The quadratic Euler characteristic of a smooth projective same-degree complete intersection

Anna Viergever

Leibniz Universität Hannover

$$
27.10 .2023
$$

Table of contents

1 Quadratic Euler characteristics

2 Hypersurface case

3 The complete intersection case

4 Two generalized Fermat curves

Table of Contents

1 Quadratic Euler characteristics

2 Hypersurface case

3 The complete intersection case

4 Two generalized Fermat curves

The Grothendieck-Witt ring

Notation

Fix a field k s.t. $\operatorname{char}(k) \neq 2$.

Definition

The Grothendieck-Witt ring GW (k) of k is the group completion of the monoid of isometry classes of nondegenerate quadratic forms.
$\mathrm{GW}(k)$ is generated by $\langle a\rangle: x \mapsto a x^{2}$ for $a \in k^{*}$ modulo
$\square\langle a\rangle\langle b\rangle=\langle a b\rangle$ for $a, b \in k^{*}$,
■ $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$ for $a, b, a+b \in k^{*}$,

- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in k^{*}$,
- $\langle a\rangle+\langle-a\rangle=H$ for any $a \in k^{*}$. Here, $H=\langle 1\rangle+\langle-1\rangle$ is the hyperbolic form.

Some examples

Example

$\mathrm{GW}(\mathbb{C}) \cong \mathbb{Z}$ via the rank. The same holds for other algebraically closed fields k.

Example

$\mathrm{GW}(\mathbb{R}) \cong \mathbb{Z}\left[C_{2}\right]$ where C_{2} is a cyclic group of order two.

Example

$\mathrm{GW}(\mathbb{F}) \cong \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for \mathbb{F} a finite field, $\operatorname{char}(\mathbb{F}) \neq 2$.

Motivic stable homotopy category

Dold-Puppe

Can define a categorical Euler characteristic for any strongly dualizable object of a symmetric monoidal category, lives in endomorphism ring of the unit.

Morel and Voevodsky: motivic stable homotopy category $\mathrm{SH}(k)$.

Some facts:

- $\mathrm{SH}(k)$ is symmetric monoidal,
- X smooth projective scheme k has a strongly dualizable image in $\mathrm{SH}(k)$,
- Morel: $\operatorname{End}\left(1_{\mathrm{SH}(k)}\right) \cong \mathrm{GW}(k)$.

Quadratic Euler characteristics

Definition

The quadratic Euler characteristic $\chi(X) \in \mathrm{GW}(k)$ of a smooth projective scheme X over k is the categorical Euler characteristic of X in $\mathrm{SH}(k)$ ．

Remark

If $Z \subset X$ is a smooth closed embedding of codimension c and $U \subset X$ is the open complement of Z ，then

$$
\chi(X)=\langle-1\rangle^{c} \chi(Z)+\chi(U)
$$

(2)

Examples

Example

We have that $\chi\left(\mathbb{A}^{n}\right)=\langle 1\rangle$.

Example

We have that $\chi\left(\mathbb{P}^{n}\right)=\sum_{i=0}^{n}\langle-1\rangle^{i}$.
If $k \subset \mathbb{R}$, then:

- $\operatorname{rank}(\chi(X))=\chi^{\text {top }}(X(\mathbb{C}))$,
- $\operatorname{sgn}(\chi(X))=\chi^{\text {top }}(X(\mathbb{R}))$.

Remark

If $V \rightarrow X$ is a rank $r+1$ vector bundle and $\mathbb{P}(V)$ is its projectivization, then $\chi(\mathbb{P}(V))=\chi(X) \cdot \chi\left(\mathbb{P}^{r}\right)$.

The Motivic Gauss-Bonnet Theorem

Theorem (Levine-Raksit)

Let X be a smooth projective scheme over k. Then:

- If $\operatorname{dim}(X)$ is odd, then $\chi(X)=a \cdot H$ for some $a \in \mathbb{Z}$.

