The quadratic Euler characteristic of a smooth projective same-degree complete intersection

Anna Viergever

Leibniz Universität Hannover

27.10.2023

Table of contents

- 1 Quadratic Euler characteristics
- 2 Hypersurface case
- 3 The complete intersection case
- 4 Two generalized Fermat curves

Table of Contents

0000000

- 1 Quadratic Euler characteristics

The Grothendieck-Witt ring

Notation

Fix a field k s.t. char(k) \neq 2.

Definition

The Grothendieck-Witt ring GW(k) of k is the group completion of the monoid of isometry classes of nondegenerate quadratic forms.

GW(k) is generated by $\langle a \rangle : x \mapsto ax^2$ for $a \in k^*$ modulo

- $\langle a \rangle \langle b \rangle = \langle ab \rangle$ for $a, b \in k^*$,
- $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for $a, b, a + b \in k^*$,
- $| \langle ab^2 \rangle = \langle a \rangle$ for all $a, b \in k^*$.
- $\langle a \rangle + \langle -a \rangle = H$ for any $a \in k^*$. Here, $H = \langle 1 \rangle + \langle -1 \rangle$ is the hyperbolic form.

Example

 $\mathsf{GW}(\mathbb{C}) \cong \mathbb{Z}$ via the rank. The same holds for other algebraically closed fields k.

Example

 $\mathsf{GW}(\mathbb{R}) \cong \mathbb{Z}[C_2]$ where C_2 is a cyclic group of order two.

Example

 $\mathsf{GW}(\mathbb{F})\cong\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$ for \mathbb{F} a finite field, $\mathsf{char}(\mathbb{F})\neq 2$.

Motivic stable homotopy category

Dold-Puppe

0000000

Can define a categorical Euler characteristic for any strongly dualizable object of a symmetric monoidal category, lives in endomorphism ring of the unit.

Morel and Voevodsky: motivic stable homotopy category SH(k).

Some facts:

- SH(k) is symmetric monoidal,
- \blacksquare X smooth projective scheme/k has a strongly dualizable image in SH(k),
- Morel: $\operatorname{End}(1_{\operatorname{SH}(k)}) \cong \operatorname{GW}(k)$.

Quadratic Euler characteristics

Definition

The quadratic Euler characteristic $\chi(X) \in GW(k)$ of a smooth projective scheme X over k is the categorical Euler characteristic of X in SH(k).

Remark

If $Z \subset X$ is a smooth closed embedding of codimension c and $U \subset X$ is the open complement of Z, then

$$\chi(X) = \langle -1 \rangle^{c} \chi(Z) + \chi(U).$$

Examples

Example

We have that $\chi(\mathbb{A}^n) = \langle 1 \rangle$.

Example

We have that $\chi(\mathbb{P}^n) = \sum_{i=0}^n \langle -1 \rangle^i$.

If $k \subset \mathbb{R}$, then:

- $ightharpoonup rank(\chi(X)) = \chi^{top}(X(\mathbb{C})),$
- $\operatorname{sgn}(\chi(X)) = \chi^{top}(X(\mathbb{R})).$

Remark

If $V \to X$ is a rank r+1 vector bundle and $\mathbb{P}(V)$ is its projectivization, then $\chi(\mathbb{P}(V)) = \chi(X) \cdot \chi(\mathbb{P}^r)$.

The Motivic Gauss-Bonnet Theorem

Theorem (Levine-Raksit)

Let X be a smooth projective scheme over k. Then:

- If dim(X) is odd, then $\chi(X) = a \cdot H$ for some $a \in \mathbb{Z}$.
- If dim(X) = 2n is even, then $\chi(X) = a \cdot H + Q$ for some $a \in \mathbb{Z}$, where Q is given by

$$H^n(X,\Omega_X^n) \times H^n(X,\Omega_X^n) \xrightarrow{\cup} H^{2n}(X,\Omega_X^{2n}) \xrightarrow{Trace} k.$$

Here, Ω_X denotes the sheaf of differential forms on X and $\Omega_X^q = \wedge^q \Omega_X$.

