non-arithmetic; compact/non-compact; orbifolds/manifolds, etc.

Example: If $\mathscr{X}=\mathscr{H}^{2}, \mathscr{M}_{\text {min }}$ is the unique compact arithmetic orbifold corresponding to $\Gamma=(2,3,7)$, the Hurwitz triangle group. The non-compact $\mathscr{M}_{\text {min }}=\operatorname{PSL}(2, \mathbb{Z}) \backslash \mathscr{H}^{2}$ which is also arithmetic. The smallest non-arithmetic orbifold is given by $\Gamma=(2,3,13)$ (see MB'1997).

For $\mathscr{X}=\mathscr{H}^{n}, \mathscr{M}_{\text {min }}$ — arithmetic hyperbolic n-orbifold the problem is solved:

Chinburg - Friedman'1986 $(n=3)$; MB'2004 ($n \geq 4$, even); MB V. Emery, preprint ($n \geq 5$, odd).

For $\mathscr{X}=\mathscr{H}^{n}, \mathscr{M}_{\text {min }}$ — arithmetic hyperbolic n-orbifold the problem is solved:

Chinburg - Friedman'1986 $(n=3)$; MB'2004 ($n \geq 4$, even); MB V. Emery, preprint ($n \geq 5$, odd).

The smallest non-compact hyperbolic n-manifolds were constructed by Ratcliffe - Tschantz'2000 ($n=4$) and Everitt Ratcliffe - Tschantz'2005 ($n=6$).

For $\mathscr{X}=\mathscr{H}^{n}, \mathscr{M}_{\text {min }}$ — arithmetic hyperbolic n-orbifold the problem is solved:

Chinburg - Friedman'1986 $(n=3)$; MB'2004 ($n \geq 4$, even); MB V. Emery, preprint ($n \geq 5$, odd).

The smallest non-compact hyperbolic n-manifolds were constructed by Ratcliffe - Tschantz'2000 ($n=4$) and Everitt Ratcliffe - Tschantz'2005 ($n=6$).

The problem of finding the smallest arithmetic hyperbolic n-manifold remains open for all $n \geq 4$ in the compact case and for $n=5$ or $n \geq 7$ in the non-compact case.

Problem 2.2. Find a compact arithmetic hyperbolic 4-manifold $\mathscr{M}_{\text {min }}^{o}$ of minimal volume. Is it unique?

Problem 2.2. Find a compact arithmetic hyperbolic 4-manifold $\mathscr{M}_{\text {min }}^{o}$ of minimal volume. Is it unique?
Some results:

- M. Davis [Proc. Amer. Math. Soc. 93 (1985), 325-328] constructed orientable \mathscr{M} with $\chi(\mathscr{M})=26$.

Problem 2.2. Find a compact arithmetic hyperbolic 4-manifold $\mathscr{M}_{\text {min }}^{o}$ of minimal volume. Is it unique?

Some results:

- M. Davis [Proc. Amer. Math. Soc. 93 (1985), 325-328] constructed orientable \mathscr{M} with $\chi(\mathscr{M})=26$.
- In MB'2004 it is shown that the group of $\mathscr{M}_{\text {min }}^{o}$ is a subgroup of a Coxeter group

Problem 2.2. Find a compact arithmetic hyperbolic 4-manifold $\mathscr{M}_{\text {min }}^{o}$ of minimal volume. Is it unique?

Some results:

- M. Davis [Proc. Amer. Math. Soc. 93 (1985), 325-328] constructed orientable \mathscr{M} with $\chi(\mathscr{M})=26$.
- In MB'2004 it is shown that the group of $\mathscr{M}_{\text {min }}^{o}$ is a subgroup of a Coxeter group

- Conder - Maclachlan [Proc. Amer. Math. Soc. 133 (2005), 2469-2476] constructed such orientable \mathscr{M} with $\chi(\mathscr{M})=16$.

Problem 2.2. Find a compact arithmetic hyperbolic 4-manifold $\mathscr{M}_{\text {min }}^{o}$ of minimal volume. Is it unique?