■ If $\operatorname{dim}(X)=2 n$ is even, then $\chi(X)=a \cdot H+Q$ for some $a \in \mathbb{Z}$, where Q is given by

$$
H^{n}\left(X, \Omega_{X}^{n}\right) \times H^{n}\left(X, \Omega_{X}^{n}\right) \xrightarrow{\cup} H^{2 n}\left(X, \Omega_{X}^{2 n}\right) \xrightarrow{\text { Trace }} k .
$$

Here, Ω_{X} denotes the sheaf of differential forms on X and $\Omega_{X}^{q}=\wedge^{q} \Omega_{X}$.

Levine, Lehalleur and Srinivas: compute Q for X a hypersurface in \mathbb{P}^{n}. Inspiration from: Carlson-Griffiths.

Table of Contents

1 Quadratic Euler characteristics

2 Hypersurface case

3 The complete intersection case

4 Two generalized Fermat curves

Setup

Consider a smooth hypersurface $X=V(F) \subset \mathbb{P}^{n}$ where $F \in k\left[X_{0}, \cdots, X_{n}\right]$ is homogeneous of degree $m \in \mathbb{Z}_{\geq 2}$ s.t. $\operatorname{char}(k) X m$.

Definition

The Jacobian ring of X is

$$
J=k\left[X_{0}, \cdots, X_{n}\right] /\left(\frac{\partial F}{\partial X_{0}}, \cdots, \frac{\partial F}{\partial X_{n}}\right) .
$$

Note that:

- J has a natural grading.
- Top degree: $J^{(m-2)(n+1)} \cong k$ generated by the Scheja-Storch element e_{F}.

The Scheja-Storch generator

Remark

Formula for e_{F} : write $\frac{\partial F}{\partial X_{i}}=\sum_{j=0}^{n} a_{i j} X_{j}$ then $e_{F}=\operatorname{det}\left(a_{i j}\right)$.

Example (Generalized Fermat hypersurface)

Let $a_{0}, \cdots, a_{n} \in k^{*}$ and set $F=\sum_{i=0}^{n} a_{i} X_{i}^{m}$. Then we have that $\frac{\partial F}{\partial X_{i}}=m a_{i} X_{i}^{m-1}$. We have that $J^{(m-2)(n+1)}$ is generated by

$$
e_{F}=m^{n+1} \prod_{i=0}^{n} a_{i} X_{i}^{m-2}
$$

Primitive cohomology

Let $i: X \rightarrow \mathbb{P}^{n}$ be the inclusion. This induces a pushforward map

$$
i_{*}: H^{q}\left(X, \Omega^{p}\right) \rightarrow H^{q+1}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{p+1}\right)
$$

for all $p, q \in \mathbb{Z}_{\geq 0}$.

Definition

The primitive cohomology of X with respect to $p, q \in \mathbb{Z}_{\geq 0}$ is defined by $H^{q}\left(X, \Omega^{p}\right)_{\text {prim }}=\operatorname{ker}\left(i_{*}\right)$.

Have $H^{q}\left(X, \Omega^{p}\right)_{\text {prim }}=H^{q}\left(X, \Omega^{p}\right)$ whenever $p \neq q$.

Result for a hypersurface

Levine, Lehalleur, Srinivas: For each $q \geq 0$, there is an isomorphism

$$
\psi_{q}: J^{(q+1) m-n-1} \rightarrow H^{q}\left(X, \Omega^{n-1-q}\right)_{p r i m}
$$

which behaves well with the cup product.

