
Lecture 1: Definitions and examples

1.1 Definition. Let 𝑘 be a field. An algebra over 𝑘 is a 𝑘-vector space 𝐴 together with a bilinear operation

𝐴 ⊗𝑘 𝐴 → 𝐴, 𝑎 ⊗ 𝑏 ↦ 𝑎 ⋅ 𝑏.

A morphism of 𝑘-algebras is a linear map 𝜑 ∈ Hom𝑘(𝐴, 𝐵) such that

𝜑 (𝑎 ⋅ 𝑏) = 𝜑(𝑎) ⋅ 𝜑(𝑏), ∀ 𝑎, 𝑏 ∈ 𝐴.

A subalgebra 𝐵 ⊂ 𝐴 is a subspace such that 𝐵 ⋅ 𝐵 ⊂ 𝐵.

1.2 Notation. The bilinear operation ⋅ might be denoted [, ], ◃, {, }, etc. depending on the context.

1.3 Definition. Let 𝐴 be a 𝑘-algebra. 𝐴 is said

a) commutative if 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for every 𝑎, 𝑏 in 𝐴,

b) skew-symmetric if [𝑎, 𝑎] = 0 for every 𝑎 ∈ 𝐴,

c) associative if (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) for every 𝑎, 𝑏, 𝑐 in 𝐴,

d) right-symmetric if
(𝑎◃𝑏) ◃𝑐 − 𝑎◃ (𝑏◃𝑐) = (𝑎◃𝑐) ◃𝑏 − 𝑎◃ (𝑐◃𝑏) ,

for every 𝑎, 𝑏, 𝑐 in 𝐴,

e) left-symmetric if
(𝑎◃𝑏) ◃𝑐 − 𝑎◃ (𝑏◃𝑐) = (𝑏◃𝑎) ◃𝑐 − 𝑏◃ (𝑎◃𝑐) ,

for every 𝑎, 𝑏, 𝑐 in 𝐴,

f) finite dimensional if 𝐴 is finite dimensional as a 𝑘-vector space,

g) finitely generated if there exists a finite subset 𝐼 ⊂ 𝐴 such that every element of 𝐴 can be written
as a linear combination of elements of the form

𝑎1 ⋅ 𝑎2 ⋯ 𝑎𝑛,

for {𝑎𝑖} ⊂ 𝐼 and arbitrary parenthesis assignments in the product,

h) unital if there exist an element 𝟙 ∈ 𝐴 such that

𝟙 ⋅ 𝑎 = 𝑎 ⋅ 𝟙 = 𝑎,

for all 𝑎 ∈ 𝐴.

1.4 Remark. Any associative algebra is a left-symmetric and right-symmetric algebra. The converse is
not true (see example 1.5 f) below)

1.5 Examples.

a) Let 𝑀 be a topological space, the algebra 𝐶(𝑀) of continuous functions is commutative, associa-
tive and unital.

b) The algebra 𝐶∞ (ℝ𝑛) of smooth functions on ℝ𝑛 is commutative associative and unital.
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c) The subalgebra 𝐴 ⊂ 𝐶∞ (ℝ𝑛) of Lebesgue integrable smooth functions is commutative, associa-
tive but non-unital.

d) Let 𝐴 be a 𝑘-vector space. The midpoint operation

𝑎 ⊗ 𝑏 ↦ 1
2 (𝑎 + 𝑏) ,

endows 𝐴 with a commutative algebra structure which is not associative nor unital.

e) Let 𝑉 be a 𝑘-vector space, its endomorphism algebra End𝑘(𝑉 ) is defined as the set of endomor-
phisms with multiplication being composition. It is an associative unital algebra, which is not
commutative if dim𝑘 𝑉 > 1.

f) Let 𝐴 = 𝔛 (ℝ𝑛) be the set of smooth vector fields on ℝ𝑛, that is expressions of the form

𝑋 =
𝑛

∑
𝑖=1

𝑓𝑖
𝜕

𝜕𝑥𝑖 ,

with 𝑓𝑖 ∈ 𝐶∞ (ℝ𝑛) for every 𝑖. Then 𝐴 with the operation

𝑋◃𝑌 =
𝑛

∑
𝑗=1 (

𝑛

∑
𝑖=1

𝑓𝑖 ⋅
𝜕𝑔𝑗
𝜕𝑥𝑖 )

