Cells in Coxeter Groups

Mikhail Belolipetsky, Durham University

Belfast August, 2009

Intro

Let W be a Coxeter group with generating set S and defining relations of the form $(s t)^{m_{s t}}=1$ for pairs of generators $s, t \in S$. In 1979 paper Kazhdan and Lusztig have defined a partition of W into various classes of subsets called cells.

Intro

Let W be a Coxeter group with generating set S and defining relations of the form $(s t)^{m_{s t}}=1$ for pairs of generators $s, t \in S$. In 1979 paper Kazhdan and Lusztig have defined a partition of W into various classes of subsets called cells.

Cells can be visualized via the action of W on its Tits cone:

The cells of $\widetilde{\mathrm{A}}_{2}, \widetilde{\mathrm{C}}_{2}$, and $\widetilde{\mathrm{A}}_{3}$

Intro

For the class of crystallographic Coxeter groups, which includes Weyl groups and affine Weyl groups, cells have connections to many areas of mathematics

Intro

For the class of crystallographic Coxeter groups, which includes Weyl groups and affine Weyl groups, cells have connections to many areas of mathematics, e.g.:

- singularities of Schubert varieties (Kazhdan-Lusztig, 79);
- representations of p-adic groups (Lusztig, 83);
- characters of finite groups of Lie type (Lusztig, 84);
- the geometry of nilpotent orbits in simple complex Lie algebras
(Lusztig, 89; Bezrukavnikov-Ostrik, 04).

Intro

For the class of crystallographic Coxeter groups, which includes Weyl groups and affine Weyl groups, cells have connections to many areas of mathematics, e.g.:

- singularities of Schubert varieties (Kazhdan-Lusztig, 79);
- representations of p-adic groups (Lusztig, 83);
- characters of finite groups of Lie type (Lusztig, 84);
- the geometry of nilpotent orbits in simple complex Lie algebras (Lusztig, 89; Bezrukavnikov-Ostrik, 04).

To illustrate the last we mention an important result of Lusztig: If W is the affine Weyl group attached to the simple complex algebraic group G with Lie algebra \mathfrak{g}, then the two-sided cells are in bijection with the set $\mathcal{O}\left({ }^{L} \mathfrak{g}\right)$ of nilpotent orbits of the group dual to G.

Definitions

(W, S) is a Coxeter system \mathcal{H} is the Hecke algebra of W over $\mathcal{A}=\mathbb{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$

Definitions

(W, S) is a Coxeter system
\mathcal{H} is the Hecke algebra of W over $\mathcal{A}=\mathbb{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$
$\left(T_{w}\right)_{w \in W}$ is the standard basis of \mathcal{H} :

$$
\begin{aligned}
& T_{x} T_{y}=T_{x y} \text {, if } I(x y)=I(x)+I(y) ; \\
& T_{s}^{2}=q+(q-1) T_{s}, \text { if } s \in S
\end{aligned}
$$

Definitions

(W, S) is a Coxeter system
\mathcal{H} is the Hecke algebra of W over $\mathcal{A}=\mathbb{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$
$\left(T_{w}\right)_{w \in W}$ is the standard basis of \mathcal{H} :

$$
\begin{aligned}
& T_{x} T_{y}=T_{x y}, \text { if } I(x y)=I(x)+I(y) ; \\
& T_{s}^{2}=q+(q-1) T_{s}, \text { if } s \in S
\end{aligned}
$$

$\left(C_{w}\right)_{w \in W}$ is the Kazhdan-Lusztig basis:

$$
\begin{aligned}
& C_{w}=\sum_{y \leq w}(-1)^{I(w)-l(y)} q^{I(w) / 2-I(y)} P_{y, w}\left(q^{-1}\right) T_{y}, \text { where } \\
& P_{y, w}=\mu(y, w) q^{\frac{1}{2}(I(w)-I(y)-1)}+\text { lower degree terms } \\
& \quad \text { are the Kazhdan-Lusztig polynomials }
\end{aligned}
$$

Definitions

(W, S) is a Coxeter system
\mathcal{H} is the Hecke algebra of W over $\mathcal{A}=\mathbb{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$
$\left(T_{w}\right)_{w \in W}$ is the standard basis of \mathcal{H} :

$$
\begin{aligned}
& T_{x} T_{y}=T_{x y} \text {, if } I(x y)=I(x)+I(y) ; \\
& T_{s}^{2}=q+(q-1) T_{s}, \text { if } s \in S
\end{aligned}
$$