Levine, Lehalleur and Srinivas: compute Q for X a hypersurface in \mathbb{P}^n . Inspiration from: Carlson-Griffiths. <ロ > → □ > → □ > → □ > → □ → ○ へ ○ □

Table of Contents

- 1 Quadratic Euler characteristics
- 2 Hypersurface case
- 3 The complete intersection case
- 4 Two generalized Fermat curves

Setup

Consider a smooth hypersurface $X = V(F) \subset \mathbb{P}^n$ where $F \in k[X_0, \dots, X_n]$ is homogeneous of degree $m \in \mathbb{Z}_{>2}$ s.t. $char(k) \ / m$.

Definition

The Jacobian ring of X is

$$J = k[X_0, \cdots, X_n] / \left(\frac{\partial F}{\partial X_0}, \cdots, \frac{\partial F}{\partial X_n}\right).$$

Note that:

- J has a natural grading.
- Top degree: $J^{(m-2)(n+1)} \cong k$ generated by the *Scheja-Storch* element e_F .

The Scheja-Storch generator

Remark

Formula for e_F : write $\frac{\partial F}{\partial X_i} = \sum_{j=0}^n a_{ij} X_j$ then $e_F = \det(a_{ij})$.

Example (Generalized Fermat hypersurface)

Let $a_0,\cdots,a_n\in k^*$ and set $F=\sum_{i=0}^n a_iX_i^m$. Then we have that $\frac{\partial F}{\partial X_i}=ma_iX_i^{m-1}$. We have that $J^{(m-2)(n+1)}$ is generated by

$$e_F = m^{n+1} \prod_{i=0}^n a_i X_i^{m-2}.$$

Primitive cohomology

Let $i: X \to \mathbb{P}^n$ be the inclusion. This induces a pushforward map

$$i_*:H^q(X,\Omega^p) o H^{q+1}(\mathbb{P}^n,\Omega^{p+1}_{\mathbb{P}^n})$$

for all $p, q \in \mathbb{Z}_{>0}$.

Definition

The primitive cohomology of X with respect to p, $q \in \mathbb{Z}_{>0}$ is defined by $H^q(X, \Omega^p)_{prim} = \ker(i_*)$.

Have $H^q(X,\Omega^p)_{prim}=H^q(X,\Omega^p)$ whenever $p\neq q$.

Result for a hypersurface

Levine, Lehalleur, Srinivas: For each q > 0, there is an isomorphism

$$\psi_q: J^{(q+1)m-n-1} o H^q(X,\Omega^{n-1-q})_{\mathit{prim}}$$

which behaves well with the cup product.

Theorem (Levine, Lehalleur, Srinivas)

Let $p,q\in\mathbb{Z}_{\geq 0}$ satisfy p+q=n-1 and let $A\in J^{(q+1)m-n-1}$ and $B \in J^{(p+1)m-n-1}$. Suppose that $AB = \lambda e_F$ in $J^{(m-2)(n+1)}$, for some $\lambda \in k^*$. Then

$$Tr(\psi_q(A) \cup \psi_p(B)) = -m\lambda.$$

Generalized Fermat hypersurface

Let X = V(F) with $F = \sum_{i=0}^{n} a_i X_i^m$ with $a_i \in k^*$. If n = 2p + 1 is odd, then

$$H^p(X,\Omega^p)=H^p(X,\Omega^p)_{prim}\oplus c_1(\mathcal{O}(1))^p.$$

Result:

One can prove that

$$\chi(X) = \begin{cases} A_{n,m} \cdot H & \text{if } n \text{ even} \\ A_{n,m} \cdot H + \langle m \rangle & \text{if } n, m \text{ odd} \\ A_{n,m} \cdot H + \langle m \rangle + \langle -m \prod_{i=0}^{n} a_i \rangle & \text{otherwise} \end{cases}$$

for integers $A_{n,m} \in \mathbb{Z}$.

