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Intro

Let W be a Coxeter group with generating set S and defining
relations of the form (st)mst = 1 for pairs of generators s, t ∈ S .
In 1979 paper Kazhdan and Lusztig have defined a partition of W
into various classes of subsets called cells.

Cells can be visualized via the action of W on its Tits cone:

The cells of Ã2, C̃2, and Ã3
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Intro

For the class of crystallographic Coxeter groups, which includes
Weyl groups and affine Weyl groups, cells have connections to
many areas of mathematics

, e.g.:
- singularities of Schubert varieties (Kazhdan-Lusztig, 79);
- representations of p-adic groups (Lusztig, 83);
- characters of finite groups of Lie type (Lusztig, 84);
- the geometry of nilpotent orbits in simple complex Lie algebras
(Lusztig, 89; Bezrukavnikov-Ostrik, 04).

To illustrate the last we mention an important result of Lusztig:
If W is the affine Weyl group attached to the simple complex

algebraic group G with Lie algebra g, then the two-sided cells are
in bijection with the set O(Lg) of nilpotent orbits of the group dual
to G .
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Definitions

(W ,S) is a Coxeter system
H is the Hecke algebra of W over A = Z[q1/2, q−1/2]

(Tw )w∈W is the standard basis of H:
TxTy = Txy , if l(xy) = l(x) + l(y);
T 2

s = q + (q − 1)Ts , if s ∈ S

(Cw )w∈W is the Kazhdan-Lusztig basis:
Cw =

∑
y≤w (−1)l(w)−l(y)ql(w)/2−l(y)Py ,w (q−1)Ty , where

Py ,w = µ(y ,w)q
1
2
(l(w)−l(y)−1) + lower degree terms

are the Kazhdan-Lusztig polynomials

Py ,w define preorders ≤L, ≤R , ≤LR and the associated equivalence
relations ∼L, ∼R , ∼LR on W . The equivalence classes are called
left cells (resp. right cells, resp. two-sided cells).
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Definitions

Multiplication:

CxCy =
∑

z

hx ,y ,zCz , hx ,y ,z ∈ A

a(z) is the smallest integer such that
q−a(z)/2hx ,y ,z ∈ A− = Z[q−1/2] for all x , y ∈W .

If the function a is bounded on W , then for every x , y , z ∈W

hx ,y ,z = γx ,y ,zq
a(z)
2 + δx ,y ,zq

a(z)−1
2 + lower degree terms.

Di := {z ∈W | l(z)− a(z)− 2δ(z) = i}, where δ(z) = deg(Pe,z).

The set D = D0 consists of distinguished involutions of W .

Every left cell of W contains a unique d ∈ D (Lusztig, 87).
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Pictures

The cells of G̃2 (Lusztig, 85)



Pictures

The cells of the modular group (2, 3,∞) (Gunnells)
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The cells of the group (2, 2, 2, 3) (Gunnells)



Pictures

The cells of the Hurwitz group (2, 3, 7) (Gunnells)



Lego game

A left cell (green) of the Hurwitz group



Definitions

Let w ∈W . Z (w) denotes the set of all v ∈W such that
w = x .v .y for some x , y ∈W and v ∈WI for some I ⊂ S with WI

finite.

v ∈ Z (w) is maximal in w if it is not a proper subword of any
other v ′ ∈ Z (w) for any reduced of w of the form x .v .y .

Z = Z (W ) :=
⋃

w∈W Z (w), Df := D ∩ Z , D•f = Df r S .

We will call w = x .v .y rigid at v if v ∈ Df , v is maximal in w ,
and for every reduced expression w = x ′.v ′.y ′ with v ′ ∈ Df and
a(v ′) ≥ a(v), we have l(x) = l(x ′) and l(y) = l(y ′):
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Conjectures

Our goal is to detect an inductive structure inside D and to
describe an explicit relationship between the elements of D and
equivalence relations on W which define its partition into cells.
To this end we state two conjectures:

Conjecture 1. (“distinguished involutions”) Let v = x .v1.x
−1 ∈ D

with v1 ∈ D•f and a(v) = a(v1), and let v ′ = s.v .s with s ∈ S.
Then if sxv1 is rigid at v1, we have v ′ ∈ D.

