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Building Blocks

Theorem (Beauville-Bogomolov)

Let X be a smooth, compact, Kähler manifold with c1(X ) = 0. Then there
exists a finite étale cover π : X̃ → X such that:

X̃ = T ×
∏

Ci ×
∏

Xj .

where:

1 T is a complex torus

2 Ci is a strict Calabi-Yau manifold, i.e hp,0(Ci ) = 0 for p ̸= 0, dimCi .

3 Xj is an irreducible holomorphic symplectic manifold.
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The basics

Definition (IHSM)

An hyperkähler manifold X is a compact, kähler manifold that is simply
connected and has a unique holomorphic symplectic form, i.e
H2,0(X ) = C⟨σX ⟩.

These are also called irreducible holomorphic symplectic manifolds
(IHSMs). Examples:

dim = 2 : K3 surfaces

dim = 2n : K3[n], Kumn;

Sporadic examples in dim = 6, dim = 10 called OG6, OG10-type
respectively.

Big Question: Are there any other (non-equivalent) examples?
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A Possible Strategy

Definition

Let X be a hyperkähler manifold. Then f ∈ Aut(X ) is symplectic if
f ∗σX = σX .

Let G ⊂ Aut(X ) a finite group of symplectic automorphism of X .

Both X/G and Fix(G ) ⊂ X have an induced holomorphic symplectic
form.

One could hope that if we can resolve any singularities symplectically,
we would obtain an example of an hyperkähler manifold - which one?

Two natural goals:

1 Classify possible groups of symplectic automorphisms by classifying
possible induced actions on

f ∗ : H2(X ,Z) → H2(X ,Z).

2 Study them geometrically.
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What is known?

Kamenova, Mongardi, & Oblomkov (’22, ’23:

Studied fixed locus for large class of groups of symplectic
automorphisms for X of K3[n],Kumn type.

Fix(G ) = union of manifolds of K3[m] type.

explicit formulas for number of components and the dimension.

Grossi, Onorati & Veniani:(’23):

Classified prime order symplectic automorphisms of OG6.

Mongardi & Wandel (’15)

Fixed locus for certain groups on OG6 again K3[m] and finite number
of points.

Giovenzana, Grossi, Onorati & Veniani (’22):

No non-trivial symplectic automorphisms of OG10 type manifolds.
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Relax notion: BirS(X )

Idea: maybe we have more hope if we consider:

BirS(X ) := group of finite order symplectic birational transformations.

Evidence:

Markushevich & Tikhomirov (’07): looked at birational symplectic
involution ι of a manifold of K3[3]. They showed Fix(ι) was a new
example of IHS variety - mild singularities.

Mongardi, Rapagnetta, Saccà: (’16) realise OG6 as the quotient
of K3[3] by a birational symplectic involution.

We focus on manifolds of OG10 type - why?
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OG10 from a cubic fourfold

Let V ⊂ P5 be a smooth cubic fourfold, i.e. defined by f3(x0, . . . x5) = 0.

One can attach to a smooth hyperplane section Y = H ∩ V an
abelian variety of dimension 5, J(Y ).
Let U ⊂ (P5)∨ be the open set parametrising such sections - we
obtain a fibration:

πU : JU → U.

There exists a 10-dimensional hyperkähler compactification JU ⊂ JV ,
equipped with a fibration π : JV → (P5)∨.
The hyperkähler manifold JV is of OG10 type (due to Laza, Saccà,
Voisin).

We get interesting birational transformations induced from a cubic
fourfold!
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The case of OG10 type

Let ϕ : V → V be an automorphism of a cubic fourfold. Each is
induced by an involution of the ambient P5, sending a hyperplane to a
hyperplane.

The automorphism ϕ acts on hyperplane sections of V , and thus on
the fibration JU → U.

We obtain a birational automorphism f : JV 99K JV .

For a manifold X of OG10 type and a smooth cubic fourfold V , we have
that

(H2(X ,Z), qX ) ∼= H4(V ,Z)prim(−1)⊕ U

as lattices.
Knowing the action of ϕ on H4(V ,Z)prim helps classify possible
transformations of manifolds X .
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The Results

Let X be a manifold of OG10 type, G := Birs(X ).

We let Λ ∼= (H2(X ,Z), qX ), and define:

ΛG := {v ∈ Λ|g(v) = v for all g ∈ G};
ΛG := (ΛG )⊥.

We classify all possible groups G by classifying their action on Λ.

Theorem (M., Muller)

There are 379 birational conjugacy classes of pairs (X ,G ) consisting of an
IHS manifold X of OG10 type and a saturated, finite group G = Birs(X )
of symplectic birational transformations.

The classification is up to deformation and monodromy conjugation.
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Remarks:

Theorem (M., Muller)

There are 379 birational conjugacy classes of pairs (X ,G ) consisting of an
IHS manifold X of OG10 type and a saturated, finite group G = Birs(X )
of symplectic birational transformations.

The action of G on Λ is explicitly determined in each case, i.e ΛG ,Λ
G

and the gluing type.

There are 209 distinct groups, of which 64 have a unique action on Λ.

Theorem (M., Muller)

There are six classes of pairs (X ,Z/2Z), and the action is determined by:

ΛG =E8(2), E6(2), G12

D+
12, M, G16.
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Strategy: Torelli Theorem

Let X be a manifold of OG10 type, η : H2(X ,Z) → Λ := A2 ⊕ E 2
8 ⊕ U3 a

marking.

Definition

An isometry g ∈ O(Λ) is induced by a birational transformation if there
exists a f ∈ Bir(X ) such that η ◦ f ∗ ◦ η−1 = g .