$\left(C_{w}\right)_{w \in W}$ is the Kazhdan-Lusztig basis:

$$
\begin{aligned}
& C_{w}=\sum_{y \leq w}(-1)^{\prime(w)-l(y)} q^{\prime(w) / 2-l(y)} P_{y, w}\left(q^{-1}\right) T_{y} \text {, where } \\
& P_{y, w}=\mu(y, w) q^{\frac{1}{2} l((w)-l(y)-1)}+\text { lower degree terms } \\
& \text { are the Kazhdan-Lusztig polynomials }
\end{aligned}
$$

$P_{y, w}$ define preorders $\leq_{L}, \leq_{R}, \leq_{L R}$ and the associated equivalence relations $\sim_{L}, \sim_{R}, \sim_{L R}$ on W. The equivalence classes are called left cells (resp. right cells, resp. two-sided cells).

Definitions

Multiplication:

$$
C_{x} C_{y}=\sum_{z} h_{x, y, z} C_{z}, \quad h_{x, y, z} \in \mathcal{A}
$$

$a(z)$ is the smallest integer such that

$$
q^{-a(z) / 2} h_{x, y, z} \in \mathcal{A}^{-}=\mathbb{Z}\left[q^{-1 / 2}\right] \text { for all } x, y \in W .
$$

Definitions

Multiplication:

$$
C_{x} C_{y}=\sum_{z} h_{x, y, z} C_{z}, \quad h_{x, y, z} \in \mathcal{A}
$$

$a(z)$ is the smallest integer such that
$q^{-a(z) / 2} h_{x, y, z} \in \mathcal{A}^{-}=\mathbb{Z}\left[q^{-1 / 2}\right]$ for all $x, y \in W$.
If the function a is bounded on W, then for every $x, y, z \in W$

$$
h_{x, y, z}=\gamma_{x, y, z} q^{\frac{\partial(z)}{2}}+\delta_{x, y, z} q^{\frac{\partial(z)-1}{2}}+\text { lower degree terms. }
$$

Definitions

Multiplication:

$$
C_{x} C_{y}=\sum_{z} h_{x, y, z} C_{z}, \quad h_{x, y, z} \in \mathcal{A}
$$

$a(z)$ is the smallest integer such that
$q^{-a(z) / 2} h_{x, y, z} \in \mathcal{A}^{-}=\mathbb{Z}\left[q^{-1 / 2}\right]$ for all $x, y \in W$.
If the function a is bounded on W, then for every $x, y, z \in W$

$$
h_{x, y, z}=\gamma_{x, y, z} q^{\frac{\partial(z)}{2}}+\delta_{x, y, z} q^{\frac{\partial(z)-1}{2}}+\text { lower degree terms. }
$$

$\mathcal{D}_{i}:=\{z \in W \mid I(z)-a(z)-2 \delta(z)=i\}$, where $\delta(z)=\operatorname{deg}\left(P_{e, z}\right)$.
The set $\mathcal{D}=\mathcal{D}_{0}$ consists of distinguished involutions of W.
Every left cell of W contains a unique $d \in \mathcal{D}$ (Lusztig, 87).

Pictures

The cells of $\widetilde{\mathrm{G}}_{2}$ (Lusztig, 85)

Pictures

The cells of the modular group $(2,3, \infty)$ (Gunnells)

Pictures

The cells of the group $(2,2,2,3)$ (Gunnells)

Pictures

The cells of the Hurwitz group $(2,3,7)$ (Gunnells)

Lego game

A left cell (green) of the Hurwitz group

Definitions

Let $w \in W . Z(w)$ denotes the set of all $v \in W$ such that $w=x . v . y$ for some $x, y \in W$ and $v \in W_{l}$ for some $I \subset S$ with W_{l} finite.

Definitions

Let $w \in W . Z(w)$ denotes the set of all $v \in W$ such that $w=x . v . y$ for some $x, y \in W$ and $v \in W_{l}$ for some $I \subset S$ with W_{l} finite.
$v \in Z(w)$ is maximal in w if it is not a proper subword of any other $v^{\prime} \in Z(w)$ for any reduced of w of the form x.v.y.

