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The Grothendieck-Witt ring

Fix a field k s.t. char(k) # 2.

Definition

The Grothendieck-Witt ring GW(k) of k is the group completion of
the monoid of isometry classes of nondegenerate quadratic forms.

GW(k) is generated by (a) : x +— ax? for a € k* modulo
m (a)(b) = (ab) for a, b € k*,
m (a) + (b) = (a+ b) + (ab(a+ b)) for a,b,a+ b € k*,
m (ab?) = (a) for all a, b € k*,
m (a) + (—a) = H for any a € k*. Here, H = (1) + (—1) is the
hyperbolic form.
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Some examples

Example

GW(C) = Z via the rank. The same holds for other algebraically
closed fields k.

Example

GW(R) = Z[ ;] where G, is a cyclic group of order two.

Example

GW(F) = Z ® Z/2Z for F a finite field, char(F) # 2.
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Motivic stable homotopy category

Dold-Puppe

Can define a categorical Euler characteristic for any strongly
dualizable object of a symmetric monoidal category, lives in
endomorphism ring of the unit.

Morel and Voevodsky: motivic stable homotopy category SH(k).

Some facts:

m SH(k) is symmetric monoidal,

= X smooth projective scheme/k has a strongly dualizable
image in SH(k),

= Morel: End(1sp(k)) = GW(k).
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Quadratic Euler characteristics

Definition
The quadratic Euler characteristic x(X) € GW(k) of a smooth
projective scheme X over k is the categorical Euler characteristic

of X in SH(k).

Remark

If Z C X is a smooth closed embedding of codimension ¢ and
U C X is the open complement of Z, then

X(X) = (=1)x(2) + x(V).
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Examples

Example

We have that y(A") = (1).

Example
We have that x(P") = >"7 o(—1)".
If Kk C R, then:
= rank(x(X)) = x"?(X(C)),
= sgn(x(X)) = x"P(X(R)).

RENEILS

If V— X is a rank r + 1 vector bundle and P(V) is its
projectivization, then x(P(V)) = x(X) - x(P").
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The Motivic Gauss-Bonnet Theorem

Theorem (Levine-Raksit)

Let X be a smooth projective scheme over k. Then:
m Ifdim(X) is odd, then x(X) = a- H for some a € Z.

m Ifdim(X) = 2n is even, then x(X) =a- H+ Q for some
a € 7, where Q is given by

Hn(Xng() X Hn(X,Qg() i) H2"(X’§2§<n) Trace K.

Here, Q0 x denotes the sheaf of differential forms on X and
Qg( = N9Qx.

Levine, Lehalleur and Srinivas: compute @ for X a hypersurface in
P". Inspiration from: Carlson-Griffiths.
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Consider a smooth hypersurface X = V(F) C P" where
F € k[Xo, - -- , Xp] is homogeneous of degree m € Z>» s.t.
char(k) fm.

Definition

The Jacobian ring of X is

oF OF
J:k[XOa 7XI‘I]/ (a_)<03 ’87)

Note that:
m J has a natural grading.
m Top degree: J(M=2)(n+1) = k generated by the Scheja-Storch
element ef.
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The Scheja-Storch generator

Formula for ef: write g—;’_ = Do 2;jX; then er = det(a;).

Example (Generalized Fermat hypersurface)

Let ap, -+ ,an € k* and set F =7 ,a;X/™. Then we have that

g)'; = ma; Xm 1 We have that J(’" 2)(”+1) is generated by

n
er = m™t! H a,-X,-m_z.
i=0
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Primitive cohomology

Let i : X — P" be the inclusion. This induces a pushforward map
it HI(X,QP) — HITL (P, Q81

for all p,q € Z>o.

Definition

The primitive cohomology of X with respect to p,q € Z>q is
defined by H(X, QP)prim = ker(iy).

Have HY(X, QP)prim = HI(X, QP) whenever p # q.
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Result for a hypersurface

Levine, Lehalleur, Srinivas: For each g > 0, there is an
isomorphism

¢q . J(q+1)m—n—1 N Hq(X7Qn_1_q)prim

which behaves well with the cup product.

Theorem (Levine, Lehalleur, Srinivas)

Let p,q € Lo satisfy p+q=n—1 and let A € JIT)m=n=1 anq
B e Jipt)m=n=1_G,hn0se that AB = Aer in JIM=2(n+1)  for
some )\ € k*. Then

Tr(vq(A) U tp(B)) = —mA.
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Generalized Fermat hypersurface

Let X = V(F) with F =>"7 5 a;X/" with a; € k*. If n=2p+1s
odd, then

HP(X, QP) = HP(X, Q) prim & c1(O(1))P.