Theorem (Levine, Lehalleur, Srinivas)

Let $p, q \in \mathbb{Z}_{\geq 0}$ satisfy $p+q=n-1$ and let $A \in J^{(q+1) m-n-1}$ and $B \in J^{(p+1) m-n-1}$. Suppose that $A B=\lambda e_{F}$ in $J^{(m-2)(n+1)}$, for some $\lambda \in k^{*}$. Then

$$
\operatorname{Tr}\left(\psi_{q}(A) \cup \psi_{p}(B)\right)=-m \lambda
$$

Generalized Fermat hypersurface

Let $X=V(F)$ with $F=\sum_{i=0}^{n} a_{i} X_{i}^{m}$ with $a_{i} \in k^{*}$. If $n=2 p+1$ is odd, then

$$
H^{p}\left(X, \Omega^{p}\right)=H^{p}\left(X, \Omega^{p}\right)_{\text {prim }} \oplus c_{1}(\mathcal{O}(1))^{p} .
$$

Result:

One can prove that

$$
\chi(X)= \begin{cases}A_{n, m} \cdot H & \text { if } n \text { even } \\ A_{n, m} \cdot H+\langle m\rangle & \text { if } n, m \text { odd } \\ A_{n, m} \cdot H+\langle m\rangle+\left\langle-m \prod_{i=0}^{n} a_{i}\right\rangle & \text { otherwise }\end{cases}
$$

for integers $A_{n, m} \in \mathbb{Z}$.

Table of Contents

1 Quadratic Euler characteristics

2 Hypersurface case

3 The complete intersection case

4 Two generalized Fermat curves

The complete intersection case

Over \mathbb{C} : Konno and Terasoma. Toric geometry: Cox-Batyrev and Villaflor.

Setup

Let $n, r \in \mathbb{Z}_{\geq 1}$ s.t. $n \geq r+2$. Let $F_{0}, \cdots, F_{r} \in k\left[X_{0}, \cdots, X_{n}\right]$ be homogeneous of the same degree $m \geq 2$. Assume m is coprime to $\operatorname{char}(k)$. Let $X=V\left(F_{0}, \cdots, F_{r}\right) \subset \mathbb{P}^{n}$ and assume X is a smooth complete intersection. Consider the smooth hypersurface

$$
\mathcal{X}=V(F) \subset \mathbb{P}^{r} \times \mathbb{P}^{n}
$$

where $F=Y_{0} F_{0}+\cdots+Y_{r} F_{r}$.
Notation: Write $\bar{F}_{j}=\frac{\partial F}{\partial X_{j}}$ for $j \in\{0, \cdots, n\}$.

Relating $\chi(X)$ and $\chi(\mathcal{X})$

Lemma

We have that $\chi(\mathcal{X})=\chi\left(\mathbb{P}^{r-1}\right) \chi\left(\mathbb{P}^{n}\right)+\langle-1\rangle^{r} \chi(X)$.

Proof.

Let $U=\mathbb{P}^{n} \backslash X$ and let $\pi: \mathcal{X} \rightarrow \mathbb{P}^{n}$ be the projection. Then $\pi^{-1}(X)=\mathbb{P}^{r} \times X$ and $\pi^{-1}(U) \rightarrow U$ is a Zariski locally trivial \mathbb{P}^{r-1}-bundle. We have that $\chi\left(\mathbb{P}^{n}\right)=\chi(U)+\langle-1\rangle^{r+1} \chi(X)$. This yields

$$
\begin{aligned}
\chi(\mathcal{X}) & =\chi\left(\mathbb{P}^{r-1}\right) \chi(U)+\langle-1\rangle^{r} \chi\left(\mathbb{P}^{r}\right) \chi(X) \\
& =\chi\left(\mathbb{P}^{r-1}\right) \chi\left(\mathbb{P}^{n}\right)+\langle-1\rangle^{r} \chi(X)
\end{aligned}
$$

as desired.

The Jacobian ring

Definition

The Jacobian ring is

$$
J=k\left[Y_{0}, \cdots, Y_{r}, X_{0}, \cdots, X_{n}\right] /\left(F_{0}, \cdots, F_{r}, \bar{F}_{0}, \cdots, \bar{F}_{n}\right)
$$

Note: J is bigraded and infinite dimensional over k.