𝜕
𝜕𝑥𝑗 ,

for 𝑌 = ∑𝑛
𝑖=1 𝑔𝑖

𝜕
𝜕𝑥𝑖 , is a left-symmetric algebra. Indeed, for 𝑍 = ∑𝑛

𝑖=1 ℎ𝑖
𝜕

𝜕𝑥𝑖 we have

(𝑋◃𝑌 ) ◃𝑍 = ∑
𝑖𝑗𝑘

𝑓𝑖 ⋅
𝜕𝑔𝑗
𝜕𝑥𝑖

𝜕ℎ𝑘
𝜕𝑥𝑗

𝜕
𝜕𝑥𝑘 , (1.5.1)

and
𝑋◃ (𝑌 ◃𝑍) = ∑

𝑖𝑗𝑘
𝑓𝑖

𝜕
𝜕𝑥𝑖 (𝑔𝑗

𝜕ℎ𝑘
𝜕𝑥𝑗 )

𝜕
𝜕𝑥𝑘 . (1.5.2)

Subtracting (1.5.1) from (1.5.2) and using the Leibniz rule we obtain

𝑋◃ (𝑌 ◃𝑍) − (𝑋◃𝑌 ) ◃𝑍 = ∑
𝑖𝑗𝑘

𝑓𝑖𝑔𝑗
𝜕ℎ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
𝜕

𝜕𝑥𝑘 , (1.5.3)

which is manifestly invariant by the exchange 𝑋 ↔ 𝑌 . Since it is easy to find 𝑋, 𝑌 , 𝑍 such that
the RHS of (1.5.3) is not zero (think of a quadratic expression for ℎ𝑘 for example) this algebra is
not associative.

g) The examples above have an algebraic counterpart by considering the algebra ℝ[𝑥1, ⋯ , 𝑥𝑛] of
polynomial functions on ℝ𝑛 in place of 𝐶∞ (ℝ𝑛). The corresponding algebras are infinite dimen-
sional but finitely generated.

1.6 Definition. A Lie algebra is a skew-symmetric algebra (𝔤, [, ]) that satisfies the following identity
called the Jacobi identity:

[𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏], 𝑐]] + [𝑎, [𝑏, 𝑐]],
for all 𝑎, 𝑏, 𝑐 in 𝔤.
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1.7 Lemma. Let (𝐴, ◃) be a left-symmetric or right-symmetric algebra. Let 𝐴Lie be the vector space 𝐴
endowed with the operation

[𝑎, 𝑏] = 𝑎◃𝑏 − 𝑏◃𝑎.
Then 𝐴Lie is a Lie algebra.

Proof. Let 𝐴 be a left-symmetric algebra. 𝐴Lie is obviously a skew-symmetric algebra, we only need to
check the Jacobi identity. We have

[𝑎, [𝑏, 𝑐]] − [[𝑎, 𝑏], 𝑐] − [𝑏, [𝑎, 𝑐]] = 𝑎◃ (𝑏◃𝑐 − 𝑐◃𝑏) − (𝑏◃𝑐 − 𝑐◃𝑏) ◃𝑎 − (𝑎◃𝑏 − 𝑏◃𝑎) ◃𝑐
+ 𝑐◃ (𝑎◃𝑏 − 𝑏◃𝑎) − 𝑏◃(𝑎◃𝑐 − 𝑐◃𝑎) + (𝑎◃𝑐 − 𝑐◃𝑎) ◃𝑏

= (𝑎◃(𝑏◃𝑐) − (𝑎◃𝑏) ◃𝑐) − (𝑎◃ (𝑐◃𝑏) − (𝑎◃𝑐) ◃𝑏) − ((𝑏◃𝑐) ◃𝑎 − 𝑏◃(𝑐◃𝑎))
+ ((𝑐◃𝑏) ◃𝑎 − 𝑐◃ (𝑏◃𝑎)) + ((𝑏◃𝑎) ◃𝑐 − 𝑏◃ (𝑎◃𝑐)) + (𝑐◃(𝑎◃𝑏) − (𝑐◃𝑎)◃𝑏) = 0,

were We used that the first three terms on the RHS cancel the last three terms by the left-symmetric
property.