Table of Contents

- 3 The complete intersection case

The complete intersection case

Over \mathbb{C} : Konno and Terasoma. Toric geometry: Cox-Batyrev and Villaflor.

Setup

Let $n, r \in \mathbb{Z}_{\geq 1}$ s.t. $n \geq r + 2$. Let $F_0, \dots, F_r \in k[X_0, \dots, X_n]$ be homogeneous of the same degree $m \geq 2$. Assume m is coprime to char(k). Let $X = V(F_0, \dots, F_r) \subset \mathbb{P}^n$ and assume X is a smooth complete intersection. Consider the smooth hypersurface

$$\mathcal{X} = V(F) \subset \mathbb{P}^r \times \mathbb{P}^n$$

where $F = Y_0F_0 + \cdots + Y_rF_r$.

Notation: Write $\bar{F}_j = \frac{\partial F}{\partial X_j}$ for $j \in \{0, \cdots, n\}$.

Relating $\chi(X)$ and $\chi(X)$

Lemma

We have that $\chi(\mathcal{X}) = \chi(\mathbb{P}^{r-1})\chi(\mathbb{P}^n) + \langle -1 \rangle^r \chi(X)$.

Proof.

Let $U=\mathbb{P}^n\setminus X$ and let $\pi:\mathcal{X}\to\mathbb{P}^n$ be the projection. Then $\pi^{-1}(X)=\mathbb{P}^r\times X$ and $\pi^{-1}(U)\to U$ is a Zariski locally trivial \mathbb{P}^{r-1} -bundle. We have that $\chi(\mathbb{P}^n)=\chi(U)+\langle -1\rangle^{r+1}\chi(X)$. This yields

$$\chi(\mathcal{X}) = \chi(\mathbb{P}^{r-1})\chi(U) + \langle -1 \rangle^r \chi(\mathbb{P}^r)\chi(X)$$
$$= \chi(\mathbb{P}^{r-1})\chi(\mathbb{P}^n) + \langle -1 \rangle^r \chi(X)$$

as desired.

The Jacobian ring

Definition

The Jacobian ring is

$$J = k[Y_0, \cdots, Y_r, X_0, \cdots, X_n] / (F_0, \cdots, F_r, \overline{F}_0, \cdots, \overline{F}_n).$$

Note: J is bigraded and infinite dimensional over k.

Proposition (Konno and Terasoma over \mathbb{C} , V. for general case)

For q > r, there are isomorphisms

$$\psi_q: J^{q-r,(q+1)m-(n+1)} o H^q(\mathcal{X},\Omega_{\mathcal{X}}^{n+r-1-q})_{ extit{prim}}.$$

Compatibility with the cup product

Proposition (Konno and Terasoma over C, V. for general case)

Let $\rho = (n-r-1, (n+r+1)m-2(n+1))$. There exists a surjective morphism ϕ , such that the diagram

$$H^{q}(\mathcal{X}, \Omega_{\mathcal{X}}^{p})_{prim} \otimes H^{p}(\mathcal{X}, \Omega_{\mathcal{X}}^{q})_{prim} \xrightarrow{i_{*} \circ \cup} H^{n+r}(\mathbb{P}^{r} \times \mathbb{P}^{n}, \Omega_{\mathbb{P}^{r} \times \mathbb{P}^{n}}^{n+r})$$

$$\downarrow^{\psi_{p} \otimes \psi_{q}} \qquad \qquad \downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$J^{q-r,(q+1)m-(n+1)} \otimes J^{p-r,(p+1)m-(n+1)} \longrightarrow J^{\rho}$$

commutes for all $p, q \in \mathbb{Z}_{>0}$ such that p + q = n + r - 1.