Proposition (Konno and Terasoma over \mathbb{C}, V. for general case)

For $q \geq r$, there are isomorphisms

$$
\psi_{q}: J^{q-r,(q+1) m-(n+1)} \rightarrow H^{q}\left(\mathcal{X}, \Omega_{\mathcal{X}}^{n+r-1-q}\right)_{\text {prim }} .
$$

Compatibility with the cup product

Proposition (Konno and Terasoma over \mathbb{C}, V. for general case)

Let $\rho=(n-r-1,(n+r+1) m-2(n+1))$. There exists a surjective morphism ϕ, such that the diagram

$$
\begin{gathered}
H^{q}\left(\mathcal{X}, \Omega_{\mathcal{X}}^{p}\right)_{p r i m} \otimes H^{p}\left(\mathcal{X}, \Omega_{\mathcal{X}}^{q}\right)_{p r i m} \xrightarrow{i * * \cup} H^{n+r}\left(\mathbb{P}^{r} \times \mathbb{P}^{n}, \Omega_{\mathbb{P} r \times \mathbb{P}^{n}}^{n+r}\right) \\
\psi_{p} \otimes \psi_{q} \uparrow \\
\phi \uparrow J^{\rho}
\end{gathered}
$$

commutes for all $p, q \in \mathbb{Z}_{\geq 0}$ such that $p+q=n+r-1$.

Proof uses: cover of $\mathbb{P}^{r} \times \mathbb{P}^{n}$ by

$$
\mathcal{U}=\left\{\left\{F_{0} \neq 0\right\}, \cdots,\left\{F_{r} \neq 0\right\},\left\{\bar{F}_{0} \neq 0\right\}, \cdots,\left\{\bar{F}_{n} \neq 0\right\}\right\} .
$$

Note:

- Not all elements are of the same bidegree
- The cover is too big

Elements of the Čech cohomology group $C^{n+r}\left(\mathcal{U}, \Omega_{\mathbb{P} r \times \mathbb{P}^{n}}^{n+r}\right)$ look like cycles $\left\{s_{0}, \cdots, s_{r}, \bar{s}_{0}, \cdots, \bar{s}_{n}\right\}$ where s_{i} lives on the intersection of everything except $\left\{F_{i} \neq 0\right\}$.

Generators

Let $\omega=\sum_{i=0}^{r}(-1)^{i} Y_{i} d Y^{i}$ (a generator of $\Omega_{\mathbb{P} r}^{r}(r+1)$) and $\bar{\omega}=\sum_{j=0}^{n}(-1)^{j} X_{j} d X^{j}$ (a generator of $\left.\Omega_{\mathbb{P}^{n}}^{n}(n+1)\right)$. Then $\omega \wedge \bar{\omega}$ is a generator of $\Omega_{\mathbb{P}^{r} \times \mathbb{P}^{n}}^{n+r}(r+1, n+1)$.

One computes: i_{*} of a cup product of two images from J on Čech cohomology.
Then: The map ϕ is constructed from the morphism

$$
\left.\begin{array}{rl}
\tilde{\phi}: k\left[Y_{0}, \cdots, Y_{r}, X_{0}, \cdots, X_{n}\right]^{\rho} & \rightarrow C^{n+r}\left(\mathcal{U}, \Omega_{\mathbb{P}}^{n+r} \times \mathbb{P}^{n}\right.
\end{array}\right), \quad \begin{aligned}
& D \\
& \mapsto\left\{s_{0}, \cdots, s_{r}, \bar{s}_{0}, \cdots, \bar{s}_{n}\right\}
\end{aligned}
$$

where for $v \in\{0, \cdots, r\}$ and $w \in\{0, \cdots, n\}$, we have

$$
s_{v}=\frac{(-1)^{v+r+1} m D Y_{v} F_{v} \omega \wedge \bar{\omega}}{\prod_{i=0}^{r} F_{i} \prod_{j=0}^{n} \bar{F}_{j}} \text { and } \bar{s}_{w}=\frac{(-1)^{w+1} D X_{w} \bar{F}_{w} \omega \wedge \bar{\omega}}{\prod_{i=0}^{r} F_{i} \prod_{j=0}^{n} \bar{F}_{j}}
$$