1.8 Examples.

a) Any vector space 𝑉 with the zero bracket is a Lie algebra. These are called Abelian Lie algebras.
In particular, the one dimensional vector space 𝑘 is an Abelian Lie algebra.

b) Let 𝑉 be a 𝑘-vector space. The general linear Lie algebra 𝔤𝔩(𝑉 ) is the Lie algebra 𝐴Lie given by
Lemma 1.7 applied to 𝐴 = End𝑘(𝑉 ) from 1.5 e). When 𝑉 = 𝑘⊕𝑛 this Lie algebra is denoted by
𝔤𝔩𝑛.

c) The Lie algebra 𝔛 (ℝ𝑛) of smooth vector fields on ℝ𝑛 is the Lie algebra 𝐴Lie given by Lemma 1.7
applied to the left symmetric algebra 𝐴 = 𝔛 (ℝ𝑛) from 1.5 f).

1.9 The trace morphism. Let 𝑉 be a 𝑘-vector space. We have a canonical map defined by the linear
extension of

𝑉 ∗ ⊗ 𝑉 → End𝑘(𝑉 ), 𝜁 ⊗ 𝑤 ↦ {𝑣 ↦ 𝜁(𝑣)𝑤} . (1.9.1)

When 𝑉 is finite dimensional this map is an isomorphism. In this case we define the trace to be the
linear composition

𝑡𝑟 ∶ End𝑘(𝑉 ) ∼−→ 𝑉 ∗ ⊗ 𝑉 → 𝑘, (1.9.2)

where the first arrow is the isomorphism (1.9.1) and the second arrow is the canonical pairing

𝜁 ⊗ 𝑣 ↦ 𝜁(𝑣).

It follows from Exercise 1.4 that tr is a morphism of Lie algebras 𝔤𝔩(𝑉 ) → 𝑘.

1.10 Definition. An ideal of a Lie algebra 𝐼 ⊂ 𝔤 is a subspace such that [𝐼, 𝔤] ⊂ 𝐼 . A Lie algebra 𝔤 is
called simple if it is not Abelian and its only ideals are 0 and 𝔤.

1.11 Remark. One of the main topics of these lectures will be to classify all simple finite dimensional
Lie algebras over the complex numbers up to isomorphism.

1.12 Lemma. Let 𝜑 ∶ 𝔤 → 𝔥 be a morphism of Lie algebras.

a) Its kernel, ker𝜑 ⊂ 𝔤 is an ideal.
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b) Its image, Im𝜑 ⊂ 𝔥 is a subalgebra.

Proof. Let 𝑎, 𝑏 ∈ 𝔤 with 𝜑(𝑎) = 0, we have

0 = [0, 𝜑(𝑏)] = [𝜑(𝑎), 𝜑(𝑏)] = 𝜑 ([𝑎, 𝑏]) ,

from where [𝑎, 𝑏] ∈ ker𝜑, proving a). b) is proved similarly.

1.13 Example. Let 𝑉 be a 𝑘-vector space, the special linear Lie algebra 𝔰𝔩(𝑉 ) ⊂ 𝔤𝔩(𝑉 ) is defined as
ker tr. When 𝑉 = 𝑘⊕𝑛 we denote this Lie algebra by 𝔰𝔩𝑛.

1.14. Let 𝑉 , 𝑊 be vector spaces, and 𝑎 ∈ Hom𝑘(𝑉 , 𝑊 ), its transpose 𝑎∗ ∈ Hom𝑘(𝑊 ∗, 𝑉 ∗) is defined
by

(𝑎∗(𝜁))(𝑣) = 𝜁(𝑎(𝑣)).

When 𝑉 is finite dimensional, the map 𝑎 ↦ 𝑎∗ is given by the composition

End𝑘(𝑉 ) ∼−→ 𝑉 ∗ ⊗ 𝑉 ∼−→ 𝑉 ⊗ 𝑉 ∗ ∼−→ End𝑘(𝑉 ∗),

where the first and last arrows are the isomorphisms (1.9.1) and the middle arrow is the isomorphism
obtained by linearly extending 𝜁 ⊗ 𝑣 ↦ 𝑣 ⊗ 𝜁 . It follows easily from this that tr(𝑎) = tr(𝑎∗).

When 𝑉 = 𝑘⊕𝑛 we have a canonical isomorphism 𝑉 ≃ 𝑉 ∗ given by identifying their dual bases.
Endomorphisms of these spaces are given by 𝑛 × 𝑛 matrices with entries in 𝑘 (where dim𝑉 = dim𝑉 ∗ =
𝑛). In this case the transpose map is given by 𝑎 ↦ 𝑎𝑡𝑟 the usual transpose of a matrix.