Definitions

Let $w \in W . Z(w)$ denotes the set of all $v \in W$ such that $w=x . v . y$ for some $x, y \in W$ and $v \in W_{l}$ for some $I \subset S$ with W_{l} finite.
$v \in Z(w)$ is maximal in w if it is not a proper subword of any other $v^{\prime} \in Z(w)$ for any reduced of w of the form x.v.y.
$Z=Z(W):=\bigcup_{w \in W} Z(w), \mathcal{D}_{f}:=\mathcal{D} \cap Z, \mathcal{D}_{f}^{\bullet}=\mathcal{D}_{f} \backslash S$.

Definitions

Let $w \in W . Z(w)$ denotes the set of all $v \in W$ such that $w=x . v . y$ for some $x, y \in W$ and $v \in W_{l}$ for some $I \subset S$ with W_{l} finite.
$v \in Z(w)$ is maximal in w if it is not a proper subword of any other $v^{\prime} \in Z(w)$ for any reduced of w of the form x.v.y.
$Z=Z(W):=\bigcup_{w \in W} Z(w), \mathcal{D}_{f}:=\mathcal{D} \cap Z, \mathcal{D}_{f}^{\bullet}=\mathcal{D}_{f} \backslash S$.
We will call $w=x . v . y$ rigid at v if $v \in \mathcal{D}_{f}, v$ is maximal in w, and for every reduced expression $w=x^{\prime} \cdot v^{\prime} \cdot y^{\prime}$ with $v^{\prime} \in \mathcal{D}_{f}$ and $a\left(v^{\prime}\right) \geq a(v)$, we have $I(x)=I\left(x^{\prime}\right)$ and $I(y)=I\left(y^{\prime}\right)$:

Definitions

Let $w \in W . Z(w)$ denotes the set of all $v \in W$ such that $w=x . v . y$ for some $x, y \in W$ and $v \in W_{l}$ for some $I \subset S$ with W_{l} finite.
$v \in Z(w)$ is maximal in w if it is not a proper subword of any other $v^{\prime} \in Z(w)$ for any reduced of w of the form x.v.y.
$Z=Z(W):=\bigcup_{w \in W} Z(w), \mathcal{D}_{f}:=\mathcal{D} \cap Z, \mathcal{D}_{f}^{\bullet}=\mathcal{D}_{f} \backslash S$.
We will call $w=x . v . y$ rigid at v if $v \in \mathcal{D}_{f}, v$ is maximal in w, and for every reduced expression $w=x^{\prime} \cdot v^{\prime} \cdot y^{\prime}$ with $v^{\prime} \in \mathcal{D}_{f}$ and $a\left(v^{\prime}\right) \geq a(v)$, we have $I(x)=I\left(x^{\prime}\right)$ and $I(y)=I\left(y^{\prime}\right)$:

Definitions

Let $w \in W . Z(w)$ denotes the set of all $v \in W$ such that $w=x . v . y$ for some $x, y \in W$ and $v \in W_{l}$ for some $I \subset S$ with W_{l} finite.
$v \in Z(w)$ is maximal in w if it is not a proper subword of any other $v^{\prime} \in Z(w)$ for any reduced of w of the form x.v.y.
$Z=Z(W):=\bigcup_{w \in W} Z(w), \mathcal{D}_{f}:=\mathcal{D} \cap Z, \mathcal{D}_{f}^{\bullet}=\mathcal{D}_{f} \backslash S$.
We will call $w=x . v . y$ rigid at v if $v \in \mathcal{D}_{f}, v$ is maximal in w, and for every reduced expression $w=x^{\prime} \cdot v^{\prime} \cdot y^{\prime}$ with $v^{\prime} \in \mathcal{D}_{f}$ and $a\left(v^{\prime}\right) \geq a(v)$, we have $I(x)=I\left(x^{\prime}\right)$ and $I(y)=I\left(y^{\prime}\right)$:

Conjectures

Our goal is to detect an inductive structure inside \mathcal{D} and to describe an explicit relationship between the elements of \mathcal{D} and equivalence relations on W which define its partition into cells. To this end we state two conjectures:

Conjectures

Our goal is to detect an inductive structure inside \mathcal{D} and to describe an explicit relationship between the elements of \mathcal{D} and equivalence relations on W which define its partition into cells. To this end we state two conjectures:

Conjecture 1. ("distinguished involutions") Let $v=x \cdot v_{1} \cdot x^{-1} \in \mathcal{D}$ with $v_{1} \in \mathcal{D}_{f}^{\bullet}$ and $a(v)=a\left(v_{1}\right)$, and let $v^{\prime}=$ s.v.s with $s \in S$.
Then if $s x v_{1}$ is rigid at v_{1}, we have $v^{\prime} \in \mathcal{D}$.

