Arithmetic Hyperbolic Reflection Groups

Mikhail Belolipetsky, IMPA

Groups

A group Γ is a set, closed with respect to an operation of composition $*$, and such that the composition is associative, has a neutral element $e \in \Gamma$, and for any $a \in \Gamma$ there is an inverse $a^{\prime} \in \Gamma$ such that $a * a^{\prime}=a^{\prime} * a=e$.

Groups

A group Γ is a set, closed with respect to an operation of composition $*$, and such that the composition is associative, has a neutral element $e \in \Gamma$, and for any $a \in \Gamma$ there is an inverse $a^{\prime} \in \Gamma$ such that $a * a^{\prime}=a^{\prime} * a=e$.

a snowflake:

photo by K. Libbrecht

Crystallographic groups

Let $X=\mathbb{E}^{n}$ be the Euclidean space of dimension n.
A crystallographic group Γ is a subgroup of the group of isometries of X with the following properties:

- the action $\Gamma \times X \rightarrow X$ is properly discontinuous;
- the quotient space X / Γ is compact.

Crystallographic groups

Let $X=\mathbb{E}^{n}$ be the Euclidean space of dimension n.
A crystallographic group Γ is a subgroup of the group of isometries of X with the following properties:

- the action $\Gamma \times X \rightarrow X$ is properly discontinuous;
- the quotient space X / Γ is compact.

A fundamental domain for the action of Γ on X is a closed subset $R \subset X$ such that
(i) $\bigcup_{g \in \Gamma} g(R)=X$, and
(ii) $\stackrel{\circ}{R} \cap g(\stackrel{\circ}{R})=\emptyset$ for all non-trivial $g \in \Gamma$, where $\stackrel{\circ}{R}$ is the interior of R.

Any crystallographic group has a fundamental domain, which is a polyhedron in \mathbb{E}^{n}.

17 crystallographic groups in dimension 2 :

image from http://web.media.mit.edu

Space groups

Theorem 1. [Fedorov and Schoenflies, 1891] There exist 230 crystallographic groups in dimension 3.

Space groups

Theorem 1. [Fedorov and Schoenflies, 1891] There exist 230 crystallographic groups in dimension 3.

Theorem 2. [Bieberbach, 1910] For any dimension n, up to a natural equivalence there exist only finitely many n-dimensional crystallographic groups.

Space groups

Theorem 1. [Fedorov and Schoenflies, 1891] There exist 230 crystallographic groups in dimension 3.

Theorem 2. [Bieberbach, 1910] For any dimension n, up to a natural equivalence there exist only finitely many n-dimensional crystallographic groups.

n	\# of groups	
4	4783	(Brown, Bülow, Neubüser et al., 1978)
5	$222018 \quad$ (Plesken and Schulz, 2000)	
6	28934974 (Plesken and Schulz, 2000)	
$\geqslant 7$?, the number grows with n	

A cubic lattice in dimension 3 :

image from wikipedia

A cubic lattice in dimension 4 :

image from wikipedia

A right-angled hyperbolic tessellation:

image from W. Thurston's book

Definition

Let $X=\mathbb{H}^{n}$ be the n-dimensional hyperbolic space.
A hyperbolic reflection group Γ is a subgroup of the group of isometries of X generated by reflections and such that:

- the action $\Gamma \times X \rightarrow X$ is properly discontinuous;
- the quotient space X / Γ has finite volume.

Remark. A fundamental region of a hyperbolic reflection group can be non-compact.

An example

image from F. Klein's paper (1879).

Some results

Some results

Theorem 1. [Vinberg, 1981] There are no arithmetic hyperbolic reflection groups in dimensions $n \geqslant 30$.

Some results

Theorem 1. [Vinberg, 1981] There are no arithmetic hyperbolic reflection groups in dimensions $n \geqslant 30$.

Conjecture 2. Theorem 1 is true without assuming arithmeticity.

Some results

Theorem 1. [Vinberg, 1981] There are no arithmetic hyperbolic reflection groups in dimensions $n \geqslant 30$.

Conjecture 2. Theorem 1 is true without assuming arithmeticity.

Theorem 3. [Nikulin, 1981] In dimensions $n \geqslant 10$ there are only finitely many (up to commensurability) arithmetic hyperbolic reflection groups.

Some results

Theorem 1. [Vinberg, 1981] There are no arithmetic hyperbolic reflection groups in dimensions $n \geqslant 30$.

Conjecture 2. Theorem 1 is true without assuming arithmeticity.