1.15. Let 𝑉 be a 𝑘-vector space and 𝐵 ∶ 𝑉 ⊗ 𝑉 → 𝑘 a bilinear map. We define the Lie subalgebra

𝔬(𝑉 , 𝐵) = {𝑎 ∈ 𝔤𝔩(𝑉 ) | 𝐵(𝑎 ⋅ 𝑣, 𝑤) + 𝐵(𝑣, 𝑎 ⋅ 𝑤) = 0, ∀𝑣, 𝑤 ∈ 𝑉 } ⊂ 𝔤𝔩(𝑉 ). (1.15.1)

If 𝐵 and 𝐵′ are two isomorphic bilinear maps, that means there exists an isomorphism 𝑆 ∈ 𝐴𝑢𝑡(𝑉 )
such that 𝐵(𝑆𝑣, 𝑆𝑤) = 𝐵′(𝑣, 𝑤). Then 𝑎 ↦ 𝑆−1𝑎𝑆 is an isomorphism of Lie algebras 𝔬(𝑉 , 𝐵) ≃
𝔬(𝑉 , 𝐵′). Indeed for 𝑎 ∈ 𝔬(𝑉 , 𝐵) and 𝑣, 𝑤 in 𝑉 , we have

𝐵′(𝑆−1𝑎𝑆𝑣, 𝑤) = 𝐵(𝑎𝑆𝑣, 𝑆𝑤) = −𝐵(𝑆𝑣, 𝑎𝑆𝑤) = −𝐵′(𝑣, 𝑆−1𝑎𝑆𝑤).

1.16 Examples.

a) When 𝐵 is symmetric and non-degenerate, the Lie algebra 𝔬(𝑉 , 𝐵) is called the special orthogonal
Lie algebra and is denoted 𝔰𝔬(𝑉 , 𝐵). In the particular case that 𝑉 = 𝑘⊕𝑛 and 𝐵 is the canon-
ical bilinear given by the Gramm matrix Id𝑛×𝑛, this Lie algebra is denoted 𝔰𝔬𝑛 and is described
explicitly as

𝔰𝔬𝑛 = {𝑎 ∈ 𝔤𝔩𝑛 | 𝑎 + 𝑎𝑡𝑟 = 0} .

Notice that when 𝑘 is an algebraically closed field of characteristic zero, there is only one sym-
metric non-degenerate bilinear pairing modulo isomorphisms as in 1.15.

b) When 𝐵 is anti-symmetric and non-degenerate, the Lie algebra 𝔬(𝑉 , 𝐵) is called the special sym-
plectic Lie algebra and is denoted 𝔰𝔭(𝑉 , 𝐵). In this case it is easy to see that 𝑉 has to be even-
dimensional. In the particular case that 𝑉 = 𝑘⊕2𝑛 and 𝐵 is the bilinear map given by the Gramm
matrix

(
0 Id𝑛×𝑛

− Id𝑛×𝑛 0 )
this Lie algebra is denoted by 𝔰𝔭2𝑛.
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1.17 Definition. A derivation of an algebra 𝐴 is an endomorphism 𝐷 ∈ End𝑘(𝐴) such that the following
Leibniz rule holds for every 𝑎, 𝑏 in 𝐴.

𝐷(𝑎 ⋅ 𝑏) = 𝐷(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝐷(𝑏).

Derivations of an algebra 𝐴 form a vector space denoted by Der𝑘(𝐴, 𝐴).
A derivation 𝑑 ∈ Der𝑘(𝐴, 𝐴) is called a differential if 𝑑2 = 0.

1.18 Lemma. Let 𝐴 be an algebra, then Der𝑘(𝐴, 𝐴) ⊂ End𝑘(𝐴) is a sub Lie algebra.

Proof. Weneed to show that Der𝑘(𝐴, 𝐴) is closed under the commutator bracket. Let𝐷, 𝐷′ ∈ Der𝑘(𝐴, 𝐴)
and 𝑎, 𝑏 ∈ 𝐴. We have

[𝐷, 𝐷′] (𝑎 ⋅ 𝑏) = (𝐷𝐷′ − 𝐷′𝐷) (𝑎 ⋅ 𝑏) = 𝐷 (𝐷′(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝐷′(𝑏)) − 𝐷′ (𝐷(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝐷(𝑏)) =
𝐷𝐷′(𝑎) ⋅ 𝑏 + 𝐷′(𝑎) ⋅ 𝐷(𝑏) + 𝐷(𝑎) ⋅ 𝐷′(𝑏) + 𝑎 ⋅ 𝐷𝐷′(𝑏)

− 𝐷′𝐷(𝑎) ⋅ 𝑏 − 𝐷(𝑎) ⋅ 𝐷′(𝑏) − 𝐷′(𝑎) ⋅ 𝐷(𝑏) − 𝑎 ⋅ 𝐷′𝐷(𝑏) =
[𝐷, 𝐷′](𝑎) ⋅ 𝑏 + 𝑎 ⋅ [𝐷, 𝐷′](𝑏),

proving that [𝐷, 𝐷′] ∈ Der𝑘(𝐴, 𝐴).