Proof uses: cover of $\mathbb{P}^r \times \mathbb{P}^n$ by

$$\mathcal{U} = \{ \{ F_0 \neq 0 \}, \cdots, \{ F_r \neq 0 \}, \{ \bar{F}_0 \neq 0 \}, \cdots, \{ \bar{F}_n \neq 0 \} \}.$$

Note:

- Not all elements are of the same bidegree
- The cover is too big

Elements of the Čech cohomology group $C^{n+r}(\mathcal{U}, \Omega^{n+r}_{\mathbb{P}^r \times \mathbb{P}^n})$ look like cycles $\{s_0, \dots, s_r, \bar{s}_0, \dots, \bar{s}_n\}$ where s_i lives on the intersection of everything except $\{F_i \neq 0\}$.

Generators

Let $\omega = \sum_{i=0}^{r} (-1)^{i} Y_{i} dY^{i}$ (a generator of $\Omega_{\mathbb{P}^{r}}^{r}(r+1)$) and $\bar{\omega} = \sum_{i=0}^{n} (-1)^{j} X_{i} dX^{j}$ (a generator of $\Omega_{\mathbb{P}^{n}}^{n}(n+1)$). Then $\omega \wedge \bar{\omega}$ is a generator of $\Omega_{\mathbb{P}^r \times \mathbb{P}^n}^{n+r}(r+1, n+1)$.

One computes: i_* of a cup product of two images from J on Čech cohomology.

Then: The map ϕ is constructed from the morphism

$$\tilde{\phi}: k[Y_0, \cdots, Y_r, X_0, \cdots, X_n]^{\rho} \to C^{n+r}(\mathcal{U}, \Omega^{n+r}_{\mathbb{P}^r \times \mathbb{P}^n}),
D \mapsto \{s_0, \cdots, s_r, \bar{s}_0, \cdots, \bar{s}_n\}$$

where for $v \in \{0, \dots, r\}$ and $w \in \{0, \dots, n\}$, we have

$$s_v = \frac{(-1)^{v+r+1} m D Y_v F_v \omega \wedge \bar{\omega}}{\prod_{i=0}^r F_i \prod_{j=0}^n \bar{F}_j} \text{ and } \bar{s}_w = \frac{(-1)^{w+1} D X_w \bar{F}_w \omega \wedge \bar{\omega}}{\prod_{i=0}^r F_i \prod_{j=0}^n \bar{F}_j}.$$

One dimensionality results

In fact: J^{ρ} is one dimensional, unless \mathcal{X} is odd dimensional, r=1 and m=2.

Let

$$\widetilde{J} = k[Y_0, \cdots, Y_r, X_0, \cdots, X_n]/(Y_0F_0, \cdots, Y_rF_r, X_0\overline{F}_0, \cdots, X_n\overline{F}_n).$$

Then: $\tilde{J}^{\rho+(r+1,n+1)}$ is one dimensional.

Lemma (V.)

If we do not have that dim(X) is odd, r=1 and m=2 then

$$\psi: J^{\rho} \to \widetilde{J}^{\rho+(r+1,n+1)}, D \mapsto D \prod_{i=0}^{r} Y_i \prod_{j=0}^{n} X_j$$

is an isomorphism.

Towards the trace

Extra assumptions

- m+1 is invertible in k.
- $V(F_i)$ is smooth for all $i \in \{0, \dots, r\}$ and $V(F_0, \dots, F_r)$ is smooth and of codimension r + 1.
- The assumption (2) remains true after setting any subset of the X_i or Y_i equal to zero.

These assumptions mean that we can cover $\mathbb{P}^r \times \mathbb{P}^n$ by

$$\{\{Y_0F_0\neq 0\},\cdots,\{Y_rF_r\neq 0\},\{X_0\bar{F}_0\neq 0\},\cdots,\{X_n\bar{F}_n\neq 0\}\}.$$

$$m\sum_{i=0}^{r} Y_{i}F_{i} - \sum_{j=0}^{n} X_{j}\bar{F}_{j} = mF - mF = 0.$$

The complete intersection case

Better cover

This means we have the cover

$$\mathcal{W} = \{ \{Y_1F_1 \neq 0\}, \cdots, \{Y_rF_r \neq 0\}, \{X_0\bar{F}_0 \neq 0\}, \cdots, \{X_n\bar{F}_n \neq 0\} \}$$

Note that:

- All elements have bidegree (1, m).
- This cover has the right amount of elements.
- This is a refinement of U.

