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Groups

A group Γ is a set, closed with respect to an operation of
composition ∗, and such that the composition is associative, has
a neutral element e ∈ Γ, and for any a ∈ Γ there is an inverse
a′ ∈ Γ such that a ∗ a′ = a′ ∗ a = e.

GROUPS ←→ SYMMETRY
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a snowflake:

photo by K. Libbrecht



Crystallographic groups

Let X = En be the Euclidean space of dimension n.

A crystallographic group Γ is a subgroup of the group of
isometries of X with the following properties:

I the action Γ×X → X is properly discontinuous;

I the quotient space X/Γ is compact.

A fundamental domain for the action of Γ on X is a closed
subset R ⊂ X such that

(i)
⋃
g∈Γ g(R) = X, and

(ii) R̊ ∩ g(R̊) = ∅ for all non-trivial g ∈ Γ, where R̊ is the
interior of R.

Any crystallographic group has a fundamental domain, which is
a polyhedron in En.
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17 crystallographic groups in dimension 2:

image from http://web.media.mit.edu



Space groups

Theorem 1. [Fedorov and Schoenflies, 1891] There exist
230 crystallographic groups in dimension 3.

Theorem 2. [Bieberbach, 1910] For any dimension n,
up to a natural equivalence there exist only finitely many
n-dimensional crystallographic groups.

n # of groups

4 4783 (Brown, Bülow, Neubüser et al., 1978)
5 222018 (Plesken and Schulz, 2000)
6 28934974 (Plesken and Schulz, 2000)

> 7 ?, the number grows with n
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A cubic lattice in dimension 3:

image from wikipedia



A cubic lattice in dimension 4:

image from wikipedia



A right-angled hyperbolic tessellation:

image from W. Thurston’s book
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Definition

Let X = Hn be the n-dimensional hyperbolic space.

A hyperbolic reflection group Γ is a subgroup of the group
of isometries of X generated by reflections and such that:

I the action Γ×X → X is properly discontinuous;

I the quotient space X/Γ has finite volume.

Remark. A fundamental region of a hyperbolic reflection
group can be non-compact.



An example

image from F. Klein’s paper (1879).



Some results

Theorem 1. [Vinberg, 1981] There are no arithmetic
hyperbolic reflection groups in dimensions n > 30.

Conjecture 2. Theorem 1 is true without assuming
arithmeticity.

Theorem 3. [Nikulin, 1981] In dimensions n > 10 there are
only finitely many (up to commensurability) arithmetic
hyperbolic reflection groups.

Theorem 4. [Agol-B.-Storm-Whyte; Nikulin, 2008]
The number of commensurability classes of arithmetic
hyperbolic reflection groups in all dimensions is finite.
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idea of the proof:

Let O = Hn/Γ.

λ1(O) Vol(O)2/n 6 n ·Volconf(O)2/n (Li-Yau, 1982)

I λ1(O) > C(n) (by Vigneras, Burger, Sarnak);

I Vol(O) > B(n) (by B., B.-Emery) and for each n there are
only finitely many arithmetic O with bounded volume (by
Borel);

I If Γ is generated by reflections, Volconf(O) = Vol(Sn).

Morally this is the main idea of the proof but unfortunately the
actual argument requires more care.
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Open problems

Question 1. Which of the above results are true without the
arithmeticity assumption?

Question 2. How many is “finitely many”?

Question 3. [Fuchs-Meiri-Sarnak, 2014]. Are there any
hyperbolic lattices generated by reflections and Cartan
involutions (also called “reflections in points”) in the hyperbolic
spaces of sufficiently large dimension?

Question 4. Do there exist any hyperbolic lattices in the spaces
of large dimension which are generated by elements of finite
order? Is there a finiteness theorem for such lattices in small
dimensions?
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Vinberg’s algorithm setup

Vector model of Hn: En,1 with
inner product defined by a
quadratic form f of signature
(n, 1):

C ∪ −C = {v ∈ En+1 | (v, v) < 0};
Hn = set of rays through 0 in C.

Hyperplane Πe — rays in C
orthogonal to e ∈ En,1 | (e, e) > 0.

Reflection in Πe is

Re : x→ x− 2
(e, x)

(e, e)
e

Π1

Π0

e0

e1



Vinberg’s algorithm

I Begin with x0 ∈ Hn
(given by u0 ∈ En,1 | (u0, u0) < 0);

I Let Γ0 < O0(f,Ok) = Stab(x0) generated by reflections
Re1 , . . . , Rei ;

I Choose the next vector ei+1 such that:

(a) 2 (ei+1,vi)
(ei+1,ei+1)

∈ Ok for the basis vectors vi, i = 1, . . . , n+ 1

(the crystallographic condition);
(b) (ei+1, ei+1) > 0, (ei+1, u0) < 0, and (ei+1, ej) 6 0, ∀j 6 i;
(c) the distance btw. x0 and Πei+1

is the smallest possible.

I Repeat the previous step until get a finite volume
polyhedron.
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Example for Vinberg’s algorithm

f = 2

(
x2

1 + x2
2 + x2

3 + x2
4 − x1x2 −

1

2
(1 +

√
5)x2x3 − x3x4

)
.

discriminant(f) = 3− 2
√

5, defined over the field k = Q(
√

5).

Begin with u0 = (3
2 , 3, 2φ, φ), φ = 1+

√
5

2 .

The stabilizer subgroup of x0 ∈ H3: is generated by reflections
corresponding to the vectors

e1 = (1, 0, 0, 0), e2 = (0, 0, 1, 0) and e3 = (0, 0, 0, 1).

The next vector is e4 = (−1,−1,−φ,−φ). And the algorithm
terminates.

The Coxeter diagram of of the resulting configuration is

1 4 3 2
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Coxeter diagrams

Vertices ←→ Faces of the polyhedron

Table: Edges of the diagram

Type of edge Corresponds to

m− 2 lines or label m dihedral angle π
m

a thick line a “cusp”, dihedral angle 0

a punctured line divergent faces

no line dihedral angle π
2



Examples

f = −3x2
0 + x2

1 + . . .+ x2
n, for n = 2 to 8.
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f = −3x2
0 + x2

1 + . . .+ x2
n, n = 9, 10, 11.
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Examples

66

n = 12:
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66

n = 13:

J. Mcleod, Hyperbolic reflection groups associated to the quadratic forms −3x2
0 + x2

1 + . . . + x2
n,

Geom. Dedicata. 152 (2011), 1–16.
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