Some results:

- M. Davis [Proc. Amer. Math. Soc. 93 (1985), 325-328] constructed orientable \mathscr{M} with $\chi(\mathscr{M})=26$.
- In MB'2004 it is shown that the group of $\mathscr{M}_{\text {min }}^{o}$ is a subgroup of a Coxeter group

- Conder - Maclachlan [Proc. Amer. Math. Soc. 133 (2005), 2469-2476] constructed such orientable \mathscr{M} with $\chi(\mathscr{M})=16$.
- C. Long [Bull. Lond. Math. Soc. 40 (2008), 913-916] produced other eight examples with $\chi=16$.

Davis' example:

Can identify opposite dodecahedral faces of the 120 -cell in \mathscr{H}^{4} to obtain a compact hyperbolic manifold \mathscr{M}.

Davis' example:

Can identify opposite dodecahedral faces of the 120 -cell in \mathscr{H}^{4} to obtain a compact hyperbolic manifold \mathscr{M}.

Simpler Problem: Is it the 4-dimensional analogue of the Klein quartic?

3. Growth of lattices

Let $\mathrm{AL}_{H}(x)$ be the number of conjugacy classes of arithmetic lattices in H of covolume at most x.

3. Growth of lattices

Let $\mathrm{AL}_{H}(x)$ be the number of conjugacy classes of arithmetic lattices in H of covolume at most x.

Theorem 3.1. (MB - Gelander - Lubotzky - Shalev'2008) Let $H=\operatorname{PSL}(2, \mathbb{R})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic plane \mathscr{H}^{2}. Then

$$
\lim _{x \rightarrow \infty} \frac{\log \mathrm{AL}_{H}(x)}{x \log x}=\frac{1}{2 \pi}
$$

3. Growth of lattices

Let $\mathrm{AL}_{H}(x)$ be the number of conjugacy classes of arithmetic lattices in H of covolume at most x.

Theorem 3.1. (MB - Gelander - Lubotzky - Shalev'2008) Let $H=\operatorname{PSL}(2, \mathbb{R})$ endowed with the Haar measure induced from the Riemanian measure of the hyperbolic plane \mathscr{H}^{2}. Then

$$
\lim _{x \rightarrow \infty} \frac{\log \mathrm{AL}_{H}(x)}{x \log x}=\frac{1}{2 \pi}
$$

Theorem 3.2. (MB - Lubotzky'2009)
Let H be a simple Lie group of real rank at least 2. Then there exist constants $a, b>0$ such that

$$
x^{a \log x} \leq \mathrm{AL}_{H}(x) \leq x^{b \log x}
$$

for all $x \geq X_{0}$.

Problem 3.3. Compute a, b and X_{0} for given H, μ.
Remark: Can use the proof of Thm. 3.2, but

- not easy to compute;
- far from sharp.

Problem 3.3. Compute a, b and X_{0} for given H, μ.
Remark: Can use the proof of Thm. 3.2, but

- not easy to compute;
- far from sharp.

Problem 3.4. Does $\lim _{x \rightarrow \infty} \frac{\log \mathrm{AL}_{H}(x)}{(\log x)^{2}}$ for H as in Thm. 3.2 exist?
And if so, what is its value?

Problem 3.3. Compute a, b and X_{0} for given H, μ.
Remark: Can use the proof of Thm. 3.2, but

- not easy to compute;
- far from sharp.

Problem 3.4. Does $\lim _{x \rightarrow \infty} \frac{\log \mathrm{AL}_{H}(x)}{(\log x)^{2}}$ for H as in Thm. 3.2 exist?
And if so, what is its value?

Problem 3.5. What can we say about the behavior of the function $\mathrm{AL}_{H}(x)$ for small values of x ?

Some results on Probl. 3.5:

- MB [Duke Math. J. 140 (2007), 1-33] give information about the smallest value of x for which $\mathrm{AL}_{H}(x)$ is non-zero (i.e., the minimal volume) in a general setting.

