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Introduction

In this talk, we’ll look at the construction of twistor families of
moduli spaces of local systems, after Hitchin and Deligne.

Motivated by the classical case of local systems on a compact
curve, the next step was to look at rank 1 local systems on an
open curve.

In that case, a weight 2 property for the local monodromy
transformations around the punctures came into view, and this was
related to parabolic structures.



Introduction

We would now like to consider how to move to higher rank local
systems on an open curve. The objective of this talk is to look at
the new issues that arise, but first we’ll review the compact and
rank 1 cases.

Our discussion will take place for rank 2 bundles with logarithmic
connection and quasi-parabolic structure on the compactified
curve.



The twistor P1

Let H = R〈1, I, J ,K 〉 be the algebra of quaternions. If

κ = xI + yJ + zK

then κ2 = −1 if and only if x2 + y2 + z2 = 1, so the space of
complex structures in H is identified with the two-sphere S2. This
itself is provided with a complex structure making it into P1.

The complex structure I corresponds to 0 ∈ P1 and J corresponds
to 1 ∈ P1.



The twistor space of a quaternionic vector space

Suppose V is an H-module i.e. quaternionic vector space. Then
for each κ ∈ P1 we obtain a complex structure on V , hence a
C-vector space Vκ.

On the product V × P1, declaring the complex structure in the
second variable to be the same as that of P1, this yields a global
complex structure making it into the total space of a vector bundle
V over P1.



Preferred sections and involution

We call the sections of V of the form {v} × P1 the preferred
sections .

The antipodal involution (x , y , z) 7→ (−x ,−y ,−z) corresponds to
σ : λ 7→ −λ−1 (composition of the three natural involutions in
coordinates on P1).

This involution may be viewed as a real structure on P1 although
its set of real points is empty.



Preferred sections and involution

The vector bundle V is provided with an involution defined by
σ(v , λ) = (v , σ(λ)), antilinear and covering σ on the base. In
other words, the bundle has a real structure over the real structure
of the base.

The preferred sections are the only holomorphic sections
compatible with σ.

In the case V = H one calculates V ∼= OP1(1)⊕2. Since any
H-module is just a direct sum of these, it follows in general that
the bundle V is going to be semistable of slope 1.



Weight 1 property and quaternionic structure

Theorem
If (V, σ) is a vector bundle with σ-compatible involution on P1

such that V is semistable of slope 1, then it comes from the above
construction for the quaternionic vector space

V = Γ(P1,V)σ.

For each κ ∈ P1, the projection V → Vκ is an isomorphism of real
vector spaces and this induces the complex structure κ on V .



Twistor space of a quaternionic manifold

Suppose now that we are given an integrable quaternionic manifold
M. Then the twistor space is

Tw(M) := M × P1

with complex structure obtained in the same way.

The horizontal “preferred sections” {m} × P1 are given the
holomorphic structure of P1, and for any κ ∈ P1 the fiber M × {κ}
is given the complex structure Mκ determined by the action of
κ ∈ H on the tangent spaces of M.

The “integrability” condition says that these are integrable
complex structures, and the general Penrose theory yields an
integrable complex structure on the total space Tw(M).



Hitchin’s hyperkähler structure

We now recall that Hitchin defined a quaternionic structure on the
moduli space M of local systems on a smooth compact Riemann
surface X .

The twistor space Tw(M) was considered at length in Hitchin’s
paper.

He also promoted it to a hyperkähler structure by defining a
Riemannian metric and Kähler forms.



Dolbeault and de Rham

For the complex structure κ = I corresponding to λ = 0 in P1, the
complex moduli space M0 is the moduli space of Hitchin pairs or
“Higgs bundles” (E , ϕ) on X . We may call this the Dolbeault
moduli space denoted MDol in view of the analogy with Dolbeault
cohomology.

For the complex structure κ = J corresponding to λ = 1 in P1, the
complex moduli space M1 is the moduli space of vector bundles
with integrable connection (E ,∇) on X . We call this the de Rham
moduli space denoted MdR in view of the analogy with de Rham
cohomology.



