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The Grothendieck-Witt ring

Notation

Fix a field k s.t. char(k) ̸= 2.

Definition

The Grothendieck-Witt ring GW(k) of k is the group completion of
the monoid of isometry classes of nondegenerate quadratic forms.

GW(k) is generated by ⟨a⟩ : x 7→ ax2 for a ∈ k∗ modulo

⟨a⟩⟨b⟩ = ⟨ab⟩ for a, b ∈ k∗,

⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ab(a+ b)⟩ for a, b, a+ b ∈ k∗,

⟨ab2⟩ = ⟨a⟩ for all a, b ∈ k∗,

⟨a⟩+ ⟨−a⟩ = H for any a ∈ k∗. Here, H = ⟨1⟩+ ⟨−1⟩ is the
hyperbolic form.
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Some examples

Example

GW(C) ∼= Z via the rank. The same holds for other algebraically
closed fields k .

Example

GW(R) ∼= Z[C2] where C2 is a cyclic group of order two.

Example

GW(F) ∼= Z⊕ Z/2Z for F a finite field, char(F) ̸= 2.
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Motivic stable homotopy category

Dold-Puppe

Can define a categorical Euler characteristic for any strongly
dualizable object of a symmetric monoidal category, lives in
endomorphism ring of the unit.

Morel and Voevodsky: motivic stable homotopy category SH(k).

Some facts:

SH(k) is symmetric monoidal,

X smooth projective scheme/k has a strongly dualizable
image in SH(k),

Morel: End(1SH(k)) ∼= GW(k).
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Quadratic Euler characteristics

Definition

The quadratic Euler characteristic χ(X ) ∈ GW(k) of a smooth
projective scheme X over k is the categorical Euler characteristic
of X in SH(k).

Remark

If Z ⊂ X is a smooth closed embedding of codimension c and
U ⊂ X is the open complement of Z , then

χ(X ) = ⟨−1⟩cχ(Z ) + χ(U).
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Examples

Example

We have that χ(An) = ⟨1⟩.

Example

We have that χ(Pn) =
∑n

i=0⟨−1⟩i .

If k ⊂ R, then:
rank(χ(X )) = χtop(X (C)),
sgn(χ(X )) = χtop(X (R)).

Remark

If V → X is a rank r + 1 vector bundle and P(V ) is its
projectivization, then χ(P(V )) = χ(X ) · χ(Pr ).
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The Motivic Gauss-Bonnet Theorem

Theorem (Levine-Raksit)

Let X be a smooth projective scheme over k. Then:

If dim(X ) is odd, then χ(X ) = a · H for some a ∈ Z.
If dim(X ) = 2n is even, then χ(X ) = a · H + Q for some
a ∈ Z, where Q is given by

Hn(X ,Ωn
X )× Hn(X ,Ωn

X )
∪−→ H2n(X ,Ω2n

X )
Trace−−−→ k.

Here, ΩX denotes the sheaf of differential forms on X and
Ωq
X = ∧qΩX .

Levine, Lehalleur and Srinivas: compute Q for X a hypersurface in
Pn. Inspiration from: Carlson-Griffiths.
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Setup

Consider a smooth hypersurface X = V (F ) ⊂ Pn where
F ∈ k[X0, · · · ,Xn] is homogeneous of degree m ∈ Z≥2 s.t.
char(k) ̸ |m.

Definition

The Jacobian ring of X is

J = k[X0, · · · ,Xn]/

(
∂F

∂X0
, · · · , ∂F

∂Xn

)
.

Note that:

J has a natural grading.

Top degree: J(m−2)(n+1) ∼= k generated by the Scheja-Storch
element eF .
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The Scheja-Storch generator

Remark

Formula for eF : write
∂F
∂Xi

=
∑n

j=0 aijXj then eF = det(aij).

Example (Generalized Fermat hypersurface)

Let a0, · · · , an ∈ k∗ and set F =
∑n

i=0 aiX
m
i . Then we have that

∂F
∂Xi

= maiX
m−1
i . We have that J(m−2)(n+1) is generated by

eF = mn+1
n∏

i=0

aiX
m−2
i .
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Primitive cohomology

Let i : X → Pn be the inclusion. This induces a pushforward map

i∗ : H
q(X ,Ωp) → Hq+1(Pn,Ωp+1

Pn )

for all p, q ∈ Z≥0.