Conjectures

Our goal is to detect an inductive structure inside \mathcal{D} and to describe an explicit relationship between the elements of \mathcal{D} and equivalence relations on W which define its partition into cells. To this end we state two conjectures:

Conjecture 1. ("distinguished involutions") Let $v=x \cdot v_{1} \cdot x^{-1} \in \mathcal{D}$ with $v_{1} \in \mathcal{D}_{f}^{\bullet}$ and $a(v)=a\left(v_{1}\right)$, and let $v^{\prime}=$ s.v.s with $s \in S$.
Then if $s x v_{1}$ is rigid at v_{1}, we have $v^{\prime} \in \mathcal{D}$.

Conjecture 2. ("basic equivalences") Let $w=x . v_{0}$ with $v_{0} \in \mathcal{D}_{f}$ maximal in w. Let $u=x \cdot v_{1} \cdot x^{-1} \in \mathcal{D}$ satisfy $a(u) \leq a\left(v_{0}\right)$, and let $w^{\prime}=w \cdot u \cdot v_{01}$ where v_{01} is a product of a(u)-1 simple reflections from $\mathcal{R}\left(v_{0}\right)$. Assume $a\left(w^{\prime}\right)=a(w)$ and $v_{0}^{\prime \prime} x v_{1}$ is rigid at v_{1} for every $v_{0}^{\prime \prime}$ such that $v_{0}=v_{0}^{\prime} \cdot v_{0}^{\prime \prime}, I\left(v_{0}^{\prime \prime}\right)=I\left(v_{01}\right)$. Then $\mu\left(w, w^{\prime}\right) \neq 0$ and $w \sim_{R} w^{\prime}$.

Example

Let W be the affine group of type A_{4} :

Example

Let W be the affine group of type A_{4} :

$v_{1}=s_{4} s_{0} s_{4} s_{2}$ is the longest element of W_{I} with $I=\left\{s_{0}, s_{2}, s_{4}\right\}$, so $v_{1} \in \mathcal{D}_{f}$.

Example

Let W be the affine group of type A_{4} :

$v_{1}=s_{4} s_{0} s_{4} s_{2}$ is the longest element of W_{I} with $I=\left\{s_{0}, s_{2}, s_{4}\right\}$, so $v_{1} \in \mathcal{D}_{f}$.

Can check by direct computation that $s_{1} s_{4} s_{0} s_{4} s_{2} s_{1}, s_{3} s_{1} s_{4} s_{0} s_{4} s_{2} s_{1} s_{3}, s_{2} s_{3} s_{1} s_{4} s_{0} s_{4} s_{2} s_{1} s_{3} s_{2} \in \mathcal{D}$.

However, $s_{0} s_{2} s_{3} s_{1} s_{4} s_{0} s_{4} s_{2} s_{1} s_{3} s_{2} s_{0} \notin \mathcal{D}$ (!)

Example

Let W be the affine group of type A_{4} :

$v_{1}=s_{4} s_{0} s_{4} s_{2}$ is the longest element of W_{I} with $I=\left\{s_{0}, s_{2}, s_{4}\right\}$, so $v_{1} \in \mathcal{D}_{f}$.

Can check by direct computation that $s_{1} s_{4} s_{0} s_{4} s_{2} s_{1}, s_{3} s_{1} s_{4} s_{0} s_{4} s_{2} s_{1} s_{3}, s_{2} s_{3} s_{1} s_{4} s_{0} s_{4} s_{2} s_{1} s_{3} s_{2} \in \mathcal{D}$.

However, $s_{0} s_{2} s_{3} s_{1} s_{4} s_{0} s_{4} s_{2} s_{1} s_{3} s_{2} s_{0} \notin \mathcal{D}$ (!)
This is because $s_{0} s_{2} s_{3} s_{1} s_{4} s_{0} s_{4} s_{2}$ is not rigid at v_{1} :

$$
s_{0} s_{2} s_{3} s_{1} s_{4} s_{0} s_{4} s_{2}=s_{2} s_{0} s_{3} s_{1} s_{0} s_{4} s_{0} s_{2}=s_{2} s_{3} s_{0} s_{1} s_{0} s_{4} s_{0} s_{2}
$$

where $s_{3} s_{0} s_{1} s_{0} \in \mathcal{D}_{f}$ and $a\left(s_{3} s_{0} s_{1} s_{0}\right)=a\left(v_{1}\right)$.