Conjecture 2. (“basic equivalences”) Let w = x .v0 with v0 ∈ Df

maximal in w. Let u = x .v1.x
−1 ∈ D satisfy a(u) ≤ a(v0), and let

w ′ = w .u.v01 where v01 is a product of a(u)− 1 simple reflections
from R(v0). Assume a(w ′) = a(w) and v ′′0 xv1 is rigid at v1 for
every v ′′0 such that v0 = v ′0.v

′′
0 , l(v ′′0 ) = l(v01). Then µ(w ,w ′) 6= 0

and w ∼R w ′.
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Example

Let W be the affine group of type A4:

v1 = s4s0s4s2 is the longest element of WI with I = {s0, s2, s4},
so v1 ∈ Df .

Can check by direct computation that
s1 s4s0s4s2 s1, s3s1 s4s0s4s2 s1s3, s2s3s1 s4s0s4s2 s1s3s2 ∈ D.

However, s0s2s3s1 s4s0s4s2 s1s3s2s0 6∈ D (!)

This is because s0s2s3s1 s4s0s4s2 is not rigid at v1:
s0s2s3s1 s4s0s4s2 = s2s0s3s1 s0s4s0s2 = s2 s3s0s1s0 s4s0s2,

where s3s0s1s0 ∈ Df and a(s3s0s1s0) = a(v1).
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Results

Theorem 1. (MB-Gunnells) If Conjectures 1, 2, and standard
conjectures∗ are true then

(1) The set D of distinguished involutions consists of the union of
v ∈ Df and the elements of W which are obtained from them
using Conjecture 1.

(2) Relations described in Conjecture 2 determine the partition of
W into right cells, i.e. x ∼R y in W if and only if there exists
a sequence x = x0, x1, . . . , xn = y in W such that
{xi−1, xi} = {v , v ′} as in the conjecture for every i = 1, . . . , n.

∗: • Positivity (Kazhdan-Lusztig’79, Lusztig’85);
• Function a is given by a(w) = maxv∈Z(w)∩Df

a(v)
(cf. Lusztig’03).
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Results

Theorem 2. (MB-Gunnells) Let v = x .v1.x
−1 ∈ D with v1 ∈ D•f ,

a(v) = a(vs) and L(vs) rR(vs) 6= ∅; and let v ′ = s.v .s. Then if
v ′ is rigid at v1, we have v ′ ∈ D.

Theorem 3. (MB-Gunnells) Let w = x .v0 = tn . . . t1.sl . . . s1 with
v0 = sl . . . s1 ∈ Df is maximal in w and is the longest element of
some WI , and a(w) = a(v0); u = y .u0.y

−1 ∈ D with u0 ∈ Df such
that a(u) = a(u0) = l ; and w ′ = w .u.v01 with v01 = s1 . . . sl−1 has
a(w ′) = a(w) and R(w ′) ( R(w). Moreover, assume

(1) For any vj = tj . . . t1v0t1 . . . tj , j = 0, . . . , n − 1 and t = tj+1

or t = tj−1 if tj−1 6∈ R(vj), we have a(vj t) = a(vj),
L(vj t) rR(vj t) 6= ∅ and tvj t is rigid at v0.

(2) For any uj = sj−1 . . . s1us1 . . . sj−1, j = 1, . . . , l − 1 with
u1 = u, we have a(ujsj) = a(uj), L(ujsj) rR(ujsj) 6= ∅ and
sjujsj is rigid at u0;

Then µ(w ,w ′) 6= 0 and w ∼R w ′.
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Results
Proof of Thm. 2 consists of two steps:

(a) show that δ(vs)(= deg(Pe,vs)) = δ(v);

(b) show that δ(svs) = δ(vs) + 1.

Proof of (a) is based on (unpublished) correspondence of Springer
and Lusztig.

Proof of (b) uses Kazhdan-Lusztig recursion for Px ,w , x ≤ w :

Px ,w = q1−cPsx ,v + qcPx ,v −
∑

x≤z≺v
sz<z

µ(z , v)q
−1/2
z q

1/2
v q1/2Px ,z ,

where w = sv , c = 1 if sy < y , c = 0 if sy > y and Px ,v = 0
unless x ≤ v . It is here, where we need the extra condition!

Proof of Thm. 3 uses Thm. 2 and the equality

Pv0, v0uv01 = Pe, v0uv01

(Kazhdan-Lusztig).
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unless x ≤ v . It is here, where we need the extra condition!
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(Kazhdan-Lusztig).
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Applications

Application 1. Cells in Coxeter groups with with equal exponents,
e.g. Ã2, right-angled Coxeter groups (MB’04), etc.

Application 2. If there exist s, t1, t2 ∈ S such that
m(s, t1) = m(s, t2) =∞ and m(t1, t2) is finite, then W has
infinitely many one-sided cells.

Rem. Application 2 does not cover the Hurwitz group (2, 3, 7).
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