Definition

The primitive cohomology of X with respect to p, q ∈ Z≥0 is
defined by Hq(X ,Ωp)prim = ker(i∗).

Have Hq(X ,Ωp)prim = Hq(X ,Ωp) whenever p ̸= q.
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Result for a hypersurface

Levine, Lehalleur, Srinivas: For each q ≥ 0, there is an
isomorphism

ψq : J(q+1)m−n−1 → Hq(X ,Ωn−1−q)prim

which behaves well with the cup product.

Theorem (Levine, Lehalleur, Srinivas)

Let p, q ∈ Z≥0 satisfy p + q = n − 1 and let A ∈ J(q+1)m−n−1 and
B ∈ J(p+1)m−n−1. Suppose that AB = λeF in J(m−2)(n+1), for
some λ ∈ k∗. Then

Tr(ψq(A) ∪ ψp(B)) = −mλ.
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Generalized Fermat hypersurface

Let X = V (F ) with F =
∑n

i=0 aiX
m
i with ai ∈ k∗. If n = 2p + 1 is

odd, then

Hp(X ,Ωp) = Hp(X ,Ωp)prim ⊕ c1(O(1))p.

Result:

One can prove that

χ(X ) =


An,m · H if n even

An,m · H + ⟨m⟩ if n,m odd

An,m · H + ⟨m⟩+ ⟨−m
∏n

i=0 ai ⟩ otherwise

for integers An,m ∈ Z.
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The complete intersection case

Over C: Konno and Terasoma. Toric geometry: Cox-Batyrev and
Villaflor.

Setup

Let n, r ∈ Z≥1 s.t. n ≥ r + 2. Let F0, · · · ,Fr ∈ k[X0, · · · ,Xn] be
homogeneous of the same degree m ≥ 2. Assume m is coprime to
char(k). Let X = V (F0, · · · ,Fr ) ⊂ Pn and assume X is a smooth
complete intersection. Consider the smooth hypersurface

X = V (F ) ⊂ Pr × Pn

where F = Y0F0 + · · ·+ YrFr .

Notation: Write F̄j =
∂F
∂Xj

for j ∈ {0, · · · , n}.
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Relating χ(X ) and χ(X )

Lemma

We have that χ(X ) = χ(Pr−1)χ(Pn) + ⟨−1⟩rχ(X ).

Proof.

Let U = Pn \ X and let π : X → Pn be the projection. Then
π−1(X ) = Pr × X and π−1(U) → U is a Zariski locally trivial
Pr−1-bundle. We have that χ(Pn) = χ(U) + ⟨−1⟩r+1χ(X ). This
yields

χ(X ) = χ(Pr−1)χ(U) + ⟨−1⟩rχ(Pr )χ(X )

= χ(Pr−1)χ(Pn) + ⟨−1⟩rχ(X )

as desired.
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The Jacobian ring

Definition

The Jacobian ring is

J = k[Y0, · · · ,Yr ,X0, · · · ,Xn]/
(
F0, · · · ,Fr , F̄0, · · · , F̄n

)
.

Note: J is bigraded and infinite dimensional over k .

Proposition (Konno and Terasoma over C, V. for general case)

For q ≥ r , there are isomorphisms

ψq : Jq−r ,(q+1)m−(n+1) → Hq(X ,Ωn+r−1−q
X )prim.
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Compatibility with the cup product

Proposition (Konno and Terasoma over C, V. for general case)

Let ρ = (n − r − 1, (n + r + 1)m − 2(n + 1)). There exists a
surjective morphism ϕ, such that the diagram

Hq(X ,Ωp
X )prim ⊗ Hp(X ,Ωq

X )prim Hn+r (Pr × Pn,Ωn+r
Pr×Pn)

Jq−r ,(q+1)m−(n+1) ⊗ Jp−r ,(p+1)m−(n+1) Jρ

i∗◦∪

ψp⊗ψq ϕ

commutes for all p, q ∈ Z≥0 such that p + q = n + r − 1.
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Proof uses: cover of Pr × Pn by

U = {{F0 ̸= 0}, · · · , {Fr ̸= 0}, {F̄0 ̸= 0}, · · · , {F̄n ̸= 0}}.