1.19 Example. This example generalizes 1.8 c). Let 𝐴 = 𝐶∞(𝑀) be the algebra of differentiable func-
tions on a manifold 𝑀 , then 𝔛(𝑀) = Der𝑘(𝐴, 𝐴) is the Lie algebra of smooth vector fields on 𝑀 .

Exercises

1.1. Is the algebra 𝔛 (ℝ𝑛) from 1.5 f) right-symmetric?

1.2. Prove Lemma 1.7 for right-symmetric algebras.

1.3. Show that when 𝑉 is finite dimensional the canonical map (1.9.1) is an isomorphism.

1.4. Show that the trace satisfies tr (𝑎 ⋅ 𝑏) = tr (𝑏 ⋅ 𝑎).

1.5. Show that the map 𝑎 ↦ 𝑆−1𝑎𝑆 in 1.15 is an isomorphism of Lie algebras 𝔬(𝑉 , 𝐵) ≃ 𝔬(𝑉 , 𝐵′).

1.6. Show that 𝔰𝔬(𝑉 , 𝐵) ⊂ 𝔰𝔩(𝑉 ).

1.7. Show that both definitions of the Lie algebras 𝔛 (ℝ𝑛) given in 1.8 c) and in 1.19 coincide.
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Lecture 2: Representations

2.1 Definition. Let 𝔤 be a Lie algebra over 𝑘. A representation of 𝔤 (also called a 𝔤-module) is a morphism
of Lie algebras 𝜌 ∶ 𝔤 → 𝔤𝔩(𝑉 ) for some 𝑘-vector space 𝑉 . Often times we will drop 𝜌 from the notation
and we will simply say 𝑉 is a 𝔤-module and write this as 𝑉 ∈ 𝔤-mod. For a vector 𝑣 ∈ 𝑉 and an element
𝑎 ∈ 𝔤 we will write

𝑎𝑣 = 𝑎 ⋅ 𝑣 = 𝜌(𝑎)(𝑣).
Given two 𝔤-modules 𝑉 and 𝑊 , a morphism of representations is a linear map 𝜑 ∈ Hom𝑘(𝑉 , 𝑊 )

such that
𝑎 ⋅ 𝜑(𝑣) = 𝜑 (𝑎 ⋅ 𝑣) ,

for every 𝑎 ∈ 𝔤 and 𝑣 ∈ 𝑉 . An isomorphism is a morphism that is invertible as a linear map. The set of
all morphisms is a vector space denoted Hom𝔤(𝑉 , 𝑊 ).

2.2 Example. All the classical Lie algebras 𝔤𝔩𝑛, 𝔰𝔩𝑛, 𝔰𝔬𝑛 and 𝔰𝔭𝑛 come with a defining representation
𝔤 ↪ 𝔤𝔩𝑛.

2.3 Example. Let 𝔤 be a Lie algebra. For 𝑎 ∈ 𝔤 we let 𝑎𝑑𝑎 ∈ End𝑘(𝔤) be given by

ad𝑎(𝑏) = [𝑎, 𝑏].

Then the map 𝑎 ↦ ad𝑎 makes 𝔤 into an 𝔤-module. This is called the adjoint representation. Notice that
indeed ad 𝔤 ⊂ Der𝑘(𝔤, 𝔤) since by the Jacobi identity:

ad𝑎[𝑏, 𝑐] = [ad𝑎 𝑏, 𝑐] + [𝑏, ad𝑎 𝑐].

The kernel of 𝔤 under the adjoint map is called the center of 𝔤 and is denoted 𝑍(𝔤). The derivations
of 𝔤 that are in the image of 𝔤 under the adjoint map are called inner derivations.