Results

Theorem 1. (MB-Gunnells) If Conjectures 1, 2, and standard conjectures* are true then
(1) The set \mathcal{D} of distinguished involutions consists of the union of $v \in \mathcal{D}_{f}$ and the elements of W which are obtained from them using Conjecture 1.
(2) Relations described in Conjecture 2 determine the partition of W into right cells, i.e. $x \sim_{R} y$ in W if and only if there exists a sequence $x=x_{0}, x_{1}, \ldots, x_{n}=y$ in W such that $\left\{x_{i-1}, x_{i}\right\}=\left\{v, v^{\prime}\right\}$ as in the conjecture for every $i=1, \ldots, n$.

Results

Theorem 1. (MB-Gunnells) If Conjectures 1, 2, and standard conjectures* are true then
(1) The set \mathcal{D} of distinguished involutions consists of the union of $v \in \mathcal{D}_{f}$ and the elements of W which are obtained from them using Conjecture 1.
(2) Relations described in Conjecture 2 determine the partition of W into right cells, i.e. $x \sim_{R} y$ in W if and only if there exists a sequence $x=x_{0}, x_{1}, \ldots, x_{n}=y$ in W such that $\left\{x_{i-1}, x_{i}\right\}=\left\{v, v^{\prime}\right\}$ as in the conjecture for every $i=1, \ldots, n$.
*: • Positivity (Kazhdan-Lusztig'79, Lusztig'85);

- Function a is given by $a(w)=\max _{v \in Z(w) \cap \mathcal{D}_{f}} a(v)$ (cf. Lusztig'03).

Results

Theorem 2. (MB-Gunnells) Let $v=x \cdot v_{1} \cdot x^{-1} \in \mathcal{D}$ with $v_{1} \in \mathcal{D}_{f}^{\circ}$, $a(v)=a(v s)$ and $\mathcal{L}(v s) \backslash \mathcal{R}(v s) \neq \emptyset$; and let $v^{\prime}=s . v . s$. Then if v^{\prime} is rigid at v_{1}, we have $v^{\prime} \in \mathcal{D}$.

Results

Theorem 2. (MB-Gunnells) Let $v=x \cdot v_{1} \cdot x^{-1} \in \mathcal{D}$ with $v_{1} \in \mathcal{D}_{f}^{\bullet}$, $a(v)=a(v s)$ and $\mathcal{L}(v s) \backslash \mathcal{R}(v s) \neq \emptyset$; and let $v^{\prime}=s . v . s$. Then if v^{\prime} is rigid at v_{1}, we have $v^{\prime} \in \mathcal{D}$.

Theorem 3. (MB-Gunnells) Let $w=x \cdot v_{0}=t_{n} \ldots t_{1} \cdot s_{l} \ldots s_{1}$ with $v_{0}=s_{l} \ldots s_{1} \in \mathcal{D}_{f}$ is maximal in w and is the longest element of some W_{1}, and $a(w)=a\left(v_{0}\right) ; u=y \cdot u_{0} \cdot y^{-1} \in \mathcal{D}$ with $u_{0} \in \mathcal{D}_{f}$ such that $a(u)=a\left(u_{0}\right)=I$; and $w^{\prime}=w . u \cdot v_{01}$ with $v_{01}=s_{1} \ldots s_{I-1}$ has $a\left(w^{\prime}\right)=a(w)$ and $\mathcal{R}\left(w^{\prime}\right) \subsetneq \mathcal{R}(w)$. Moreover, assume
(1) For any $v_{j}=t_{j} \ldots t_{1} v_{0} t_{1} \ldots t_{j}, j=0, \ldots, n-1$ and $t=t_{j+1}$
or $t=t_{j-1}$ if $t_{j-1} \notin \mathcal{R}\left(v_{j}\right)$, we have $a\left(v_{j} t\right)=a\left(v_{j}\right)$, $\mathcal{L}\left(v_{j} t\right) \backslash \mathcal{R}\left(v_{j} t\right) \neq \emptyset$ and $t v_{j} t$ is rigid at v_{0}.
(2) For any $u_{j}=s_{j-1} \ldots s_{1} u s_{1} \ldots s_{j-1}, j=1, \ldots, I-1$ with $u_{1}=u$, we have $a\left(u_{j} s_{j}\right)=a\left(u_{j}\right), \mathcal{L}\left(u_{j} s_{j}\right) \backslash \mathcal{R}\left(u_{j} s_{j}\right) \neq \emptyset$ and $s_{j} u_{j} s_{j}$ is rigid at u_{0};
Then $\mu\left(w, w^{\prime}\right) \neq 0$ and $w \sim_{R} w^{\prime}$.

