Cells in Coxeter Groups

Mikhail Belolipetsky, Durham University

Belfast August, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let W be a Coxeter group with generating set S and defining relations of the form $(st)^{m_{st}} = 1$ for pairs of generators $s, t \in S$. In 1979 paper Kazhdan and Lusztig have defined a partition of W into various classes of subsets called *cells*.

Let W be a Coxeter group with generating set S and defining relations of the form $(st)^{m_{st}} = 1$ for pairs of generators $s, t \in S$. In 1979 paper Kazhdan and Lusztig have defined a partition of W into various classes of subsets called *cells*.

Cells can be visualized via the action of W on its Tits cone:

The cells of $\widetilde{\mathrm{A}}_2\text{, }\widetilde{\mathrm{C}}_2\text{, and }\widetilde{\mathrm{A}}_3$

For the class of *crystallographic* Coxeter groups, which includes *Weyl groups* and *affine Weyl groups*, cells have connections to many areas of mathematics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

For the class of *crystallographic* Coxeter groups, which includes *Weyl groups* and *affine Weyl groups*, cells have connections to many areas of mathematics, e.g.:

- singularities of Schubert varieties (Kazhdan-Lusztig, 79);
- representations of p-adic groups (Lusztig, 83);
- characters of finite groups of Lie type (Lusztig, 84);
- the geometry of nilpotent orbits in simple complex Lie algebras

(Lusztig, 89; Bezrukavnikov-Ostrik, 04).

For the class of *crystallographic* Coxeter groups, which includes *Weyl groups* and *affine Weyl groups*, cells have connections to many areas of mathematics, e.g.:

- singularities of Schubert varieties (Kazhdan-Lusztig, 79);
- representations of p-adic groups (Lusztig, 83);
- characters of finite groups of Lie type (Lusztig, 84);
- the geometry of nilpotent orbits in simple complex Lie algebras (Lusztig, 89; Bezrukavnikov-Ostrik, 04).

To illustrate the last we mention an important *result of Lusztig*:

If W is the affine Weyl group attached to the simple complex algebraic group G with Lie algebra \mathfrak{g} , then the two-sided cells are in bijection with the set $\mathcal{O}({}^{L}\mathfrak{g})$ of nilpotent orbits of the group dual to G.

(W, S) is a *Coxeter system* \mathcal{H} is the *Hecke algebra* of *W* over $\mathcal{A} = \mathbb{Z}[q^{1/2}, q^{-1/2}]$

(W, S) is a *Coxeter system* \mathcal{H} is the *Hecke algebra* of W over $\mathcal{A} = \mathbb{Z}[q^{1/2}, q^{-1/2}]$ $(T_w)_{w \in W}$ is the standard basis of \mathcal{H} : $T_x T_y = T_{xy}$, if l(xy) = l(x) + l(y); $T_s^2 = q + (q - 1)T_s$, if $s \in S$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

(W, S) is a Coxeter system \mathcal{H} is the Hecke algebra of W over $\mathcal{A} = \mathbb{Z}[q^{1/2}, q^{-1/2}]$ $(T_w)_{w \in W}$ is the standard basis of \mathcal{H} : $T_x T_y = T_{xy}$, if l(xy) = l(x) + l(y); $T_s^2 = q + (q - 1)T_s$, if $s \in S$ $(C_w)_{w \in W}$ is the Kazhdan-Lusztig basis: $C_w = \sum_{y \leq w} (-1)^{l(w) - l(y)} q^{l(w)/2 - l(y)} P_{y,w}(q^{-1})T_y$, where $P_{y,w} = \mu(y, w) q^{\frac{1}{2}(l(w) - l(y) - 1)} + \text{lower degree terms}$ are the Kazhdan-Lusztig polynomials

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(W, S) is a Coxeter system \mathcal{H} is the Hecke algebra of W over $\mathcal{A} = \mathbb{Z}[q^{1/2}, q^{-1/2}]$ $(T_w)_{w \in W}$ is the standard basis of \mathcal{H} : $T_x T_y = T_{xy}$, if l(xy) = l(x) + l(y); $T_s^2 = q + (q - 1)T_s$, if $s \in S$ $(C_w)_{w \in W}$ is the Kazhdan-Lusztig basis: $C_w = \sum_{y \leq w} (-1)^{l(w) - l(y)} q^{l(w)/2 - l(y)} P_{y,w}(q^{-1})T_y$, where $P_{y,w} = \mu(y, w) q^{\frac{1}{2}(l(w) - l(y) - 1)} + \text{lower degree terms}$ are the Kazhdan-Lusztig polynomials

 $P_{y,w}$ define preorders \leq_L , \leq_R , \leq_{LR} and the associated equivalence relations \sim_L , \sim_R , \sim_{LR} on W. The equivalence classes are called *left cells* (resp. *right cells*, resp. *two-sided cells*).

