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Let W be a Coxeter group with generating set S and defining
relations of the form (st)™s = 1 for pairs of generators s,t € S.
In 1979 paper Kazhdan and Lusztig have defined a partition of W
into various classes of subsets called cells.

Cells can be visualized via the action of W on its Tits cone:
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The cells of ;‘;2, 62, and ;&3
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Intro

For the class of crystallographic Coxeter groups, which includes
and , cells have connections to

many areas of mathematics, e.g.:

- singularities of Schubert varieties (Kazhdan-Lusztig, 79);

- representations of p-adic groups (Lusztig, 83);

- characters of finite groups of Lie type (Lusztig, 84);

- the geometry of nilpotent orbits in simple complex Lie algebras

(Lusztig, 89; Bezrukavnikov-Ostrik, 04).

To illustrate the last we mention an important result of Lusztig:

If W is the affine Weyl group attached to the simple complex
algebraic group G with Lie algebra g, then the two-sided cells are
in bijection with the set O(Lg) of nilpotent orbits of the group dual
to G.
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(W,S) is a Coxeter system
H is the Hecke algebra of W over A = Z[q'/2, g=1/?

(Tw)wew is the standard basis of H:
T T, = Ty, if I(xy) = I(x) + I(y);
T2=q+(q—1)Ts ifseS

(Cw)wew is the Kazhdan-Lusztig basis:

Py.w = u(y, W)q%('('”)_’(y)_l) + lower degree terms
are the Kazhdan-Lusztig polynomials

Py define preorders <;, <g, <;r and the associated equivalence
relations ~;, ~g, ~ g on W. The equivalence classes are called
left cells (resp. right cells, resp. two-sided cells).
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Definitions

Multiplication:

CX Cy - Z hx,y7zC27 hx,y7z eA

a(z) is the smallest integer such that
g 2@2h,, , € A= =Z[qg?] for all x,y € W.

If the function a is bounded on W, then for every x,y,z € W

a(z

hX7y7Z = /7X3y7zq 2

a(z)—1

)
+0x,y,29" 2+ lower degree terms.

Di:={ze W |I(z) — a(z) — 26(z) = i}, where §(z) = deg(Pe ).
The set D = Dy consists of distinguished involutions of W.

Every left cell of W contains a unique d € D (Lusztig, 87).
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The cells of Gy (Lusztig, 85)
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The cells of the modular group (2, 3, c0) (Gunnells)
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The cells of the group (2,2,2,3) (Gunnells)
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The cells of the Hurwitz group (2,3,7) (Gunnells)
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A left cell (green) of the Hurwitz group

o

=



Definitions

Let w € W. Z(w) denotes the set of all v € W such that
w = x.v.y for some x,y € W and v € W, for some | C S with W,
finite.



Definitions

Let w € W. Z(w) denotes the set of all v € W such that
w = x.v.y for some x,y € W and v € W, for some | C S with W,

finite.

v € Z(w) is maximal in w if it is not a proper subword of any
other v/ € Z(w) for any reduced of w of the form x.v.y.



Definitions

Let w € W. Z(w) denotes the set of all v € W such that
w = x.v.y for some x,y € W and v € W, for some | C S with W,
finite.

v € Z(w) is maximal in w if it is not a proper subword of any
other v/ € Z(w) for any reduced of w of the form x.v.y.

Z=2(W):=Uyew Z(w), Df :=DNZ, Dy = Df \. S.



Definitions

Let w € W. Z(w) denotes the set of all v € W such that

w = x.v.y for some x,y € W and v € W, for some | C S with W,
finite.

v € Z(w) is maximal in w if it is not a proper subword of any
other v/ € Z(w) for any reduced of w of the form x.v.y.

Z=2(W):=Uyew Z(w), Df :=DNZ, Dy = Df \. S.

We will call w = x.v.y rigid at v if v € Dy, v is maximal in w,
and for every reduced expression w = x".v'.y’ with v/ € D¢ and
a(v') > a(v), we have I/(x) = I(x") and I(y) = I(y'):



Definitions

Let w € W. Z(w) denotes the set of all v € W such that
w = x.v.y for some x,y € W and v € W, for some | C S with W,
finite.

v € Z(w) is maximal in w if it is not a proper subword of any
other v/ € Z(w) for any reduced of w of the form x.v.y.

Z=2(W):=Uyew Z(w), Df :=DNZ, Dy = Df \. S.

We will call w = x.v.y rigid at v if v € Dy, v is maximal in w,
and for every reduced expression w = x".v'.y’ with v/ € D¢ and
a(v') > a(v), we have I/(x) = I(x") and I(y) = I(y'):

- rigid



Definitions

Let w € W. Z(w) denotes the set of all v € W such that

w = x.v.y for some x,y € W and v € W, for some | C S with W,
finite.

v € Z(w) is maximal in w if it is not a proper subword of any
other v/ € Z(w) for any reduced of w of the form x.v.y.