Theorem 3. [Nikulin, 1981] In dimensions $n \geqslant 10$ there are only finitely many (up to commensurability) arithmetic hyperbolic reflection groups.

Theorem 4. [Agol-B.-Storm-Whyte; Nikulin, 2008]
The number of commensurability classes of arithmetic hyperbolic reflection groups in all dimensions is finite.
idea of the proof:

idea of the proof:

Let $\mathcal{O}=\mathbb{H}^{n} / \Gamma$.

$$
\lambda_{1}(\mathcal{O}) \operatorname{Vol}(\mathcal{O})^{2 / n} \leqslant n \cdot \operatorname{Vol}_{\text {conf }}(\mathcal{O})^{2 / n}
$$

(Li-Yau, 1982)

idea of the proof:

Let $\mathcal{O}=\mathbb{H}^{n} / \Gamma$.

$$
\lambda_{1}(\mathcal{O}) \operatorname{Vol}(\mathcal{O})^{2 / n} \leqslant n \cdot \operatorname{Vol}_{\operatorname{conf}}(\mathcal{O})^{2 / n}
$$

(Li-Yau, 1982)

- $\lambda_{1}(\mathcal{O}) \geqslant C(n)$ (by Vigneras, Burger, Sarnak);

idea of the proof:

Let $\mathcal{O}=\mathbb{H}^{n} / \Gamma$.

$$
\lambda_{1}(\mathcal{O}) \operatorname{Vol}(\mathcal{O})^{2 / n} \leqslant n \cdot \operatorname{Vol}_{\text {conf }}(\mathcal{O})^{2 / n} \quad(\text { Li-Yau, 1982) }
$$

- $\lambda_{1}(\mathcal{O}) \geqslant C(n)$ (by Vigneras, Burger, Sarnak);
- $\operatorname{Vol}(\mathcal{O}) \geqslant B(n)$ (by B., B.-Emery) and for each n there are only finitely many arithmetic \mathcal{O} with bounded volume (by Borel);

idea of the proof:

Let $\mathcal{O}=\mathbb{H}^{n} / \Gamma$.

$$
\begin{equation*}
\lambda_{1}(\mathcal{O}) \operatorname{Vol}(\mathcal{O})^{2 / n} \leqslant n \cdot \operatorname{Vol}_{\text {conf }}(\mathcal{O})^{2 / n} \tag{Li-Yau,1982}
\end{equation*}
$$

- $\lambda_{1}(\mathcal{O}) \geqslant C(n)$ (by Vigneras, Burger, Sarnak);
- $\operatorname{Vol}(\mathcal{O}) \geqslant B(n)$ (by B., B.-Emery) and for each n there are only finitely many arithmetic \mathcal{O} with bounded volume (by Borel);
- If Γ is generated by reflections, $\operatorname{Vol}_{\text {conf }}(\mathcal{O})=\operatorname{Vol}\left(\mathbf{S}^{n}\right)$.

idea of the proof:

Let $\mathcal{O}=\mathbb{H}^{n} / \Gamma$.

$$
\begin{equation*}
\lambda_{1}(\mathcal{O}) \operatorname{Vol}(\mathcal{O})^{2 / n} \leqslant n \cdot \operatorname{Vol}_{\text {conf }}(\mathcal{O})^{2 / n} \tag{Li-Yau,1982}
\end{equation*}
$$

- $\lambda_{1}(\mathcal{O}) \geqslant C(n)$ (by Vigneras, Burger, Sarnak);
- $\operatorname{Vol}(\mathcal{O}) \geqslant B(n)$ (by B., B.-Emery) and for each n there are only finitely many arithmetic \mathcal{O} with bounded volume (by Borel);
- If Γ is generated by reflections, $\operatorname{Vol}_{\text {conf }}(\mathcal{O})=\operatorname{Vol}\left(\mathbf{S}^{n}\right)$.

Morally this is the main idea of the proof but unfortunately the actual argument requires more care.

Open problems

Question 1. Which of the above results are true without the arithmeticity assumption?

Open problems

Question 1. Which of the above results are true without the arithmeticity assumption?

Question 2. How many is "finitely many"?

Open problems

Question 1. Which of the above results are true without the arithmeticity assumption?

Question 2. How many is "finitely many"?
Question 3. [Fuchs-Meiri-Sarnak, 2014]. Are there any hyperbolic lattices generated by reflections and Cartan involutions (also called "reflections in points") in the hyperbolic spaces of sufficiently large dimension?