Trivialization

Furthermore, for all the complex structures κ corresponding to
λ 6= 0,∞ the moduli spaces Mκ are naturally isomorphic, so they
are all isomorphic to MdR = M1 the moduli space of vector
bundles with integrable connection, which is in turn isomorphic to
the moduli space of local systems or representations of the
fundamental group.



Deligne’s interpretation

Deligne, via Witten, gave a reinterpretation of this space as
follows. Each Mλ is the moduli space of vector bundles with
λ-connection (E ,∇). For λ 6= 0 the rescaling λ−1∇ is just a
connection, yielding the isomorphisms refered to above, whereas
for λ = 0 a λ-connection is the same thing as a Higgs field ϕ.



Deligne’s interpretation

We may make an algebraic geometry construction of the family of
moduli spaces over A1 ⊂ P1, which for reasons of analogy with the
Dolbeault and de Rham terminology, we call MHod for Hodge.

This space together with its C∗-action is viewed as the “Hodge
filtration” relating de Rham to Dolbeault.



Deligne’s interpretation

Deligne observes that the isomorphisms between different nonzero
λ ∈ A1 − {0} = Gm fit together to give an analytic trivialization

MHod|Gm
∼= MB ×Gm

where MB (for “Betti”) is the moduli space of representations of
the fundamental group.



Deligne glueing

Then, the condition of existence of an antipodal involution
covering σ motivated Deligne to define a glueing between
MHod(X ) and MHod(X ) using the isomorphism

π1(X ) ∼= π1(X ) whence MB(X ) ∼= MB(X )

and applying the involution λ 7→ −λ−1 on Gm.



Deligne glueing

Glueing the two pieces together yields a space

MHod(X ) ∪MHod(X ) =: MDH → P1

and one can define an antipodal involution using that X is the
complex conjugate variety to X and the fact that the moduli space
MHod is a canonical algebraic geometry construction so it supports
a complex conjugation operation.

(I won’t try to give the formula here as that would probably just induce a
sign error.)



Isomorphism

Theorem
The Deligne-Hitchin moduli space constructed by Deligne’s glueing
is isomorphic to the twistor space for Hitchin’s quaternionic
structure:

MDH ∼= Tw(M)
↘ ↙

P1



Preferred sections from harmonic bundles

The preferred sections of the twistor space correspond to sections
of the fibration MDH → P1 that we also call “preferred sections”.
These are maps P1 → MDH that are obtained whenever we have a
harmonic bundle

(E , ∂, ∂, ϕ, ϕ†)

corresponding to a solution of Hitchin’s equations.



Preferred sections from harmonic bundles

For λ ∈ A1 the point in the moduli space of holomorphic vector
bundles with λ-connections is(

Eλ := (E , ∂ + λϕ†), ∇λ := λ∂ + ϕ
)
.

If one gets the formulas right, then these preferred sections are
compatible with the antipodal involution.



Weight 1 property

The fact that this construction gives the twistor space of a
quaternionic manifold comes from the following property:

Proposition
Suppose ρ : P1 → MDH is a preferred section defined as coming
from a harmonic bundle in the above way. Let

V = ρ∗T (MDH/P1)

be the pullback of the relative tangent bundle, or equivalently the
normal bundle of MDH to the section. Then V is a semistable
vector bundle of slope 1 over P1.



Weight 1 property

An analogy with Hodge structures motivates us to call the property
of being semistable of slope 1, a property of weight 1.

Thus, the fact that we have a quaternionic structure on the moduli
space comes from a weght 1 property for the tangent bundle to the
preferred section.

We recall that the tangent bundle to a moduli space is calculated
as an H1 of an appropriate complex, so we are saying here that the
H1 has weight 1. This may be viewed as a purity statement for
nonabelian Hodge structures.



Weight 1 property

Fundamentally, the calculation going into the proof uses the
observation that the tangent space of the moduli space is an H1,
calculated by some kind of harmonic forms. Then, the fact that
they are 1-forms means that the transition functions needed to
pass from the A1 neighborhood of λ = 0 to the A1 neighborhood
of λ =∞ involve λ−1 leading to the semistable of slope 1 property.