Note:

Not all elements are of the same bidegree

The cover is too big

Elements of the Čech cohomology group Cn+r (U ,Ωn+r
Pr×Pn) look like

cycles {s0, · · · , sr , s̄0, · · · , s̄n} where si lives on the intersection of
everything except {Fi ̸= 0}.

Generators

Let ω =
∑r

i=0(−1)iYidY
i (a generator of Ωr

Pr (r + 1)) and
ω̄ =

∑n
j=0(−1)jXjdX

j (a generator of Ωn
Pn(n + 1)). Then ω ∧ ω̄ is

a generator of Ωn+r
Pr×Pn(r + 1, n + 1).
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One computes: i∗ of a cup product of two images from J on
Čech cohomology.
Then: The map ϕ is constructed from the morphism

ϕ̃ : k[Y0, · · · ,Yr ,X0, · · · ,Xn]
ρ → Cn+r (U ,Ωn+r

Pr×Pn),

D 7→ {s0, · · · , sr , s̄0, · · · , s̄n}

where for v ∈ {0, · · · , r} and w ∈ {0, · · · , n}, we have

sv =
(−1)v+r+1mDYvFvω ∧ ω̄∏r

i=0 Fi
∏n

j=0 F̄j
and s̄w =

(−1)w+1DXw F̄wω ∧ ω̄∏r
i=0 Fi

∏n
j=0 F̄j

.
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One dimensionality results

In fact: Jρ is one dimensional, unless X is odd dimensional, r = 1
and m = 2.
Let

J̃ = k[Y0, · · · ,Yr ,X0, · · · ,Xn]/(Y0F0, · · · ,YrFr ,X0F̄0, · · · ,XnF̄n).

Then: J̃ρ+(r+1,n+1) is one dimensional.

Lemma (V.)

If we do not have that dim(X ) is odd, r = 1 and m = 2 then

ψ : Jρ → J̃ρ+(r+1,n+1),D 7→ D
r∏

i=0

Yi

n∏
j=0

Xj

is an isomorphism.
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Towards the trace

Extra assumptions

1 m + 1 is invertible in k.

2 V (Fi ) is smooth for all i ∈ {0, · · · , r} and V (F0, · · · ,Fr ) is
smooth and of codimension r + 1.

3 The assumption (2) remains true after setting any subset of
the Xi or Yi equal to zero.

These assumptions mean that we can cover Pr × Pn by

{{Y0F0 ̸= 0}, · · · , {YrFr ̸= 0}, {X0F̄0 ̸= 0}, · · · , {XnF̄n ̸= 0}}.
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But

m
r∑

i=0

YiFi −
n∑

j=0

Xj F̄j = mF −mF = 0.

Better cover

This means we have the cover

W = {{Y1F1 ̸= 0}, · · · , {YrFr ̸= 0}, {X0F̄0 ̸= 0}, · · · , {XnF̄n ̸= 0}}

Note that:

All elements have bidegree (1,m).

This cover has the right amount of elements.

This is a refinement of U .
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Want: Represent something of which we know the trace on this
cover and compare with cup products.
Let M be the Jacobian matrix of Y0F0, · · · ,YrFr ,X0F̄0, · · · ,XnF̄n.

Lemma (V.)

There exists a unique C̃ ∈ k[Y0, · · · ,Yr ,X0, · · · ,Xn]
ρ+(r+1,n+1)

such that

(m + 1)YiXj C̃ = (−1)j det(M0|j+r+1)Yi + (−1)r+i det(M0|i )Xj

for i ∈ {0, · · · , r} and j ∈ {0, · · · , n}. Moreover,

C̃ω ∧ ω̄∏r
i=1 YiFi

∏n
j=0 Xj F̄j

∈ Cn+r (W,Ωn+r
Pr×Pn)

represents c1(O(1,m))n+r .
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We know: Tr(c1(O(1,m))n+r ) = mn
(n+r

r

)
.

And: This is represented by

C̃ω ∧ ω̄∏r
i=1 YiFi

∏n
j=0 Xj F̄j

∈ Cn+r (W,Ωn+r
Pr×Pn).

Also: For p + q = n + r − 1,A ∈ Jq−r ,(q+1)m−(n+1) and
B ∈ Jp−r ,(p+1)m−(n+1), have that ϕ(AB) = i∗(ψq(A) ∪ ψp(B)) is
represented by

(−1)r+1mABω ∧ ω̄∏r
i=1 Fi

∏n
j=0 F̄j

∈ Cn+r (W,Ωn+r
Pr×Pn).