Open problems

Question 1. Which of the above results are true without the arithmeticity assumption?

Question 2. How many is "finitely many"?
Question 3. [Fuchs-Meiri-Sarnak, 2014]. Are there any hyperbolic lattices generated by reflections and Cartan involutions (also called "reflections in points") in the hyperbolic spaces of sufficiently large dimension?

Question 4. Do there exist any hyperbolic lattices in the spaces of large dimension which are generated by elements of finite order? Is there a finiteness theorem for such lattices in small dimensions?

Vinberg's algorithm setup

Vector model of $\mathbb{H}^{n}: \mathbb{E}^{n, 1}$ with inner product defined by a quadratic form f of signature $(n, 1)$:
$\mathcal{C} \cup-\mathcal{C}=\left\{v \in \mathbb{E}^{n+1} \mid(v, v)<0\right\} ;$ $\mathbb{H}^{n}=$ set of rays through 0 in \mathcal{C}.

Hyperplane Π_{e} - rays in \mathcal{C} orthogonal to $e \in \mathbb{E}^{n, 1} \mid(e, e)>0$.

Reflection in Π_{e} is

$$
R_{e}: x \rightarrow x-2 \frac{(e, x)}{(e, e)} e
$$

Vinberg's algorithm

- Begin with $x_{0} \in \overline{\mathbb{H}}^{n}$ (given by $\left.u_{0} \in \mathbb{E}^{n, 1} \mid\left(u_{0}, u_{0}\right)<0\right)$;

Vinberg's algorithm

- Begin with $x_{0} \in \overline{\mathbb{H}}^{n}$ (given by $\left.u_{0} \in \mathbb{E}^{n, 1} \mid\left(u_{0}, u_{0}\right)<0\right)$;
- Let $\Gamma_{0}<\mathrm{O}_{0}\left(f, \mathcal{O}_{k}\right)=\operatorname{Stab}\left(x_{0}\right)$ generated by reflections $R_{e_{1}}, \ldots, R_{e_{i}}$;

Vinberg's algorithm

- Begin with $x_{0} \in \overline{\mathbb{H}}^{n}$ (given by $\left.u_{0} \in \mathbb{E}^{n, 1} \mid\left(u_{0}, u_{0}\right)<0\right)$;
- Let $\Gamma_{0}<\mathrm{O}_{0}\left(f, \mathcal{O}_{k}\right)=\operatorname{Stab}\left(x_{0}\right)$ generated by reflections $R_{e_{1}}, \ldots, R_{e_{i}}$;
- Choose the next vector e_{i+1} such that:
(a) $2 \frac{\left(e_{i+1}, v_{i}\right)}{\left(e_{i+1}, e_{i+1}\right)} \in \mathcal{O}_{k}$ for the basis vectors $v_{i}, i=1, \ldots, n+1$ (the crystallographic condition);
(b) $\left(e_{i+1}, e_{i+1}\right)>0,\left(e_{i+1}, u_{0}\right)<0$, and $\left(e_{i+1}, e_{j}\right) \leqslant 0, \forall j \leqslant i$;
(c) the distance btw. x_{0} and $\Pi_{e_{i+1}}$ is the smallest possible.

Vinberg's algorithm

- Begin with $x_{0} \in \overline{\mathbb{H}}^{n}$ (given by $\left.u_{0} \in \mathbb{E}^{n, 1} \mid\left(u_{0}, u_{0}\right)<0\right)$;
- Let $\Gamma_{0}<\mathrm{O}_{0}\left(f, \mathcal{O}_{k}\right)=\operatorname{Stab}\left(x_{0}\right)$ generated by reflections $R_{e_{1}}, \ldots, R_{e_{i}}$;
- Choose the next vector e_{i+1} such that:
(a) $2 \frac{\left(e_{i+1}, v_{i}\right)}{\left(e_{i+1}, e_{i+1}\right)} \in \mathcal{O}_{k}$ for the basis vectors $v_{i}, i=1, \ldots, n+1$ (the crystallographic condition);
(b) $\left(e_{i+1}, e_{i+1}\right)>0,\left(e_{i+1}, u_{0}\right)<0$, and $\left(e_{i+1}, e_{j}\right) \leqslant 0, \forall j \leqslant i$;
(c) the distance btw. x_{0} and $\Pi_{e_{i+1}}$ is the smallest possible.
- Repeat the previous step until get a finite volume polyhedron.