Result:

One can prove that

Anm-H if n even
X(X) = Anm-H+ (m) if n, m odd
Anm-H+(m)+ (—m]]7_,a) otherwise

for integers A, m € Z.
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The complete intersection case

Over C: Konno and Terasoma. Toric geometry: Cox-Batyrev and
Villaflor.

Setup

Let n,r € Z>1 st. n>r+2. Let Fo,---, F, € k[Xp,---, Xs] be
homogeneous of the same degree m > 2. Assume m is coprime to
char(k). Let X = V/(Fo,---,F,) C P" and assume X is a smooth
complete intersection. Consider the smooth hypersurface

X=V(F)cP xP"
where F = YoFo + .-+ Y, F,.

Notation: Write I-:J = g—)’;j for j € {0,--- ,n}.
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Relating x(X) and x(X)

Lemma

We have that x(X) = x (P 1)x(P") 4 (—=1)"x(X).

Proof.

Let U=P"\ X and let 7 : X — P" be the projection. Then

7 HX) =P" x X and 7~1(U) — U is a Zariski locally trivial
Pr~1bundle. We have that x(P") = x(U) + (—1)"*1x(X). This
yields

X(X) = x(PHx(U) + (=1)"x(P")x(X)
= x(P™)x(P") + (~1)"x(X)

as desired. ]
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The Jacobian ring

The Jacobian ring is

J:k[YOa"'7YI”X0>"'7Xn]/(F07"'aFra’EOf";ﬁn)-

Note: J is bigraded and infinite dimensional over k.

Proposition (Konno and Terasoma over C, V. for general case)

For g > r, there are isomorphisms

Wy 2 JIHAIm=(4) _y pa(y Qririee) L
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Compatibility with the cup product

Proposition (Konno and Terasoma over C, V. for general case)

Letp=(n—r—1,(n+r+1)m—2(n+1)). There exists a
surjective morphism ¢, such that the diagram

Hq(X, QPX)Prim & HP(X7 Qg{)Prim ﬂ) Hn—i—r(Pr X Pna Q]g;’;:]}””)

Yp ®¢CIT q&/’\

Jqfr,(q+1)mf(n+1)®prr,(p+1)mf(n+1) s JP

commutes for all p,q € Z>q such that p+q=n-+r —1.
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Proof uses: cover of P" x P by
u:{{FO#O}a"' ,{Fr;ﬁO},{ﬁo#O},"' 7{,:_n7é0}}

Note:
m Not all elements are of the same bidegree
m The cover is too big

Elements of the Cech cohomology group C™t" (U, Qptren) look like
cycles {so, - ,5r,3, - ,5,} where s; lives on the intersection of
everything except {F; # 0}.

Generators

Let w=>"'_,(—1)"Y;dY' (a generator of Q5. (r + 1)) and

@ =37 o(~1YX;dX/ (a generator of Qf,(n+1)). Then wA @ is
a generator of Qfgf;Pn(r +1,n+1).
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One computes: j, of a cup product of two images from J on
Cech cohomology.
Then: The map ¢ is constructed from the morphism

Q'; : k[YO) Tty yraX07 e 7Xn]p — Cn+r(u’QIg’j_><rIP’”)’

D'_>{507 75r>§05"' 7§n}

where for v € {0,--- ,r} and w € {0,--- , n}, we have

(1)t mDY, F,w A& 45 — (—D)"H DX, Fpw A @

S, = = ana s =
[l Filli=0 F [l Filli-o Fi
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One dimensionality results

In fact: J” is one dimensional, unless X is odd dimensional, r =1
and m = 2.
Let

J=k[Yo, -+, Y, Xo, -+, Xal/(YoFo, -, YeFr, XoFo, -+, XaF).
Then: Jot(r+1.0+1) is one dimensional.

Lemma (V.)

If we do not have that dim(X') is odd, r =1 and m = 2 then

r n
P N jp+(r+1,n+1), D — DH Y; H)<J
i=0  j=0

is an isomorphism.
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Towards the trace

Extra assumptions

m + 1 is invertible in k.

V(F;) is smooth for all i € {0,--- ,r} and V(Fg, -, F;) is
smooth and of codimension r + 1.

The assumption (2) remains true after setting any subset of
the X; or Y; equal to zero.