We want to classify isometries that are induced.

G ⊂ Bir(X ) ⇒ G ⊂ O(Λ) ⇒ ΛG ,ΛG

Denote by W = {v ∈ L : v2 = −2} ∪ {v ∈ L : v2 = −6, divL(v) = 3}.

Corollary (of Markman’s Hodge Theoretic Torelli)

A group G ⊂ O(Λ) is induced by a finite group of symplectic birational
transformaions if and only if ΛG is negative definite and

ΛG ∩W = ∅.
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In other words,

G ∈ O(Λ) with ΛG negative defn and ΛG ∩W = ∅

⇔ ∃X of OG10 type ,G = Birs(X ) with H2(X ,Z)G ∼= ΛG .

We have turned the problem into a lattice theoretic problem. There is one
more invariant to help us:

DΛ := Λ∗/Λ ∼= Z/3Z.

For f ∈ Birs(X ), f ∗|DΛ
= ±idDΛ

.
Let’s start by classifying the groups G = Birs(X ) that act trivially on DΛ.
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The Leech Pair Trick

The Leech lattice L and it’s automorphism group O(L) = Co0 have
been well studied, and prime order automorphisms are well
understood.

Kondō’s approach for K3 surfaces: embed ΛG into the Leech lattice.

This was also used by Laza & Zheng to classify groups of
automorphisms for cubic fourfolds.

Lemma

Assume that the induced action of G on DΛ is trivial. Then (G ,ΛG ) is a
Leech pair, i.e there exists a primitive embedding of ΛG ↪→ L, and hence
an embedding of H into Co0 with image avoiding −id.

One can extend the action of G to an isometry group of L, and use
the classification.

For G = Z/2Z, this recovers the E8(2) and D+
12(2) involutions.
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Z/2Z extensions

Now suppose G = Birs(X ) acts nontrivially on DΛ. We get:

0 → H → G → DΛ = Z/2Z → 0.

(H,ΛH) is a Leech pair - we call this the heart of G .

Take g ∈ G \ H that generates G/H.

g restricted to ΛH is an isometry of ΛH of order at most 2. The pair
(ΛH , g) is called the head of G . Note that ΛH may not be unique in
its genus.

For each head (ΛH , g), we compute all possible equivariant primitive
embeddings ΛH ↪→ Λ, that glue the heart and head together in a
compatible way.

We make this process abstract - given a heart H, we compute all possible
extensions G and use the Torelli theorem to determine which can occur as
G = Birs(X ) for an OG10 type manifold X .
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Extension phenomena explained

Let us return to our cubic fourfold V ⊂ P5, and π : JV → P5 it’s
associated OG10.
An ϕ ∈ Aut(V ) is symplectic if it acts trivially on H3,1(V ).

ϕ ∈ Aut(V ) symplectic ⇒ ϕ ∈ Bir(X ) symplectic.

ϕ ∈ Aut(V ) non-symplectic ⇒ ϕ ∈ Bir(X ) non-symplectic.

But!

π : J → B has an additional anti-symplectic involution τ acting by
x 7→ −x fiberwise, since its smooth fibers are abelian varieties.

Taking a non-symplectic involution ϕ ∈ Aut(V ) and composing
τ ◦ ϕ ∈ Birs(X ) gives you an extra symplectic involution!

τ ◦ ϕ acts non-trivially on DΛ, giving you the Z/2Z extension!

This recovers the E6(2),M - Z/2Z actions - they are both induced from
antisymplectic involutions on a cubic fourfold.
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Example: The Fermat Cubic

Let V = {x30 + x31 + x32 + x33 + x34 + x35 = 0} ⊂ P5.

H := Auts(V ) = C 4
3 ⋊ A6.

Aut(V )/H = ⟨ϕH, ψH⟩
ϕ is an involution x0 ↔ x1.

ψ is order 3 sending x0 7→ ωx0.

Consider π : JV → B with anti-symplectic involution τ acting as
τ(x) = −x on the fibers. We have:

G := ⟨H, τ ◦ ϕ⟩ = Birs(X ),

where
0 → H → G → Z/2Z → 0.

One can check that G ∼= C 4
3 ⋊ S6.

In fact, many of our Z/2Z- extensions occuring in the classification come
from a cubic fourfold that admits an additional anti-symplectic involution.
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Cubic fourfold Criteria

We would like to know whether a pair (X ,G ) in our classification can be
realised from looking at a group Aut(V ) for some cubic fourfold V , and
applying this construction.

Theorem (M., Muller)

Let X be an IHS manifold of OG10 type, G ≤ Birs(X ) a finite group.
Then the following are equivalent:

1 U ⊆ ΛG

2 there exists a cubic fourfold V with G ≤ Aut(V ) acting either purely
symplecticly, or whose symplectic subgroup Gs ≤ G has index 2.

In this case, (X ,G ) can be deformed to a pair that is birationally
conjugate to (JV ,G ).
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Additional Results

IHS manifolds of OG10 type can also be constructed as desingularised
moduli spaces of sheaves M̃v (S , θ) on a K3 surface. We identify
which groups in our classification can be realised via this
construction, using a criteria of Felsetti, Giovenzana & Grossi.

We obtain the largest finite group G of birational symplectic
transformations (acting non trivially on cohomology) for IHS
manifolds of known deformation types. It has order:

|G | = 6,531,840 = 28 · 36 · 5 · 7.

Moreover, we obtain the largest finite group of birational
transformations (not necessarily symplectic) acting non-trivially on
cohomology for IHS manifolds of known deformation type. It has
order:

39,191,040 = 29 · 37 · 5 · 7.
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Thank you!
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