One dimensionality results

In fact: J^{ρ} is one dimensional, unless \mathcal{X} is odd dimensional, $r=1$ and $m=2$.
Let

$$
\tilde{J}=k\left[Y_{0}, \cdots, Y_{r}, X_{0}, \cdots, X_{n}\right] /\left(Y_{0} F_{0}, \cdots, Y_{r} F_{r}, X_{0} \bar{F}_{0}, \cdots, X_{n} \bar{F}_{n}\right)
$$

Then: $\tilde{J}^{\rho+(r+1, n+1)}$ is one dimensional.

Lemma (V.)

If we do not have that $\operatorname{dim}(\mathcal{X})$ is odd, $r=1$ and $m=2$ then

$$
\psi: J^{\rho} \rightarrow \tilde{J}^{\rho+(r+1, n+1)}, D \mapsto D \prod_{i=0}^{r} Y_{i} \prod_{j=0}^{n} X_{j}
$$

is an isomorphism.

Towards the trace

Extra assumptions

$1 \quad m+1$ is invertible in k.
$2 V\left(F_{i}\right)$ is smooth for all $i \in\{0, \cdots, r\}$ and $V\left(F_{0}, \cdots, F_{r}\right)$ is smooth and of codimension $r+1$.
3 The assumption (2) remains true after setting any subset of the X_{i} or Y_{i} equal to zero.

These assumptions mean that we can cover $\mathbb{P}^{r} \times \mathbb{P}^{n}$ by

$$
\left\{\left\{Y_{0} F_{0} \neq 0\right\}, \cdots,\left\{Y_{r} F_{r} \neq 0\right\},\left\{X_{0} \bar{F}_{0} \neq 0\right\}, \cdots,\left\{X_{n} \bar{F}_{n} \neq 0\right\}\right\}
$$

But

$$
m \sum_{i=0}^{r} Y_{i} F_{i}-\sum_{j=0}^{n} X_{j} \bar{F}_{j}=m F-m F=0
$$

Better cover

This means we have the cover
$\mathcal{W}=\left\{\left\{Y_{1} F_{1} \neq 0\right\}, \cdots,\left\{Y_{r} F_{r} \neq 0\right\},\left\{X_{0} \bar{F}_{0} \neq 0\right\}, \cdots,\left\{X_{n} \bar{F}_{n} \neq 0\right\}\right\}$

Note that:

- All elements have bidegree $(1, m)$.
- This cover has the right amount of elements.
- This is a refinement of \mathcal{U}.

Want: Represent something of which we know the trace on this cover and compare with cup products.
Let M be the Jacobian matrix of $Y_{0} F_{0}, \cdots, Y_{r} F_{r}, X_{0} \bar{F}_{0}, \cdots, X_{n} \bar{F}_{n}$.

Lemma (V.)

There exists a unique $\tilde{C} \in k\left[Y_{0}, \cdots, Y_{r}, X_{0}, \cdots, X_{n}\right]^{\rho+(r+1, n+1)}$ such that

$$
(m+1) Y_{i} X_{j} \tilde{C}=(-1)^{j} \operatorname{det}\left(M_{0 \mid j+r+1}\right) Y_{i}+(-1)^{r+i} \operatorname{det}\left(M_{0 \mid i}\right) X_{j}
$$

for $i \in\{0, \cdots, r\}$ and $j \in\{0, \cdots, n\}$. Moreover,

$$
\frac{\tilde{C} \omega \wedge \bar{\omega}}{\prod_{i=1}^{r} Y_{i} F_{i} \prod_{j=0}^{n} X_{j} \bar{F}_{j}} \in C^{n+r}\left(\mathcal{W}, \Omega_{\mathbb{P}^{r} \times \mathbb{P}^{n}}^{n+r}\right)
$$

represents $c_{1}(\mathcal{O}(1, m))^{n+r}$.