Multiplication:

$$C_x C_y = \sum_z h_{x,y,z} C_z, \quad h_{x,y,z} \in \mathcal{A}$$

a(z) is the smallest integer such that $q^{-a(z)/2}h_{x,y,z} \in \mathcal{A}^- = \mathbb{Z}[q^{-1/2}]$ for all $x, y \in W$.

Multiplication:

$$C_x C_y = \sum_z h_{x,y,z} C_z, \quad h_{x,y,z} \in \mathcal{A}$$

a(z) is the smallest integer such that $q^{-a(z)/2}h_{x,y,z} \in \mathcal{A}^- = \mathbb{Z}[q^{-1/2}]$ for all $x, y \in W$.

If the function *a* is bounded on *W*, then for every $x, y, z \in W$

$$h_{x,y,z} = \gamma_{x,y,z} q^{\frac{a(z)}{2}} + \delta_{x,y,z} q^{\frac{a(z)-1}{2}} + \text{lower degree terms.}$$

Multiplication:

$$C_x C_y = \sum_z h_{x,y,z} C_z, \quad h_{x,y,z} \in \mathcal{A}$$

a(z) is the smallest integer such that $q^{-a(z)/2}h_{x,y,z} \in \mathcal{A}^- = \mathbb{Z}[q^{-1/2}]$ for all $x, y \in W$.

If the function *a* is bounded on *W*, then for every $x, y, z \in W$

$$h_{x,y,z} = \gamma_{x,y,z} q^{\frac{a(z)}{2}} + \delta_{x,y,z} q^{\frac{a(z)-1}{2}} +$$
lower degree terms.

 $\mathcal{D}_{i} := \{z \in W \mid l(z) - a(z) - 2\delta(z) = i\}, \text{ where } \delta(z) = \deg(P_{e,z}).$ The set $\mathcal{D} = \mathcal{D}_{0}$ consists of *distinguished involutions* of W. Every left cell of W contains a unique $d \in \mathcal{D}$ (Lusztig, 87).

The cells of $\widetilde{\mathrm{G}}_2$ (Lusztig, 85)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The cells of the modular group (2,3, ∞) (Gunnells)

The cells of the group (2, 2, 2, 3) (Gunnells)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The cells of the Hurwitz group (2,3,7) (Gunnells)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Lego game

A left cell (green) of the Hurwitz group

(ロ)、

Let $w \in W$. Z(w) denotes the set of all $v \in W$ such that w = x.v.y for some $x, y \in W$ and $v \in W_l$ for some $l \subset S$ with W_l finite.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $w \in W$. Z(w) denotes the set of all $v \in W$ such that w = x.v.y for some $x, y \in W$ and $v \in W_I$ for some $I \subset S$ with W_I finite.

(日)、(型)、(E)、(E)、(E)、(Q)

 $v \in Z(w)$ is *maximal in w* if it is not a proper subword of any other $v' \in Z(w)$ for any reduced of w of the form x.v.y.

Let $w \in W$. Z(w) denotes the set of all $v \in W$ such that w = x.v.y for some $x, y \in W$ and $v \in W_l$ for some $l \subset S$ with W_l finite.

 $v \in Z(w)$ is *maximal in w* if it is not a proper subword of any other $v' \in Z(w)$ for any reduced of w of the form x.v.y.

 $Z = Z(W) := \bigcup_{w \in W} Z(w), \ \mathcal{D}_f := \mathcal{D} \cap Z, \ \mathcal{D}_f^{\bullet} = \mathcal{D}_f \setminus S.$

Let $w \in W$. Z(w) denotes the set of all $v \in W$ such that w = x.v.y for some $x, y \in W$ and $v \in W_l$ for some $l \subset S$ with W_l finite.

 $v \in Z(w)$ is *maximal in w* if it is not a proper subword of any other $v' \in Z(w)$ for any reduced of w of the form x.v.y.

$$Z = Z(W) := \bigcup_{w \in W} Z(w), \ \mathcal{D}_f := \mathcal{D} \cap Z, \ \mathcal{D}_f^{\bullet} = \mathcal{D}_f \setminus S.$$

We will call w = x.v.y rigid at v if $v \in D_f$, v is maximal in w, and for every reduced expression w = x'.v'.y' with $v' \in D_f$ and $a(v') \ge a(v)$, we have l(x) = l(x') and l(y) = l(y'):

Let $w \in W$. Z(w) denotes the set of all $v \in W$ such that w = x.v.y for some $x, y \in W$ and $v \in W_l$ for some $l \subset S$ with W_l finite.