This weight 1 property is the nonabelian cohomology analogue of
the statement in usual Hodge theory that H1

dR(X ) has a weight 1
Hodge structure, and similarly for a variety over Fq that the étale
cohomology H1

et(XFq
,Q`) has weight 1 in the sense that the

eigenvalues of Frobenius have norm q1/2.



Weight 2

We may naturally suspect that for certain cohomological aspects,
this weight 1 property would become a weight 2 property.

Recall from arithmetic geometry that the inertia group has the
form of a Tate twist, so it has weight −2 and the space of
representations of the inertia group should be thought of as having
weight 2.



Weight 2

One finds that this is indeed the case, upon examining the case of
moduli spaces of local systems of rank 1 over an open curve. This
was done in the paper

“A weight two phenomenon for the moduli of rank one local
systems on open varieties” in From Hodge theory to integrability
and TQFT tt*-geometry, Proc. Sympos. Pure Math (2008).



The weight 2 property in the case of rank 1

Let’s look at some of the details in this rank 1 case.

For simplicity let’s consider X = Gm where the only data of a local
system is a single local monodromy at a puncture.

A logarithmic λ-connection will be over a trivial bundle on X ,
having the form

∇(λ, a) = λd + adzz .



The case of rank 1

We note that there is an action of change of the trivialization
making (λ, a) equivalent to (λ, a + kλ) for any k ∈ Z. The
singularity of this action at λ = 0 is one of the difficulties of the
open curve situation.

Let G ∼= Z be this “gauge group” acting.



The case of rank 1

For the moduli space we may write

MHod := A1 × C/G

using A1 for the λ variable and C for the coefficient a.

Note that the group acts discretely over λ 6= 0 but the stabilizer
group of the fiber over λ = 0 is the full G = Z.

It is therefore not completely clear what kind of structure best to
accord to the quotient. More on this aspect later.



Riemann-Hilbert and period integrals

The Riemann-Hilbert corresponce over λ 6= 0 is the exponential

Gm × C/G
∼=−→ Gm × C∗

sending (λ, a) to (λ, exp(2πia/λ)). This exponential of the period
integral

2πia/λ =
∮
λ−1adzz

is the monodromy of the connection λ−1∇(λ, a) around the loop
generating π1(X ).



Deligne glueing in this case

We would like to glue MHod to the other piece in the Deligne
glueing. For that, let µ denote the coordinate of the other chart
A1 ⊂ P1 with µ = −λ−1. A point

(µ, b) ∈ MHod(X )

has monodromy transformation exp(2πib/µ) along the generating
loop for π1(X ).



Deligne glueing in this case

The topological isomorphism X top ∼= X top will take the generator
to minus the generator, so the Deligne glueing should associate
(λ, a) with (µ, b) (up to the G action) when

exp(2πia/λ) = exp(−2πib/µ).



Deligne glueing in this case: getting weight 2

Lift over the action of the gauge group to say that we would like

a/λ = −b/µ.

Recalling that µ = −λ−1, this associates (λ, a) with (−λ−1, b)
when

a/λ = −b/(−λ−1) = λb ⇔ a = λ2b.

This is the glueing condition for the line bundle OP1(2) over P1.



The weight 2 twistor space

From the above discussion we get

MDH = Tot(OP1(2))/G .

There is also a natural antipodal involution, and the preferred
sections are the sections that are compatible with σ. These are
going to lift over the action of the gauge group to σ-equivariant
sections of OP1(2), so in what follows we’ll sometimes ignore the
G -action.



Antipode-invariant sections

Recall from the compact case that we wanted to look at the space
of σ-equivariant sections of MDH/P1. Here let’s lift and look at
the space of σ-equivariant sections of OP1(2). Recall that before
asking for σ-equivariance we have

Γ(P1,OP1(2)) ∼= C3.



Complex structures

Lemma

Γ(P1,OP1(2))sigma ∼= R3.

For any κ ∈ P1 the restriction morphism from these sections to the
fiber Cκ = OP1(2)κ is a surjection

R3 → Cκ.

There is a natural splitting as R3 ∼= R× Cκ such that the
generator of the gauge group has the form (1, λ).