We know: $\operatorname{Tr}\left(c_{1}(\mathcal{O}(1, m))^{n+r}\right)=m^{n}\binom{n+r}{r}$.
And: This is represented by

$$
\frac{\tilde{C} \omega \wedge \bar{\omega}}{\prod_{i=1}^{r} Y_{i} F_{i} \prod_{j=0}^{n} X_{j} \bar{F}_{j}} \in C^{n+r}\left(\mathcal{W}, \Omega_{\mathbb{P}^{\prime} \times \mathbb{P}^{n}}^{n+r}\right) .
$$

Also: For $p+q=n+r-1, A \in J^{q-r,(q+1) m-(n+1)}$ and $B \in J^{p-r,(p+1) m-(n+1)}$, have that $\phi(A B)=i_{*}\left(\psi_{q}(A) \cup \psi_{p}(B)\right)$ is represented by

$$
\frac{(-1)^{r+1} m A B \omega \wedge \bar{\omega}}{\prod_{i=1}^{r} F_{i} \prod_{j=0}^{n} \bar{F}_{j}} \in C^{n+r}\left(\mathcal{W}, \Omega_{\mathbb{P}^{r} \times \mathbb{P}^{n}}^{n+r}\right) .
$$

Finally: If we don't have $r=1, m=2$ and $\operatorname{dim}(\mathcal{X})$ odd then $\tilde{C}=\psi(C)$ for a unique $C \in J^{\rho}$. And C has to be a generator.

Theorem (V.)

Assume that we do not have $\operatorname{dim}(\mathcal{X})$ is odd, $r=1$ and $m=2$. Let $p, q \in \mathbb{Z}_{>0}$ s.t. $p+q=n+r-1$. For $A \in J^{q-r,(q+1) m-(n+1)}$ and $B \in J^{p-r},(p+1) m-(n+1)$, write $A B=\lambda C$ in J^{ρ} for some $\lambda \in k$. Then

$$
\begin{aligned}
\operatorname{Tr}\left(\psi_{q}(A) \cup \psi_{p}(B)\right) & =\operatorname{Tr}\left(i_{*}\left(\psi_{q}(A) \cup \psi_{p}(B)\right)\right) \\
& =(-1)^{r+1} m^{n+1}\binom{n+r}{r} \lambda .
\end{aligned}
$$

Intersecting two generalized Fermat hypersurfaces

Theorem (V.)

Let $a_{0}, \cdots, a_{n}, b_{0}, \cdots, b_{n} \in k^{*}$ s.t. $a_{i} b_{j}-a_{j} b_{i} \neq 0$ for all $i \neq j$. Let $F_{0}=\sum_{i=0}^{n} a_{i} X_{i}^{m}, F_{1}=\sum_{i=0}^{n} b_{i} X_{i}^{m}$. Let $X=V\left(F_{0}, F_{1}\right) \subset \mathbb{P}^{n}$. Then

$$
\chi(X)= \begin{cases}B_{n, m} \cdot H & \text { if } n \text { is odd } \\ B_{n, m} \cdot H+\langle 1\rangle & \text { if } n \text { is even, } m \text { odd } \\ B_{n, m} \cdot H+\langle 1\rangle & \text { if } n, m \text { are even } \\ +\sum_{i=0}^{n}\left\langle\prod_{j \neq i}\left(a_{i} b_{j}-a_{j} b_{i}\right)\right\rangle & \end{cases}
$$ for some $B_{n, m} \in \mathbb{Z}$.

Table of Contents

1 Quadratic Euler characteristics

2 Hypersurface case

3 The complete intersection case

4 Two generalized Fermat curves

Setup

Suppose $X=V\left(F_{0}, F_{1}\right)$ is the intersection of two Fermat curves $V\left(F_{0}\right)$ and $V\left(F_{1}\right)$ in \mathbb{P}^{2} with

$$
F_{0}=a_{0} X_{0}^{m}+a_{1} X_{1}^{m}+a_{2} X_{2}^{m}
$$

and

$$
F_{1}=b_{0} X_{0}^{m}+b_{1} X_{1}^{m}+b_{2} X_{2}^{m}
$$

where the $a_{i}, b_{i} \in k^{*}$ satisfy $a_{i} b_{j}-a_{j} b_{i} \neq 0$ for all $i \neq j$.