Z=2(W):=Uyew Z(w), Df :=DNZ, Dy = Df \. S.
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~ ~7 -7 not rigid



Conjectures

Our goal is to detect an inductive structure inside D and to
describe an explicit relationship between the elements of D and
equivalence relations on W which define its partition into cells.
To this end we state two conjectures:



Conjectures

Our goal is to detect an inductive structure inside D and to
describe an explicit relationship between the elements of D and
equivalence relations on W which define its partition into cells.
To this end we state two conjectures:

Conjecture 1. (“distinguished involutions”) Let v = x.vi.x" € D
with vi € D} and a(v) = a(v1), and let v/ = s.v.s with s € S.
Then if sxvy is rigid at vi, we have v/ € D.



Conjectures

Our goal is to detect an inductive structure inside D and to
describe an explicit relationship between the elements of D and
equivalence relations on W which define its partition into cells.
To this end we state two conjectures:

Conjecture 1. (“distinguished involutions”) Let v = x.vi.x" € D
with vi € D} and a(v) = a(v1), and let v/ = s.v.s with s € S.
Then if sxvy is rigid at vi, we have v/ € D.

Conjecture 2. ("basic equivalences”) Let w = x.vp with vy € Df
maximal in w. Let u = x.vi.x~! € D satisfy a(u) < a(w), and let
w' = w.u.vp1 where vp1 is a product of a(u) — 1 simple reflections
from R(vo). Assume a(w') = a(w) and v{xvy is rigid at vy for
every v§ such that vo = v{.v{, I(v{) = I(vo1). Then p(w,w’) # 0
and w ~p w'.
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Example
Let W be the affine group of type Ay:

0

1 2 3 4
vi = s1505452 is the longest element of W; with | = {sp, s, s},
so vq € Dr.

Can check by direct computation that

S1 54505452 S1, S3S1 54505452 S1S3, S2S351 54505452 S1S3S52 € D.
However, sysys3s1 sas0s452 s1535250 € D (1)

This is because sps2s351 S45054S> is not rigid at vy:

50525351 54505452 = 52505351 50545052 = S2 S3505150 545052,
where s3s0s150 € Dr and a(s3spsis0) = a(vy).
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v € Df and the elements of W which are obtained from them
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W into right cells, i.e. x ~r y in W if and only if there exists
a sequence x = xg, X1, ..., Xnp = y in W such that
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Theorem 1. (MB-Gunnells) If Conjectures 1, 2, and standard

conjectures® are true then

(1) The set D of distinguished involutions consists of the union of
v € Df and the elements of W which are obtained from them
using Conjecture 1.

(2) Relations described in Conjecture 2 determine the partition of
W into right cells, i.e. x ~r y in W if and only if there exists
a sequence x = xg, X1, ..., Xnp = y in W such that
{xi—1,x} = {v,V'} as in the conjecture for every i =1,...,n.

*: o Positivity (Kazhdan-Lusztig'79, Lusztig'85);
e Function a is given by a(w) = max,cz(w)p,a(V)
(cf. Lusztig'03).
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Results

Theorem 2. (MB-Gunnells) Let v = x.vi.x"1 € D with v; € D2,
a(v) = a(vs) and L(vs) ~ R(vs) # (; and let v/ = s.v.s. Then if
v/ is rigid at v1, we have v/ € D.

Theorem 3. (MB-Gunnells) Let w = x.vg = tp...t1.5/...51 with
Vo =S5;...51 € Dr is maximal in w and is the longest element of
some W, and a(w) = a(w); u = y.up.y~* € D with ug € Df such
that a(u) = a(ug) = I; and w' = w.u.vo; with vo1 = s1...5s_1 has
a(w') = a(w) and R(w') € R(w). Moreover, assume
(1) Forany vy =tj...tiwgty...t;, j=0,...,n—1and t = tjq
or t = tj_q if ti_1 & R(v;j), we have a(v;t) = a(vj),
L(vjt) N R(vjt) # 0 and tv;t is rigid at vp.
(2) Forany uj=sj_1...s1usy...sj—1,j=1,...,/ —1 with
up = u, we have a(ujs;) = a(uj), L(ujs;) ~ R(ujs;) # 0 and
sju;s; is rigid at wp;

Then pu(w,w’) # 0 and w ~g w'.
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Proof of Thm. 2 consists of two steps:
(a) show that §(vs)(= deg(Pe,vs)) = d(v);
(b) show that d(svs) = d(vs) + 1.

Proof of (a) is based on (unpublished) correspondence of Springer
and Lusztig.

Proof of (b) uses Kazhdan-Lusztig recursion for Py ,, x < w:
_ ~1/2 1/2
Prw = G Pocy + qPay — Y plz,v)az a2 Py 2,

x<z-<v
sz<z

where w =sv,c=1ifsy <y, c=0ifsy >yand P,, =0
unless x < v. It is here, where we need the extra condition!

Proof of Thm. 3 uses Thm. 2 and the equality

Py, vouvor = Pe, vouver

(Kazhdan-Lusztig).
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Applications

Application 1. Cells in Coxeter groups with with equal exponents,
e.g. Ay, right-angled Coxeter groups (MB'04), etc.

Application 2. If there exist s, t1, tp € S such that
m(s,t1) = m(s, t2) = oo and m(ty, tp) is finite, then W has

infinitely many one-sided cells.

Rem. Application 2 does not cover the Hurwitz group (2,3,7).
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