Finally: If we don’t have r = 1,m = 2 and dim(X ) odd then
C̃ = ψ(C ) for a unique C ∈ Jρ. And C has to be a generator.
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Theorem (V.)

Assume that we do not have dim(X ) is odd, r = 1 and m = 2. Let
p, q ∈ Z≥0 s.t. p + q = n + r − 1. For A ∈ Jq−r ,(q+1)m−(n+1) and
B ∈ Jp−r ,(p+1)m−(n+1), write AB = λC in Jρ for some λ ∈ k.
Then

Tr(ψq(A) ∪ ψp(B)) = Tr(i∗(ψq(A) ∪ ψp(B)))

= (−1)r+1mn+1

(
n + r

r

)
λ.
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Intersecting two generalized Fermat hypersurfaces

Theorem (V.)

Let a0, · · · , an, b0, · · · , bn ∈ k∗ s.t. aibj − ajbi ̸= 0 for all i ̸= j .
Let F0 =

∑n
i=0 aiX

m
i ,F1 =

∑n
i=0 biX

m
i . Let X = V (F0,F1) ⊂ Pn.

Then

χ(X ) =


Bn,m · H if n is odd

Bn,m · H + ⟨1⟩ if n is even, m odd

Bn,m · H + ⟨1⟩ if n,m are even

+
∑n

i=0⟨
∏

j ̸=i (aibj − ajbi )⟩

for some Bn,m ∈ Z.
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Setup

Suppose X = V (F0,F1) is the intersection of two Fermat curves
V (F0) and V (F1) in P2 with

F0 = a0X
m
0 + a1X

m
1 + a2X

m
2

and
F1 = b0X

m
0 + b1X

m
1 + b2X

m
2

where the ai , bi ∈ k∗ satisfy aibj − ajbi ̸= 0 for all i ̸= j .

Goal:

Compute χ(X )!
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Trick

Map induced by field extensions

For a separable field extension k ⊂ L, there is a morphism

π∗ : GW(L) → GW(k).

For ⟨u⟩ ∈ GW(L), we have that π∗⟨u⟩ is given by the composition

L× L
⟨u⟩−−→ L

TrL/k−−−→ k.

By a result of Hoyois, we have that χ(Spec(L)) = π∗(⟨1⟩).
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Lemma

Let K be a field of characteristic coprime to 2m and let a ∈ K ∗.
Let K (α) = K [X ]/(Xm + a) and let u ∈ K (α)∗. Then

TrK(α)/K (⟨u⟩) =

{
m−1
2 H + ⟨um⟩ if m is odd

m−2
2 H + ⟨um⟩+ ⟨−aum⟩ if m is even

Proof idea: 1, α, · · · , αm−1 is a basis of K (α). We have that

TrK(α)/K (uα
i+j) =


um if i = j = 0

−aum if i + j = m

0 otherwise
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Without loss of generality, assume that X = V (F0,F1) lies in
X2 ̸= 0. With coordinates x = X0

X2
and y = X1

X2
on A2, we have that

X = V (a0x
m + a1y

m + a2, b0x
m + b1y

m + b2).

Let

K = k[x , y ]/(a0x
m + a1y

m + a2, b0x
m + b1y

m + b2).

Note that

a0x
m + a1y

m + a2 = 0 and b0x
m + b1y

m + b2 = 0

implies that

(a1b0−a0b1)y
m+a2b0−a0b2 = 0 and (a0b1−a1b0)x

m+a2b1−a1b2 = 0.

So we have

k ⊂ k(α) = k[t]/(tm+
a0b2 − a2b0
a1b0 − a0b1

) ⊂ K = k(α)[s]/(sm+
a1b2 − a2b1
a0b1 − a1b0

).
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Final result

In particular: k ⊂ K is separable.
Applying the lemma twice now gives:

Proposition

The quadratic Euler characteristic of X equals

χ(X ) =

{
(m+1)(m−1)

2 H + ⟨1⟩ m odd
(m+2)(m−2)

2 H + ⟨1⟩+
∑2

i=0⟨
∏

j ̸=i (aibj − ajbi )⟩ m even
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