2.4 Lemma. Let 𝔤 be a Lie algebra and 𝐼 ⊂ 𝔤 be an ideal,

a) The quotient 𝔤/𝐼 is naturally a Lie algebra with the bracket given by

[𝑎 + 𝐼, 𝑏 + 𝐼] = [𝑎, 𝑏] + 𝐼. (2.4.1)

b) Given a morphism 𝜑 ∶ 𝔤 → 𝔥 of Lie algebras we have a canonical isomorphism of Lie algebras

Im𝜑 ≃ 𝔤/ ker𝜑.

Proof. The bracket (2.4.1) is well defined since [𝐼, 𝑏 + 𝐼] ⊂ 𝐼 , and [𝑎, 𝑏 + 𝐼] ⊂ 𝐼 . Skew-symmetry and
the Jacobi condition hold on 𝔤/𝐼 because they hold on 𝔤. The proof of b) is straightforward.

2.5 Lemma. Inner derivations form an ideal of Der𝑘(𝔤, 𝔤).

Proof. Let 𝑎 ∈ 𝔤 and 𝐷 ∈ Der𝑘(𝔤, 𝔤). We have

[ad𝑎, 𝐷]𝑏 = ad𝑎 𝐷(𝑏) − 𝐷 ad𝑎 𝑏 = [𝑎, 𝐷(𝑏)] − 𝐷([𝑎, 𝑏]) =
[𝑎, 𝐷(𝑏)] − [𝐷(𝑎), 𝑏] − [𝑎, 𝐷(𝑏)] = ad−𝐷(𝑎) 𝑏,

for every 𝑏 ∈ 𝔤, therefore [ad𝑎, 𝐷] = ad−𝐷(𝑎) ∈ ad 𝔤.
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2.6 Notation. We denote the quotient Lie algebra by

𝐻1(𝔤, 𝔤) = Der𝑘(𝔤, 𝔤)/ ad 𝔤. (2.6.1)

2.7 Definition. Let 𝑉 be a 𝔤-module. A submodule or subrepresentation is a vector subspace 𝑈 ⊂ 𝑉
stable under the action of 𝔤, that is 𝔤 ⋅ 𝑈 ⊂ 𝑈 .

A representation 𝑉 is called irreducible if its only submodules are 0 and 𝑉 itself.

2.8 Example. Consider 𝔤 as an 𝔤-module via the adjoint representation. Then a submodule 𝐼 ⊂ 𝔤 is the
same as an ideal. Therefore for a non-abelian Lie algebra, its adjoint representation is irreducible if and
only if 𝔤 is simple.

2.9. Let 𝑉 and 𝑊 be two 𝔤-modules. Then 𝑉 ⊕ 𝑊 is naturally a 𝔤-module, the action is given by

𝑎 ⋅ (𝑣 + 𝑤) = 𝑎 ⋅ 𝑣 + 𝑎 ⋅ 𝑤.

2.10 Definition. A representation 𝑉 is called decomposable if it is isomorphic to a direct sum 𝑉 ≃
𝑊1 ⊕ 𝑊2 with 𝑊𝑖 ≠ 0, 𝑖 = 1, 2. 𝑉 is called indecomposable if it is not decomposable.

2.11. Let 𝑉 = 𝑊1 ⊕𝑊2 be a decomposable representation, then 𝑊1 ⊂ 𝑊1 ⊕𝑊2 is a subrepresentation,
hence 𝑉 is not irreducible. We see that irreducible representations are indecomposable. The converse
is not true as the following example shows.

2.12 Example. The two dimensional solvable Lie algebra 𝔤 has as 𝑘-basis 𝑎, 𝑏 and commutation relations
given by [𝑎, 𝑏] = 𝑏. Its adjoint representation is indecomposable but it is not irreducible. Indeed 𝑘⋅𝑏 ⊂ 𝔤
is an ideal, hence a non-trivial subrepresentation. On the other hand, suppose 𝔤 is decomposable, so
that 𝔤 ≃ 𝑉 ⊕ 𝑊 as representations. Then it must be dim𝑉 = dim𝑊 = 1. Let 𝑣 be a basis of 𝑉 and 𝑤
be a basis of 𝑊 . Since it is a direct sum we would get [𝑣, 𝑤] = 0, in this case 𝔤 would be abelian, which
is a contradiction.

2.13 Lemma. Let 𝜑 ∈ Hom𝔤(𝑉 , 𝑊 ) be a morphism of representations, then

a) ker𝜑 ⊂ 𝑉 is a sub-representation.

b) coker𝜑 = 𝑊 / Im𝜑 is a representation and the quotient map 𝑊 ↦ coker𝜑 is a morphism of
representations.