Let M be the Jacobian matrix of $Y_0F_0, \dots, Y_rF_r, X_0\bar{F}_0, \dots, X_n\bar{F}_n$.

Lemma (V.)

There exists a unique $\tilde{C} \in k[Y_0, \cdots, Y_r, X_0, \cdots, X_n]^{\rho+(r+1, n+1)}$ such that

$$(m+1)Y_iX_j\tilde{C} = (-1)^j\det(M_{0|j+r+1})Y_i + (-1)^{r+i}\det(M_{0|i})X_j$$

for $i \in \{0, \dots, r\}$ and $j \in \{0, \dots, n\}$. Moreover,

$$\frac{\tilde{C}\omega\wedge\bar{\omega}}{\prod_{i=1}^{r}Y_{i}F_{i}\prod_{j=0}^{n}X_{j}\bar{F}_{j}}\in C^{n+r}(\mathcal{W},\Omega^{n+r}_{\mathbb{P}^{r}\times\mathbb{P}^{n}})$$

represents $c_1(\mathcal{O}(1,m))^{n+r}$.

We know: $Tr(c_1(\mathcal{O}(1,m))^{n+r}) = m^n\binom{n+r}{r}$.

And: This is represented by

$$\frac{\tilde{C}\omega\wedge\bar{\omega}}{\prod_{i=1}^{r}Y_{i}F_{i}\prod_{j=0}^{n}X_{j}\bar{F}_{j}}\in C^{n+r}(\mathcal{W},\Omega_{\mathbb{P}^{r}\times\mathbb{P}^{n}}^{n+r}).$$

Also: For p+q=n+r-1, $A\in J^{q-r,(q+1)m-(n+1)}$ and $B\in J^{p-r,(p+1)m-(n+1)}$, have that $\phi(AB)=i_*(\psi_q(A)\cup\psi_p(B))$ is represented by

$$\frac{(-1)^{r+1} \mathit{mAB} \omega \wedge \bar{\omega}}{\prod_{i=1}^r F_i \prod_{j=0}^n \bar{F_j}} \in \mathit{C}^{n+r}(\mathcal{W}, \Omega^{n+r}_{\mathbb{P}^r \times \mathbb{P}^n}).$$

Finally: If we don't have r=1, m=2 and $\dim(\mathcal{X})$ odd then $\tilde{C}=\psi(C)$ for a unique $C\in J^{\rho}$. And C has to be a generator.

Assume that we do not have $\dim(\mathcal{X})$ is odd, r=1 and m=2. Let $p,q\in\mathbb{Z}_{\geq 0}$ s.t. p+q=n+r-1. For $A\in J^{q-r,(q+1)m-(n+1)}$ and $B\in J^{p-r,(p+1)m-(n+1)}$, write $AB=\lambda C$ in J^ρ for some $\lambda\in k$. Then

$$Tr(\psi_q(A) \cup \psi_p(B)) = Tr(i_*(\psi_q(A) \cup \psi_p(B)))$$

= $(-1)^{r+1} m^{n+1} \binom{n+r}{r} \lambda$.

Intersecting two generalized Fermat hypersurfaces

Theorem (V.)

Let
$$a_0, \dots, a_n, b_0, \dots, b_n \in k^*$$
 s.t. $a_i b_j - a_j b_i \neq 0$ for all $i \neq j$.
Let $F_0 = \sum_{i=0}^n a_i X_i^m, F_1 = \sum_{i=0}^n b_i X_i^m$. Let $X = V(F_0, F_1) \subset \mathbb{P}^n$.
Then

$$\chi(X) = \begin{cases} B_{n,m} \cdot H & \text{if n is odd} \\ B_{n,m} \cdot H + \langle 1 \rangle & \text{if n is even, m odd} \\ B_{n,m} \cdot H + \langle 1 \rangle & \text{if n, m are even} \\ + \sum_{i=0}^{n} \langle \prod_{j \neq i} (a_i b_j - a_j b_i) \rangle \end{cases}$$

for some $B_{n,m} \in \mathbb{Z}$.