 $v \in Z(w)$ is *maximal in w* if it is not a proper subword of any other $v' \in Z(w)$ for any reduced of w of the form x.v.y.

$$Z = Z(W) := \bigcup_{w \in W} Z(w), \ \mathcal{D}_f := \mathcal{D} \cap Z, \ \mathcal{D}_f^{\bullet} = \mathcal{D}_f \setminus S.$$

We will call w = x.v.y rigid at v if $v \in D_f$, v is maximal in w, and for every reduced expression w = x'.v'.y' with $v' \in D_f$ and $a(v') \ge a(v)$, we have l(x) = l(x') and l(y) = l(y'):

Let $w \in W$. Z(w) denotes the set of all $v \in W$ such that w = x.v.y for some $x, y \in W$ and $v \in W_l$ for some $l \subset S$ with W_l finite.

 $v \in Z(w)$ is *maximal in w* if it is not a proper subword of any other $v' \in Z(w)$ for any reduced of w of the form x.v.y.

$$Z = Z(W) := \bigcup_{w \in W} Z(w), \ \mathcal{D}_f := \mathcal{D} \cap Z, \ \mathcal{D}_f^{\bullet} = \mathcal{D}_f \setminus S.$$

We will call w = x.v.y rigid at v if $v \in D_f$, v is maximal in w, and for every reduced expression w = x'.v'.y' with $v' \in D_f$ and $a(v') \ge a(v)$, we have l(x) = l(x') and l(y) = l(y'):

Conjectures

Our goal is to detect an *inductive structure* inside \mathcal{D} and to describe an *explicit relationship* between the elements of \mathcal{D} and equivalence relations on W which define its partition into cells. To this end we state two conjectures:

Conjectures

Our goal is to detect an *inductive structure* inside \mathcal{D} and to describe an *explicit relationship* between the elements of \mathcal{D} and equivalence relations on W which define its partition into cells. To this end we state two conjectures:

Conjecture 1. ("distinguished involutions") Let $v = x.v_1.x^{-1} \in D$ with $v_1 \in D_f^{\bullet}$ and $a(v) = a(v_1)$, and let v' = s.v.s with $s \in S$. Then if sxv_1 is rigid at v_1 , we have $v' \in D$.

(日)、(型)、(E)、(E)、(E)、(Q)

Conjectures

Our goal is to detect an *inductive structure* inside \mathcal{D} and to describe an *explicit relationship* between the elements of \mathcal{D} and equivalence relations on W which define its partition into cells. To this end we state two conjectures:

Conjecture 1. ("distinguished involutions") Let $v = x.v_1.x^{-1} \in D$ with $v_1 \in D_f^{\bullet}$ and $a(v) = a(v_1)$, and let v' = s.v.s with $s \in S$. Then if sxv_1 is rigid at v_1 , we have $v' \in D$.

Conjecture 2. ("basic equivalences") Let $w = x.v_0$ with $v_0 \in D_f$ maximal in w. Let $u = x.v_1.x^{-1} \in D$ satisfy $a(u) \le a(v_0)$, and let $w' = w.u.v_{01}$ where v_{01} is a product of a(u) - 1 simple reflections from $\mathcal{R}(v_0)$. Assume a(w') = a(w) and v''_0xv_1 is rigid at v_1 for every v''_0 such that $v_0 = v'_0.v''_0$, $l(v''_0) = l(v_{01})$. Then $\mu(w, w') \neq 0$ and $w \sim_R w'$.

Let W be the affine group of type A_4 :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let W be the affine group of type A₄:

 $v_1 = s_4 s_0 s_4 s_2$ is the longest element of W_I with $I = \{s_0, s_2, s_4\}$, so $v_1 \in \mathcal{D}_f$.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Let W be the affine group of type A_4 :

 $v_1 = s_4 s_0 s_4 s_2$ is the longest element of W_I with $I = \{s_0, s_2, s_4\}$, so $v_1 \in \mathcal{D}_f$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Can check by direct computation that $s_1 s_4 s_0 s_4 s_2 s_1, s_3 s_1 s_4 s_0 s_4 s_2 s_1 s_3, s_2 s_3 s_1 s_4 s_0 s_4 s_2 s_1 s_3 s_2 \in \mathcal{D}.$

However, $s_0 s_2 s_3 s_1 s_4 s_0 s_4 s_2 s_1 s_3 s_2 s_0 \notin \mathcal{D}$ (!)