Proof. Let 𝜑𝑣 = 0 and 𝑎 ∈ 𝔤, then 𝜑𝑎𝑣 = 𝑎 ⋅ 𝜑𝑣 = 0 so that 𝑎𝑣 ∈ ker𝜑 and a) is proved. The proof of
b) is left as an exercise.

2.14. Let 𝑉 ∈ 𝔤-mod and 𝐵 ∶ 𝑉 ⊗ 𝑉 → 𝑘 a symmetric bilinear paring. We say that 𝐵 is 𝔤-invariant if

𝐵(𝑎𝑣, 𝑤) + 𝐵(𝑣, 𝑎𝑤) = 0.

for every 𝑣, 𝑤 ∈ 𝑉 and every 𝑎 ∈ 𝔤. This is equivalent to saying that the morphism 𝔤 → 𝔤𝔩(𝑉 ) factors
through 𝔰𝔬(𝑉 , 𝐵) ⊂ 𝔤𝔩(𝑉 ). Suppose moreover that 𝐵 is non-degenerate and let 𝑈 ⊂ 𝑉 be a submodule.
Then 𝑈 ⟂ ⊂ 𝑉 is a submodule (see Exercise 2.3) and we have 𝑉 ≃ 𝑈 ⊕𝑈 ⟂ as representations. Indeed we
have a direct sum as vector spaces by Exercise 2.3 so it is enough to prove that 𝑈 ⟂ ⊂ 𝑉 is a submodule.
Let 𝑣 ∈ 𝑈 ⟂, 𝑢 ∈ 𝑈 and 𝑎 ∈ 𝔤. We have

𝐵(𝑎𝑣, 𝑢) = −𝐵(𝑣, 𝑎𝑢) = 0,

since 𝑎𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑈 ⟂. It follows that 𝑎𝑣 ∈ 𝑈 ⟂ and the claim follows. As a corollary of this
discussion we obtain
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2.15 Proposition. Let 𝑉 ∈ 𝔤-mod be a finite dimensional representation endowed with a symmetric, non-
degenerate and invariant bilinear map 𝐵 ∶ 𝑉 ⊗ 𝑉 → 𝑘. Then 𝑉 ≃ 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑘 for some irreducible
representations 𝑉1, ⋯ , 𝑉𝑘.

Proof. We proceed by induction in the dimension of 𝑉 . The case being trivial if dim𝑉 = 1. If 𝑉 is
irreducible there is nothing to prove. If on the other hand 𝑈 ⊂ 𝑉 is a nontrivial subrepresentation, we
have 𝑉 ≃ 𝑈 ⊕ 𝑈 ⟂ and dim𝑈, dim𝑈 ⟂ < dim𝑉 . The restriction of 𝐵 to 𝑈 and 𝑈 ⟂ is an invariant non-
degenerate symmetric pairing by Exercise 2.3, hence we can apply induction to decompose each.

2.16 Remark. The above proposition is false without the assumption of the existence of 𝐵 (Exercise
2.4). For a certain class of Lie algebras (semisimple) it goes by the name ofWeyl’s complete irreducibility
Theorem. It allows reducing the problem of classifying finite dimensional representations to the problem
of classifying irreducible ones. This is the second objective of these lectures.

In other contexts (finite groups, compact groups, etc) one shows the existence of such a 𝐵 by con-
sidering any symmetric nondegenerate (not necessarily invariant) pairing 𝐵0 and then constructing an
invariant one by acting on 𝐵0 and averaging. This requires the notion of “sum” or “integral” over the
finite group, compact group, etc.

2.17. Let 𝑉 , 𝑊 ∈ 𝔤-mod, then Hom𝑘(𝑉 , 𝑊 ) is naturally a representation. For 𝑎 ∈ 𝔤, 𝜑 ∈ Hom𝑘(𝑉 , 𝑊 )
the action is defined by

(𝑎 ⋅ 𝜑)(𝑣) = 𝑎𝜑(𝑣) − 𝜑 (𝑎𝑣) .
Similarly 𝑉 ⊗ 𝑊 is a representation with

𝑎(𝑣 ⊗ 𝑤) = (𝑎𝑣) ⊗ 𝑤 + 𝑣 ⊗ (𝑎𝑤).

Exercises

2.1. Let 𝜑 ∈ Hom𝔤(𝑉 , 𝑊 ) be an isomorphism of two representations 𝑉 and 𝑊 as in 2.1. Show that its
linear inverse 𝜑−1 is also a morphism of representations.