Parabolic weight parameter

The fascinating thing that happens here is that the extra real
parameter, kernel of the restriction map, may be viewed as the
parabolic weight parameter.

If (E , ∂, ∂, ϕ, ϕ†, h) is a tame harmonic bundle over X then it
yields a σ-invariant section, and for λ ∈ A1 the corresponding
point in R× C is (p, e) where p is the parabolic weight and e the
eigenvalue of the residue of the λ-connection.

The parabolic weight expresses the growth rate of the harmonic
metric h near a puncture.



Parabolic weight parameter

The expression of R× C, depending on λ, as corresponding to a
unique R3 independent of λ, allows to recover the formulas (see
below) for the relationship between parabolic weights and
eigenvalues of the residue between Higgs bundles and flat bundles.

The fact that we have an extra real parameter for the parabolic
weight, may therefore be seen as a manifestation of the fact that
the monodromy transformations around punctures lie in a space
whose Hodge weight is 2.



Formulas

Sabbah and Mochizuki gave formulas for the variation of parabolic
weight p and eigenvalue e as a function of λ, generalizing my
formulas for λ = 1. Starting with (a, α) ∈ R× C at λ = 0, we
have:

p(λ, (a, α)) = a + 2Re(λα)

e(λ, (a, α)) = α− aλ− αλ2.

These enter into Mochizuki’s discussion of KMS-structure and
what he calls “difficulty (b)”.

These formulas are also a consequence of the weight 2 twistor
space interpretation.



Analogy with MHS and Q` cohomology

For comparison let us recall for

X = Gm = P1 − {0,∞}

that the mixed Hodge structure on H1(X ) is one-dimensional, of
weight 2, and in the arithmetic setting

H1
et(X ,Q`) ∼= Q`(1)

is a Tate twist having weight two.



Going towards the higher-rank case: challenges

We would like to extend this picture to higher rank local systems
on an open curve. Let’s look at some potential difficulties in light
of the previous discussion.

A first observation is that the action of the gauge group becomes
singular over λ = 0, indeed the entire G = Z stabilizes the full
fiber over λ = 0.

For this reason, we’ll tend not to really look at the quotient space,
but to retain just the action groupoid instead. One possible
solution here would be to invoke the notion of diffeological space.



Going towards the higher-rank case: challenges

A next observation is that we have sidestepped any discussion of
stability. From the compact case recall that the construction of
MDol requires the notion of stability of a Higgs bundle, so this
information is needed in the fiber over λ = 0 for the construction
of MHod.

However, in the quasiprojective case, defining stability requires
knowing the parabolic weights, but we are trying to recover the
parabolic weights from the twistor space construction itself as
happened in rank 1.

Without a notion of stability, we are going to be getting moduli
spaces that are not of finite type but only locally of finite type.
This should be accepted.



Going towards the higher-rank case: challenges

A third difficulty for making the construction is that, from the
formulas for the variation of eigenvalue of the residue as a function
of λ, a preferred section is always going to have some points where
the eigenvalues are resonant, so we are not able just to impose a
non-resonance condition on the residues.

We do however impose some conditions on the fiber over 0 so as
to improve somewhat the moduli problem. This makes it so that
the discussion will work for most but not all “preferred sections”.



Framed quasi-parabolic logarithmic λ-connections

Let Y be a compact Riemann surface and D ⊂ Y a reduced
divisor, for today we’ll just suppose D = {y}. Set X := Y − D.
Choose a base-point x ∈ X .

We look at bundles of rank 2.



Framed quasi-parabolic logarithmic λ-connections

A framed quasi-parabolic bundle with logarithmic λ-connection is

(λ,E ,∇,F , β)

where λ ∈ A1, E is a rank 2 vector bundle on Y , ∇ is a
logarithmic λ-connection i.e.

∇ : E → E ⊗ Ω1
Y (logD), ∇(ae) = a∇(e) + λd(a)e

F = Fy ⊂ Ey is a one-dimensional subspace preserved by resy (∇),
and β : Ex ∼= C2 is a framing over the base-point.