Goal:

Compute $\chi(X)$!

Trick

Map induced by field extensions

For a separable field extension $k \subset L$, there is a morphism

$$
\pi_{*}: \mathrm{GW}(L) \rightarrow \mathrm{GW}(k)
$$

For $\langle u\rangle \in \mathrm{GW}(L)$, we have that $\pi_{*}\langle u\rangle$ is given by the composition

$$
L \times L \xrightarrow{\langle u\rangle} L \xrightarrow{\operatorname{Tr}_{L / k}} k .
$$

By a result of Hoyois, we have that $\chi(\operatorname{Spec}(L))=\pi_{*}(\langle 1\rangle)$.

Lemma

Let K be a field of characteristic coprime to $2 m$ and let $a \in K^{*}$. Let $K(\alpha)=K[X] /\left(X^{m}+a\right)$ and let $u \in K(\alpha)^{*}$. Then

$$
\operatorname{Tr}_{K(\alpha) / K}(\langle u\rangle)= \begin{cases}\frac{m-1}{2} H+\langle u m\rangle & \text { if } m \text { is odd } \\ \frac{m-2}{2} H+\langle u m\rangle+\langle-a u m\rangle & \text { if } m \text { is even }\end{cases}
$$

Proof idea: $1, \alpha, \cdots, \alpha^{m-1}$ is a basis of $K(\alpha)$. We have that

$$
\operatorname{Tr}_{K(\alpha) / K}\left(u \alpha^{i+j}\right)= \begin{cases}u m & \text { if } i=j=0 \\ -a u m & \text { if } i+j=m \\ 0 & \text { otherwise }\end{cases}
$$

Without loss of generality, assume that $X=V\left(F_{0}, F_{1}\right)$ lies in $X_{2} \neq 0$. With coordinates $x=\frac{X_{0}}{X_{2}}$ and $y=\frac{X_{1}}{X_{2}}$ on \mathbb{A}^{2}, we have that

$$
X=V\left(a_{0} x^{m}+a_{1} y^{m}+a_{2}, b_{0} x^{m}+b_{1} y^{m}+b_{2}\right) .
$$

Let

$$
K=k[x, y] /\left(a_{0} x^{m}+a_{1} y^{m}+a_{2}, b_{0} x^{m}+b_{1} y^{m}+b_{2}\right) .
$$

Note that

$$
a_{0} x^{m}+a_{1} y^{m}+a_{2}=0 \text { and } b_{0} x^{m}+b_{1} y^{m}+b_{2}=0
$$

implies that
$\left(a_{1} b_{0}-a_{0} b_{1}\right) y^{m}+a_{2} b_{0}-a_{0} b_{2}=0$ and $\left(a_{0} b_{1}-a_{1} b_{0}\right) x^{m}+a_{2} b_{1}-a_{1} b_{2}=0$.
So we have
$k \subset k(\alpha)=k[t] /\left(t^{m}+\frac{a_{0} b_{2}-a_{2} b_{0}}{a_{1} b_{0}-a_{0} b_{1}}\right) \subset K=k(\alpha)[s] /\left(s^{m}+\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{0} b_{1}-a_{1} b_{0}}\right)$.

Final result

In particular: $k \subset K$ is separable.
Applying the lemma twice now gives:

Proposition

The quadratic Euler characteristic of X equals

$$
\chi(X)= \begin{cases}\frac{(m+1)(m-1)}{2} H+\langle 1\rangle & m \text { odd } \\ \frac{(m+2)(m-2)}{2} H+\langle 1\rangle+\sum_{i=0}^{2}\left\langle\prod_{j \neq i}\left(a_{i} b_{j}-a_{j} b_{i}\right)\right\rangle & m \text { even }\end{cases}
$$