Some results on Probl. 3.5:

- MB [Duke Math. J. 140 (2007), 1-33] give information about the smallest value of x for which $\mathrm{AL}_{H}(x)$ is non-zero (i.e., the minimal volume) in a general setting.
- Long - Maclachlan - Reid [Pure Appl. Math. Q. 2 (2006), 569-599] give some quantitative results on Arithmetic Fuchsian groups of genus zero. This can be used to get bounds on $\mathrm{AL}_{H}(x)$ for $H=\operatorname{PSL}(2, \mathbb{R})$ and small x.

Some results on Probl. 3.5:

- MB [Duke Math. J. 140 (2007), 1-33] give information about the smallest value of x for which $\mathrm{AL}_{H}(x)$ is non-zero (i.e., the minimal volume) in a general setting.
- Long - Maclachlan - Reid [Pure Appl. Math. Q. 2 (2006), 569-599] give some quantitative results on Arithmetic Fuchsian groups of genus zero. This can be used to get bounds on $\mathrm{AL}_{H}(x)$ for $H=\operatorname{PSL}(2, \mathbb{R})$ and small x.
- Maclachlan - Rosenberger [Comensurability classes of arithmetic Fuchsian surface groups of genus 2, preprint] give complete description of the comm. classes for signature ($2 ;-$). This again can be used to get bounds on $\mathrm{AL}_{H}(x)$ for $H=\operatorname{PSL}(2, \mathbb{R})$ and small x.

4. Arithmetic reflection groups

Some history:

Theorem 4.1. (Vinberg'1981) Arithmetic hyperbolic reflection groups do not exist in dimensions ≥ 30.

Theorem 4.2. (Nikulin'1981) The number of maximal arithmetic hyperbolic reflection groups is finite in each dimension $n \geq 10$.

4. Arithmetic reflection groups

Some history:

Theorem 4.1. (Vinberg'1981) Arithmetic hyperbolic reflection groups do not exist in dimensions ≥ 30.

Theorem 4.2. (Nikulin'1981) The number of maximal arithmetic hyperbolic reflection groups is finite in each dimension $n \geq 10$.

What remained was to understand the general picture for the small dimensions.

Recent results:

Theorem 4.3. (Long-Maclachlan-Reid'2005) The number of maximal arithmetic reflection groups is finite in dimension 2.

Theorem 4.4. (Agol'2005) The number of maximal arithmetic reflection groups is finite in dimension 3.

Recent results:

Theorem 4.3. (Long-Maclachlan-Reid'2005) The number of maximal arithmetic reflection groups is finite in dimension 2.

Theorem 4.4. (Agol'2005) The number of maximal arithmetic reflection groups is finite in dimension 3.

Theorem 4.5. (Agol-MB-Storm-Whyte; Nikulin'~2006) There are only finitely many maximal arithmetic hyperbolic reflection groups in all dimensions.

Problem 4.6. Classify arithmetic hyperbolic reflection groups.

Problem 4.6. Classify arithmetic hyperbolic reflection groups.

Remarks:

- There are some results due to Vinberg, Nikulin, Bugaenko, Borcherds and Allcock.

Problem 4.6. Classify arithmetic hyperbolic reflection groups.

Remarks:

- There are some results due to Vinberg, Nikulin, Bugaenko, Borcherds and Allcock.
- In higher dimensions the number of groups should be much smaller than for $n=2$ or 3 which makes them potentially easier to handle.

Problem 4.6. Classify arithmetic hyperbolic reflection groups.

Remarks:

- There are some results due to Vinberg, Nikulin, Bugaenko, Borcherds and Allcock.
- In higher dimensions the number of groups should be much smaller than for $n=2$ or 3 which makes them potentially easier to handle.
- With an additional assumption that maximal reflection subgroups should be congruence our proof of Thm. 4.5 becomes effective.

Problem 4.6. Classify arithmetic hyperbolic reflection groups.

Remarks:

- There are some results due to Vinberg, Nikulin, Bugaenko, Borcherds and Allcock.
- In higher dimensions the number of groups should be much smaller than for $n=2$ or 3 which makes them potentially easier to handle.
- With an additional assumption that maximal reflection subgroups should be congruence our proof of Thm. 4.5 becomes effective.

Question 4.7. Does there exist any maximal arithmetic hyperbolic reflection group which is not congruence?