Hypotheses

Those are the objects that our parameter space is going to
parametrize. We make the following hypotheses (∗):
I The framed object is rigid: there are no automorphisms of

(E ,∇) that preserve the framing β; and
I If λ = 0, the spectral curve of ϕ = ∇ (which is a Higgs field

in this case) is irreducible.



Moduli space

Theorem
There exists a smooth algebraic space, locally of finite type,
parametrizing the tuples (λ,E ,∇,F , β) satisfying Hypothesis (∗),

M̃Hod(X ) λ−→ A1.



Gauge groupoid

Now, instead of a gauge group we’ll define a gauge groupoid GHod
acting on this moduli space. This groupoid consists of partially
defined morphisms from the moduli space to itself, generated by
the following operations on a tuple (λ,E ,∇,F , β)
I (H): this is the Hecke operation going to the bundle

ker(E → Ey/Fy );
I (T ): this is tensoring yielding E ⊗OY (y);
I (P): this operation is partially defined on the open set of

points where the eigenvalues of resy (∇) are distinct, yielding
(λ,E ,∇,F⊥, β) where F⊥y is the eigenspace different from Fy .



Gauge groupoid: going to the quotient

Proposition
The gauge groupoid is étale, that is to say the map

GHod → M̃Hod(X )× M̃Hod(X )

when composed with either of the projections is étale. This map is
however not proper so the “quotient space”, that would be
denoted MHod(X ), would be non-separated.

The quotient could be viewed as an analytic stack, though not
necessarily having very good finiteness properties, or perhaps a
complex diffeological space. Our approach will be rather to just
consider the groupoid as a whole.



Morphisms to the groupoid

Suppose Z is a complex analytic space. Then a morphism
f : Z →

(
M̃Hod(X ),GHod

)
is by definition the data of an open

covering Z =
⋃
Zi and morphisms fi : Zi → M̃Hod(X ) and

gij : Zi ∩ Zj → GHod such that fi |Zi∩Zj and fi |Zi∩Zj are respectively
the first and second projections following gij , and such that the gij
satisfy the cocycle condition with respect to the composition of the
groupoid GHod.

If (Z ,GZ ) is itself a groupoid one can similarly define the notion of
a morphism (Z ,GZ )→

(
M̃Hod(X ),GHod

)
.



Betti version

Let us define the “Betti” version of this moduli space. Let M̃B(X )
denote the moduli space of tuples (L,F , β) where L is a rank 2
local system on X , F = {Fy} is a sub-local system of the
restriction of L to a punctured disk around y , and β : Lx ∼= C2 is a
framing.

Let M̃B(X ) be the moduli space for such framed quasi-parabolic
local systems.



Betti version of the gauge groupoid

Define the Betti gauge groupoid GB acting on M̃B(X ) to be the
groupoid consisting of partially defined morphisms fromM̃B(X ) to
itself, generated by the operation:
I (P): defined on the open set where the eigenvalues of the

local monodromy transformation are distinct, sending
(L,F , β) to (L,F⊥, β) where F⊥y is the eigenspace of the local
monodromy that is different from Fy .



Betti quotient space

We again get an etale groupoid. Here the finiteness conditions are
better so the quotient MB(X ) = M̃B(X )/GB is a non-separated
algebraic stack.

We note that because part of the gauge groupoid comes from a
partially-defined operation (P), the quotient stack has singular
points that exhibit the “bug-eye” property that I first learned from
a talk by János Kollár a long time ago.

J. Kollár. Cone theorems and bug-eyed covers. J. Alg. Geom (1992)



Riemann-Hilbert

Theorem (Riemann-Hilbert correspondence)
We have an equivalence of analytic groupoids(

M̃Hod(X ), GHod
)
×P1 Gm ∼= (M̃B(X ), GB)×Gm.



Preparation for Deligne glueing

The isomorphism of topological spaces between X top and X top

gives an equivalence

(M̃B(X ), GB) ∼= (M̃B(X ), GB).



Deligne glueing

Using the Riemann-Hilbert correspondence we can then make a
Deligne glueing. In terms of groupoids this can be viewed as
follows: let

M̃DH := M̃Hod(X ) t M̃Hod(X )

with gauge groupoid GDH combining the GHod on both pieces,
together with pieces identifying points that correspond to elements
of the Betti moduli space that are identified under the previous
equivalence:

MDH =
(
M̃DH, GDH

)
.