Let W be the affine group of type A_4 :

 $v_1 = s_4 s_0 s_4 s_2$ is the longest element of W_I with $I = \{s_0, s_2, s_4\}$, so $v_1 \in \mathcal{D}_f$.

Can check by direct computation that $s_1 s_4 s_0 s_4 s_2 s_1, s_3 s_1 s_4 s_0 s_4 s_2 s_1 s_3, s_2 s_3 s_1 s_4 s_0 s_4 s_2 s_1 s_3 s_2 \in \mathcal{D}.$

However, $s_0 s_2 s_3 s_1 s_4 s_0 s_4 s_2 s_1 s_3 s_2 s_0 \notin \mathcal{D}$ (!)

This is because $s_0 s_2 s_3 s_1 s_4 s_0 s_4 s_2$ is not rigid at v_1 :

 $s_0s_2s_3s_1s_4s_0s_4s_2 = s_2s_0s_3s_1s_0s_4s_0s_2 = s_2s_3s_0s_1s_0s_4s_0s_2,$ where $s_3s_0s_1s_0 \in \mathcal{D}_f$ and $a(s_3s_0s_1s_0) = a(v_1).$

Theorem 1. (*MB-Gunnells*) If Conjectures 1, 2, and standard conjectures^{*} are true then

- (1) The set \mathcal{D} of distinguished involutions consists of the union of $v \in \mathcal{D}_f$ and the elements of W which are obtained from them using Conjecture 1.
- (2) Relations described in Conjecture 2 determine the partition of W into right cells, i.e. x ~_R y in W if and only if there exists a sequence x = x₀, x₁, ..., x_n = y in W such that {x_{i-1}, x_i} = {v, v'} as in the conjecture for every i = 1,..., n.

Theorem 1. (*MB-Gunnells*) If Conjectures 1, 2, and standard conjectures^{*} are true then

- (1) The set \mathcal{D} of distinguished involutions consists of the union of $v \in \mathcal{D}_f$ and the elements of W which are obtained from them using Conjecture 1.
- (2) Relations described in Conjecture 2 determine the partition of W into right cells, i.e. x ~_R y in W if and only if there exists a sequence x = x₀, x₁, ..., x_n = y in W such that {x_{i-1}, x_i} = {v, v'} as in the conjecture for every i = 1,..., n.

(日)、(型)、(E)、(E)、(E)、(Q)

- *: Positivity (Kazhdan-Lusztig'79, Lusztig'85);
 - Function a is given by a(w) = max_{v∈Z(w)∩D_f} a(v) (cf. Lusztig'03).

Theorem 2. (*MB-Gunnells*) Let $v = x.v_1.x^{-1} \in \mathcal{D}$ with $v_1 \in \mathcal{D}_f^{\bullet}$, a(v) = a(vs) and $\mathcal{L}(vs) \setminus \mathcal{R}(vs) \neq \emptyset$; and let v' = s.v.s. Then if v' is rigid at v_1 , we have $v' \in \mathcal{D}$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

Theorem 2. (*MB-Gunnells*) Let $v = x.v_1.x^{-1} \in \mathcal{D}$ with $v_1 \in \mathcal{D}_f^{\bullet}$, a(v) = a(vs) and $\mathcal{L}(vs) \setminus \mathcal{R}(vs) \neq \emptyset$; and let v' = s.v.s. Then if v' is rigid at v_1 , we have $v' \in \mathcal{D}$.

Theorem 3. (*MB-Gunnells*) Let $w = x \cdot v_0 = t_n \dots t_1 \cdot s_1 \dots s_1$ with $v_0 = s_1 \dots s_1 \in \mathcal{D}_f$ is maximal in w and is the longest element of some W_I , and $a(w) = a(v_0)$; $u = y \cdot u_0 \cdot y^{-1} \in \mathcal{D}$ with $u_0 \in \mathcal{D}_f$ such that $a(u) = a(u_0) = l$; and $w' = w.u.v_{01}$ with $v_{01} = s_1 \dots s_{l-1}$ has a(w') = a(w) and $\mathcal{R}(w') \subseteq \mathcal{R}(w)$. Moreover, assume (1) For any $v_i = t_i \dots t_1 v_0 t_1 \dots t_i$, $j = 0, \dots, n-1$ and $t = t_{i+1}$ or $t = t_{i-1}$ if $t_{i-1} \notin \mathcal{R}(v_i)$, we have $a(v_i t) = a(v_i)$, $\mathcal{L}(v_i t) \setminus \mathcal{R}(v_i t) \neq \emptyset$ and $tv_i t$ is rigid at v_0 . (2) For any $u_i = s_{i-1} \dots s_1 u s_1 \dots s_{i-1}$, $j = 1, \dots, l-1$ with $u_1 = u$, we have $a(u_i s_i) = a(u_i)$, $\mathcal{L}(u_i s_i) \setminus \mathcal{R}(u_i s_i) \neq \emptyset$ and $s_i u_i s_i$ is rigid at u_0 ; Then $\mu(w, w') \neq 0$ and $w \sim_R w'$.