These assumptions mean that we can cover P" x P" by

{{Y0F07é0}7"' 7{YrFr7éO}7{X0F-O7éO}a"' 7{Xn,:-n7é0}}'
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But

miY;F;—inI-:j:mF—mF:Q
i=0 j=0

Better cover

This means we have the cover

W:{{Y]-Fl#o}v a{YrFr#O}’{XO’EO#O}v ’{Xn'En#O}}

Note that:
m All elements have bidegree (1, m).
m This cover has the right amount of elements.

m This is a refinement of U.
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Want: Represent something of which we know the trace on this
cover and compare with cup products. B _
Let M be the Jacobian matrix of YoFg, - -, Y. Fr, XoFo, -+, XpnFn.

Lemma (V.)

There exists a unique C € k[Yy,---, Yy, Xo, - -+ , Xp]Pt(rt1n+1)
such that

(m+1)YiX;C = (=1 det(Mo|j1r41) Yi + (—1) " det(Mg;;) X
fori€{0,---,r} andj € {0,---,n}. Moreover,

Cond
[Ti-y YiFi [T XiFi

represents c1(O(1, m))"*".

e C™H (W, Q)
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We know: Tr(ci(O(1, m))"") = m"("7).
And: This is represented by

Cwoni
Hf:l YiFi H}’:o Xij

Also: For p+qg=n+r—1,A e Ja—r(at)m=(n+l) 3pd
B ¢ Jp=r(pt)m=(n+1) ‘have that ¢(AB) = ix(¢g(A) Up(B)) is
represented by

e C W, QEHLL).

(—1) " mABw A &
H;:l Fi HJ{,IO I:J

Finally: If we don't have r =1,m = 2 and dim(X’) odd then
C = ¢(C) for a unique C € JP. And C has to be a generator.

€ C™H W, Q).
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Theorem (V.)

Assume that we do not have dim(X) is odd, r =1 and m = 2. Let
p,qE€Z>o st. p+q=n+r—1. For Ac Ja—n(at)m—(n+1) gpq

B e yp—r(p+)m—=(n+1) "yrite AB = \C in JP for some \ € k.
Then

Tr(pq(A) Uhp(B)) = Tr(ix(4q(A) U ¢p(B)))
- oyt ()

r
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Intersecting two generalized Fermat hypersurfaces

Theorem (V.)

Let ag,--- ,an, by, -+, bn € k* s.t. a,-bj—ajb,- #0 forall i #j.
Let Fo =0 g aiX™ Fy = S0 biXm. Let X = V(Fo, Fy) C P,

Then
Bym-H if n is odd
Bym-H+(1 if n is even, m odd
() = . .
Bnm-H+ (1) if n,m are even

+ 2ot Lzi(aiby — ajbi))

for some B, m € 7.
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Suppose X = V/(Fg, F1) is the intersection of two Fermat curves
V(Fp) and V(Fy) in P? with

Fo = aoXo’” + 21X1m + 22X2m

and
Fi = boXy" + biX{" + ba X5"

where the a;, b; € k* satisfy a;b; — ajb; # 0 for all i # j.

Goal:
Compute x(X)!
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Map induced by field extensions

For a separable field extension k C L, there is a morphism
s : GW(L) — GW(k).
For (u) € GW(L), we have that 7. (u) is given by the composition

Tri/k
—_—

Lx L3 k.

By a result of Hoyois, we have that x(Spec(L)) = m.((1)).
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Lemma

Let K be a field of characteristic coprime to 2m and let a € K*.
Let K(a) = K[X]/(X™ + a) and let u € K(a)*. Then

DL + (um) if m is odd
mT—2H + (um) + (—aum)  if m is even

Trr(ay/k((u)) = {

Proof idea: 1,c,---,a™ 1 is a basis of K(a). We have that
um ifi=j=0
TrK(a)/K(uoziJrj) =(¢—aum ifi+j=m
0 otherwise
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Without loss of generality, assume that X = V/(Fg, F;) lies in

X # 0. With coordinates x = %’ and y = % on A2, we have that

X = V(aopx™ + a1y™ + ap, box™ + b1y™ + by).

Let
K = k[x,y]/(aox™ + a1y™ + az, box™ + b1y™ + bo).
Note that
aox™ + a1y + a» = 0 and box" + b1y + b, =0
implies that

(albo—aobl)ym-l-azbo—aobz =0 and (aobl—albo)xm+32b1—31b2 =0.

So we have

K C kla) = Kt (em+ 22 =220

dal bo — aobl

alb2 —azbl)
aob1 — albo '

) € K = k(a)[s]/(s"+
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Final result

In particular: kK C K is separable.
Applying the lemma twice now gives:

Proposition

The quadratic Euler characteristic of X equals

o (1) 4 gy i) @Gt
X MH + (1) + Xio(IT;i(aiby — ajbi))  m even
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