Example for Vinberg's algorithm

$$
f=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1} x_{2}-\frac{1}{2}(1+\sqrt{5}) x_{2} x_{3}-x_{3} x_{4}\right) .
$$ $\operatorname{discriminant}(f)=3-2 \sqrt{5}$, defined over the field $k=\mathbb{Q}(\sqrt{5})$.

Example for Vinberg's algorithm

$$
f=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1} x_{2}-\frac{1}{2}(1+\sqrt{5}) x_{2} x_{3}-x_{3} x_{4}\right) .
$$ discriminant $(f)=3-2 \sqrt{5}$, defined over the field $k=\mathbb{Q}(\sqrt{5})$. Begin with $u_{0}=\left(\frac{3}{2}, 3,2 \phi, \phi\right), \phi=\frac{1+\sqrt{5}}{2}$.

Example for Vinberg's algorithm

$$
f=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1} x_{2}-\frac{1}{2}(1+\sqrt{5}) x_{2} x_{3}-x_{3} x_{4}\right) .
$$

$\operatorname{discriminant}(f)=3-2 \sqrt{5}$, defined over the field $k=\mathbb{Q}(\sqrt{5})$.
Begin with $u_{0}=\left(\frac{3}{2}, 3,2 \phi, \phi\right), \phi=\frac{1+\sqrt{5}}{2}$.
The stabilizer subgroup of $x_{0} \in \mathbb{H}^{3}$: is generated by reflections corresponding to the vectors

$$
e_{1}=(1,0,0,0), e_{2}=(0,0,1,0) \text { and } e_{3}=(0,0,0,1) .
$$

Example for Vinberg's algorithm

$$
f=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1} x_{2}-\frac{1}{2}(1+\sqrt{5}) x_{2} x_{3}-x_{3} x_{4}\right) .
$$

$\operatorname{discriminant}(f)=3-2 \sqrt{5}$, defined over the field $k=\mathbb{Q}(\sqrt{5})$.
Begin with $u_{0}=\left(\frac{3}{2}, 3,2 \phi, \phi\right), \phi=\frac{1+\sqrt{5}}{2}$.
The stabilizer subgroup of $x_{0} \in \mathbb{H}^{3}$: is generated by reflections corresponding to the vectors

$$
e_{1}=(1,0,0,0), e_{2}=(0,0,1,0) \text { and } e_{3}=(0,0,0,1) .
$$

The next vector is $e_{4}=(-1,-1,-\phi,-\phi)$.

Example for Vinberg's algorithm

$$
f=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-x_{1} x_{2}-\frac{1}{2}(1+\sqrt{5}) x_{2} x_{3}-x_{3} x_{4}\right) .
$$

discriminant $(f)=3-2 \sqrt{5}$, defined over the field $k=\mathbb{Q}(\sqrt{5})$.
Begin with $u_{0}=\left(\frac{3}{2}, 3,2 \phi, \phi\right), \phi=\frac{1+\sqrt{5}}{2}$.
The stabilizer subgroup of $x_{0} \in \mathbb{H}^{3}$: is generated by reflections corresponding to the vectors

$$
e_{1}=(1,0,0,0), e_{2}=(0,0,1,0) \text { and } e_{3}=(0,0,0,1) .
$$

The next vector is $e_{4}=(-1,-1,-\phi,-\phi)$. And the algorithm terminates.

The Coxeter diagram of of the resulting configuration is

Coxeter diagrams

Vertices $\longleftrightarrow \quad$ Faces of the polyhedron

Table: Edges of the diagram

Type of edge	Corresponds to
$m-2$ lines or label m	dihedral angle $\frac{\pi}{m}$
a thick line	a "cusp", dihedral angle 0
a punctured line	divergent faces
no line	dihedral angle $\frac{\pi}{2}$

Examples

$$
f=-3 x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2}, \text { for } n=2 \text { to } 8
$$

Examples

$$
f=-3 x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2}, \quad n=9,10,11 .
$$

Examples

$$
n=13
$$

$$
n=12
$$

J. Mcleod, Hyperbolic reflection groups associated to the quadratic forms $-3 x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2}$,

Geom. Dedicata. 152 (2011), 1-16.

Examples

B. - Mcleod, Reflective and quasi-reflective Bianchi groups,

Transform. Groups, 18 (2013), 971-994.

Examples

B. - Mcleod, Reflective and quasi-reflective Bianchi groups, Transform. Groups, 18 (2013),

A reference

M. Belolipetsky, Arithmetic hyperbolic reflection groups, survey article, Bull. Amer. Math. Soc. (N.S.) 53 (2016), no. 3, 437-475.