Proof of Thm. 2 consists of two steps:

(a) show that $\delta(vs)(= \deg(P_{e,vs})) = \delta(v);$

(b) show that $\delta(svs) = \delta(vs) + 1$.

Proof of Thm. 2 consists of two steps:

(a) show that
$$\delta(vs)(= \deg(P_{e,vs})) = \delta(v);$$

(b) show that
$$\delta(svs) = \delta(vs) + 1$$
.

Proof of (a) is based on (unpublished) correspondence of Springer and Lusztig.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Proof of Thm. 2 consists of two steps:

- (a) show that $\delta(vs)(=\deg(P_{e,vs})) = \delta(v);$
- (b) show that $\delta(svs) = \delta(vs) + 1$.

Proof of (a) is based on (unpublished) correspondence of Springer and Lusztig.

Proof of (b) uses Kazhdan-Lusztig recursion for $P_{x,w}$, $x \le w$:

$$P_{x,w} = q^{1-c} P_{sx,v} + q^c P_{x,v} - \sum_{\substack{x \le z \prec v \\ sz < z}} \mu(z,v) q_z^{-1/2} q_v^{1/2} q^{1/2} P_{x,z},$$

where w = sv, c = 1 if sy < y, c = 0 if sy > y and $P_{x,v} = 0$ unless $x \le v$. It is here, where we need the *extra condition*!

Proof of Thm. 2 consists of two steps:

- (a) show that $\delta(vs)(=\deg(P_{e,vs})) = \delta(v);$
- (b) show that $\delta(svs) = \delta(vs) + 1$.

Proof of (a) is based on (unpublished) correspondence of Springer and Lusztig.

Proof of (b) uses Kazhdan-Lusztig recursion for $P_{x,w}$, $x \le w$:

$$P_{x,w} = q^{1-c}P_{sx,v} + q^{c}P_{x,v} - \sum_{\substack{x \leq z \prec v \ sz < z}} \mu(z,v)q_{z}^{-1/2}q_{v}^{1/2}q^{1/2}P_{x,z},$$

where w = sv, c = 1 if sy < y, c = 0 if sy > y and $P_{x,v} = 0$ unless $x \le v$. It is here, where we need the *extra condition!*

Proof of Thm. 3 uses Thm. 2 and the equality

$$P_{v_0, v_0 u v_{01}} = P_{e, v_0 u v_{01}}$$

(Kazhdan-Lusztig).

Applications

Application 1. Cells in Coxeter groups with with equal exponents, e.g. \widetilde{A}_2 , right-angled Coxeter groups (MB'04), etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Applications

Application 1. Cells in Coxeter groups with with equal exponents, e.g. \widetilde{A}_2 , right-angled Coxeter groups (MB'04), etc.

Application 2. If there exist $s, t_1, t_2 \in S$ such that $m(s, t_1) = m(s, t_2) = \infty$ and $m(t_1, t_2)$ is finite, then W has infinitely many one-sided cells.

Applications

Application 1. Cells in Coxeter groups with with equal exponents, e.g. \widetilde{A}_2 , right-angled Coxeter groups (MB'04), etc.

Application 2. If there exist $s, t_1, t_2 \in S$ such that $m(s, t_1) = m(s, t_2) = \infty$ and $m(t_1, t_2)$ is finite, then W has infinitely many one-sided cells.

Rem. Application 2 does not cover the Hurwitz group (2,3,7).

Some references

D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, *Invent. Math.* **53** (1979), 165–184.

P. Gunnells, Cells in Coxeter groups, *Notices of the AMS* **53** (2006), 528–535.

M. Belolipetsky, Cells and representations of right-angled Coxeter groups, *Selecta Math.*, *N. S.* **10** (2004), 325–339.

M. Belolipetsky, P. Gunnells, Cells in Coxeter groups, preprint.