Preferred section from a harmonic bundle

Suppose given a tame harmonic bundle (EX , ∂, ∂, ϕ, ϕ
†, h) on X ,

satisfying our condition that the spectral curve of the Higgs field is
irreducible, and choose a framing β : Ex ∼= C2.

For each λ ∈ A1, there is a well-defined extension of EX to a
parabolic bundle Eλ over Y (now including parabolic weights)
together with a logarithmic λ-connection ∇λ.

We recall that the parabolic structure reflects the growth
properties of the harmonic metric.



Preferred section from a harmonic bundle

At our puncture y and for each λ, we get a pair of elements
(p1(λ), e1(λ)) and (p2(λ), e2(λ)) in R× C.

These all correspond to the same pair of elements of
R3 = Γ(P1,OP1(2))σ, modulo the action of the local gauge group
Z.

We assume that the two elements are distinct modulo the gauge
group—this is our non-resonance assumption.



Preferred section from a harmonic bundle

At general points λ, the parabolic weights will then be distinct, so
the parabolic structure gives a well-defined quasi-parabolic
structure, i.e. a rank 1 subspace Fy ⊂ Ey . This yields a point of
M̃Hod well-defined up to GHod.

Notice that to get a bundle we need to pick one of the open
intervals between parabolic weights; choosing a different interval is
going to result in a change using the operations (H) and (T ).



Preferred section from a harmonic bundle

There may, on the other hand, be some points at which the
parabolic weights coincide in R/Z. Here, the parabolic structure
no longer defines a quasi-parabolic structure, indeed the dimension
jumps are by 2 at the unique parabolic weight in each interval
(k, k + 1].

Our non-resonance assumption however implies, at these points,
that the eigenvalues of resy (∇) are different. Therefore, we may
just choose one of the two eigenspaces to be Fy . Making the
opposite choice yields a point that differs by the operation (P).

Thus, we also get a point of M̃Hod well-defined up to GHod.



Preferred section from a harmonic bundle

Putting these cases together, we see that for any λ ∈ A1 we obtain
a point of M̃Hod well-defined up to GHod. One can check that
locally these specifications patch together to give a section

A1 →
(
M̃Hod(X ), GHod

)
.

It patches with the same construction on the opposite chart to give
a section of the Deligne-Hitchin space

ρ : P1 →
(
M̃DH(X ), GDH

)
.

This is the preferred section corresponding to the harmonic bundle.



Mixed twistor normal bundle of the preferred section

The tangent bundle of the “quotient” MDH(X ) may be defined,
since the groupoid is étale.

Theorem
Let V be the pullback by ρ of the tangent bundle of MDH(X ). It
has a filtration

0 ⊂W0V ⊂W1V ⊂W2V = V

where W1V is the set of tangent vectors that preserve the
eigenvalues of the residues, and W0V is the tangent space of the
change of framing. Then (V,W·) is a mixed twistor structure,
meaning that Wk/Wk−1 is a semistable bundle on P1 of slope k
(for k = 0, 1, 2).



Mixed twistor normal bundle of the preferred section

This theorem is the analogue in our case of the purity property in
the compact case, and generalizes to rank 2 the weight 2 property
observed for the rank 1 case in the previous paper.

Roughly speaking it should tell us that the moduli space of flat
bundles with fixed local monodromy transformations has a
hyperkähler structure. That is certainly already known in many
cases, either by invoking the theory over compact orbicurves in the
case of finite monodromy, or at least stated by physicists in a more
general setting.



Mixed twistor D-modules

For the proof of the theorem, we need a basic 1-dimensional part
of Takuro Mochizuki’s and Claude Sabbah’s theory of mixed
twistor D-modules.

They show that pure twistor D-modules are closed under
operations such as higher direct image. For the map from a curve
to a point this tells us that the cohomology of a pure twistor
D-module is again a pure twistor structure.

This special case is of course only a small part of the general
theory.

Comparing setups to extract our statement from their general
theory is still a work in progress.