- 1 Quadratic Euler characteristics
- 2 Hypersurface case
- 3 The complete intersection case
- 4 Two generalized Fermat curves

Setup

Suppose $X = V(F_0, F_1)$ is the intersection of two Fermat curves $V(F_0)$ and $V(F_1)$ in \mathbb{P}^2 with

$$F_0 = a_0 X_0^m + a_1 X_1^m + a_2 X_2^m$$

and

$$F_1 = b_0 X_0^m + b_1 X_1^m + b_2 X_2^m$$

where the $a_i, b_i \in k^*$ satisfy $a_i b_i - a_i b_i \neq 0$ for all $i \neq j$.

Goal:

Compute $\chi(X)$!

Trick

Map induced by field extensions

For a separable field extension $k \subset L$, there is a morphism

$$\pi_*:\mathsf{GW}(L)\to\mathsf{GW}(k).$$

For $\langle u \rangle \in GW(L)$, we have that $\pi_* \langle u \rangle$ is given by the composition

$$L \times L \xrightarrow{\langle u \rangle} L \xrightarrow{\mathsf{Tr}_{L/k}} k.$$

By a result of Hoyois, we have that $\chi(\operatorname{Spec}(L)) = \pi_*(\langle 1 \rangle)$.

Lemma

Let K be a field of characteristic coprime to 2m and let $a \in K^*$. Let $K(\alpha) = K[X]/(X^m + a)$ and let $u \in K(\alpha)^*$. Then

$$Tr_{K(\alpha)/K}(\langle u \rangle) = \begin{cases} \frac{m-1}{2}H + \langle um \rangle & \text{if m is odd} \\ \frac{m-2}{2}H + \langle um \rangle + \langle -aum \rangle & \text{if m is even} \end{cases}$$

Proof idea: $1, \alpha, \dots, \alpha^{m-1}$ is a basis of $K(\alpha)$. We have that

$$\operatorname{Tr}_{K(\alpha)/K}(u\alpha^{i+j}) = egin{cases} um & \text{if } i=j=0 \ -aum & \text{if } i+j=m \ 0 & \text{otherwise} \end{cases}$$

$$X = V(a_0x^m + a_1y^m + a_2, b_0x^m + b_1y^m + b_2).$$

Let

$$K = k[x, y]/(a_0x^m + a_1y^m + a_2, b_0x^m + b_1y^m + b_2).$$

Note that

$$a_0x^m + a_1y^m + a_2 = 0$$
 and $b_0x^m + b_1y^m + b_2 = 0$

implies that

$$(a_1b_0-a_0b_1)y^m+a_2b_0-a_0b_2=0$$
 and $(a_0b_1-a_1b_0)x^m+a_2b_1-a_1b_2=0$.

So we have

$$k \subset k(\alpha) = k[t]/(t^m + \frac{a_0b_2 - a_2b_0}{a_1b_0 - a_0b_1}) \subset K = k(\alpha)[s]/(s^m + \frac{a_1b_2 - a_2b_1}{a_0b_1 - a_1b_0}).$$

Final result

In particular: $k \subset K$ is separable.

Applying the lemma twice now gives:

Proposition

The quadratic Euler characteristic of X equals

$$\chi(X) = \begin{cases} \frac{(m+1)(m-1)}{2}H + \langle 1 \rangle & m \text{ odd} \\ \frac{(m+2)(m-2)}{2}H + \langle 1 \rangle + \sum_{i=0}^{2} \langle \prod_{j \neq i} (a_ib_j - a_jb_i) \rangle & m \text{ even} \end{cases}$$