Results

Proof of Thm. 2 consists of two steps:
(a) show that $\delta(v s)\left(=\operatorname{deg}\left(P_{e, v s}\right)\right)=\delta(v)$;
(b) show that $\delta(s v s)=\delta(v s)+1$.

Results

Proof of Thm. 2 consists of two steps:
(a) show that $\delta(v s)\left(=\operatorname{deg}\left(P_{e, v s}\right)\right)=\delta(v)$;
(b) show that $\delta(s v s)=\delta(v s)+1$.

Proof of (a) is based on (unpublished) correspondence of Springer and Lusztig.

Results

Proof of Thm. 2 consists of two steps:
(a) show that $\delta(v s)\left(=\operatorname{deg}\left(P_{e, v s}\right)\right)=\delta(v)$;
(b) show that $\delta(s v s)=\delta(v s)+1$.

Proof of (a) is based on (unpublished) correspondence of Springer and Lusztig.
Proof of (b) uses Kazhdan-Lusztig recursion for $P_{x, w}, x \leq w$:

$$
P_{x, w}=q^{1-c} P_{s x, v}+q^{c} P_{x, v}-\sum_{\substack{x \leq z \prec v \\ s z<z}} \mu(z, v) q_{z}^{-1 / 2} q_{v}^{1 / 2} q^{1 / 2} P_{x, z}
$$

where $w=s v, c=1$ if sy $<y, c=0$ if sy $>y$ and $P_{x, v}=0$ unless $x \leq v$. It is here, where we need the extra condition!

Results

Proof of Thm. 2 consists of two steps:
(a) show that $\delta(v s)\left(=\operatorname{deg}\left(P_{e, v s}\right)\right)=\delta(v)$;
(b) show that $\delta(s v s)=\delta(v s)+1$.

Proof of (a) is based on (unpublished) correspondence of Springer and Lusztig.

Proof of (b) uses Kazhdan-Lusztig recursion for $P_{x, w}, x \leq w$:

$$
P_{x, w}=q^{1-c} P_{s x, v}+q^{c} P_{x, v}-\sum_{\substack{x \leq z<v \\ s z<z}} \mu(z, v) q_{z}^{-1 / 2} q_{v}^{1 / 2} q^{1 / 2} P_{x, z},
$$

where $w=s v, c=1$ if sy $<y, c=0$ if sy $>y$ and $P_{x, v}=0$ unless $x \leq v$. It is here, where we need the extra condition!

Proof of Thm. 3 uses Thm. 2 and the equality

$$
P_{v_{0}, v_{0} u v_{01}}=P_{e, v_{0} u v_{01}}
$$

(Kazhdan-Lusztig).

Applications

Application 1. Cells in Coxeter groups with with equal exponents, e.g. \widetilde{A}_{2}, right-angled Coxeter groups (MB'04), etc.

Applications

Application 1. Cells in Coxeter groups with with equal exponents, e.g. \widetilde{A}_{2}, right-angled Coxeter groups (MB'04), etc.

Application 2. If there exist $s, t_{1}, t_{2} \in S$ such that $m\left(s, t_{1}\right)=m\left(s, t_{2}\right)=\infty$ and $m\left(t_{1}, t_{2}\right)$ is finite, then W has infinitely many one-sided cells.

Applications

Application 1. Cells in Coxeter groups with with equal exponents, e.g. \widetilde{A}_{2}, right-angled Coxeter groups (MB'04), etc.

Application 2. If there exist $s, t_{1}, t_{2} \in S$ such that $m\left(s, t_{1}\right)=m\left(s, t_{2}\right)=\infty$ and $m\left(t_{1}, t_{2}\right)$ is finite, then W has infinitely many one-sided cells.

Rem. Application 2 does not cover the Hurwitz group $(2,3,7)$.

Some references

D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
P. Gunnells, Cells in Coxeter groups, Notices of the AMS 53 (2006), 528-535.
M. Belolipetsky, Cells and representations of right-angled Coxeter groups, Selecta Math., N. S. 10 (2004), 325-339.
M. Belolipetsky, P. Gunnells, Cells in Coxeter groups, preprint.