2.2. Prove Lemma 2.13 b).

2.3. Let 𝑉 be a vector space and 𝐵 ∶ 𝑉 ⊗ 𝑉 → 𝑘 a symmetric non-degenerate bilinear map. Let 𝑈 ⊂ 𝑉
be any subspace, then define

𝑈 ⟂ = {𝑣 ∈ 𝑉 | 𝐵(𝑢, 𝑣) = 0 ∀ 𝑢 ∈ 𝑈} .

a) Prove that 𝑉 ≃ 𝑈 ⊕ 𝑈 ⟂.

b) Prove that the restriction of 𝐵 to 𝑈 and 𝑈 ⟂ is still non-degenerate.

2.4. Let 𝔤 be the three dimensional Heisenberg Lie algebra. That is the algebra with basis 𝑝, 𝑞, ℏ and
commutation relations

[𝑝, 𝑞] = ℏ, [𝑝, ℏ] = [𝑞, ℏ] = 0.
Show that its adjoint representation does not admit a symmetric, non-degenerate, invariant bilinear
form.

2.5. Check that Hom𝑘(𝑉 , 𝑊 ) and 𝑉 ⊗ 𝑊 as defined in 2.17 are well defined representations.
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2.6. For a 𝔤-module 𝑉 , we define the invariant subspace by

𝑉 𝔤 = {𝑣 ∈ 𝑉 | 𝑎𝑣 = 0 ∀ 𝑎 ∈ 𝔤} .

a) Let 𝑉 , 𝑊 ∈ 𝔤-mod, show that

Hom𝔤(𝑉 , 𝑊 ) = Hom𝑘(𝑉 , 𝑊 )𝔤.

b) Let 𝑉 , 𝑊 , 𝑍 ∈ 𝔤-mod be finite dimensional, show that there is a natural linear isomorphism

Hom𝔤(𝑉 ⊗ 𝑊 , 𝑍) ≃ Hom𝔤(𝑉 ,Hom𝑘(𝑊 , 𝑍)).

2.7. Let 𝑉 ∈ 𝔤-mod be finite dimensional. Let 𝟙 be the trivial one dimensional representation, that is 𝟙
is 𝑘 as a vector space and the action is zero. The construction in 2.17 endows

𝑉 ∗ ≃ Hom𝑘(𝑉 , 𝟙),

with a 𝔤-module structure.
Let 𝑊 ∈ 𝔤-mod be finite dimensional. Show that the linear isomorphism

Hom𝑘(𝑉 , 𝑊 ) ≃ 𝑉 ∗ ⊗ 𝑊 ,

is an isomorphism of representations.
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Lecture 3: Engel’s Theorem

3.1. Let 𝑉 be a finite dimensional 𝑘-vector space, a flag 𝐹• in 𝑉 is a sequence of vector spaces

0 ⊊ 𝐹0 ⊊ 𝐹1 ⊊ ⋯ ⊊ 𝐹𝑛 = 𝑉 .

A complete flag is a flag such that the successive quotients 𝐹𝑘+1/𝐹𝑘 are one dimensional. We say that
an endomorphism 𝑎 ∈ End𝑘(𝑉 ) preserves the flag if 𝑎𝐹𝑖 ⊂ 𝐹𝑖 for all 𝑖 = 1, ⋯ , 𝑛. The vector space
𝔭𝐹 ⊂ 𝔤𝔩(𝑉 ) of all endomorphisms preserving the flag 𝐹 is a Lie subalgebra. It is called a parabolic
subalgebra. When 𝐹 is a complete flag it is called a Borel subalgebra and is denoted 𝔟 = 𝔟𝐹 .

Let 𝐹• ⊂ 𝑉 be a flag and 𝔭𝐹 ⊂ 𝔤𝔩(𝑉 ) be the corresponding parabolic subalgebra. Define the subset

𝔫 = 𝔫𝐹 = {𝑎 ∈ 𝔭𝐹 | 𝑎𝐹𝑖 ⊂ 𝐹𝑖−1 ∀ 𝑖 = 1, ⋯ , 𝑛} .

Then 𝔫 ⊂ 𝔭𝐹 is a Lie algebra ideal.

3.2 Definition. An operator 𝑎 ∈ End𝑘(𝑉 ) is called nilpotent if there exists 𝑛 ≥ 0 such that 𝑎𝑛 = 0.

3.3 Example. In the situation of 3.1, every 𝑎 ∈ 𝔫𝐹 is a nilpotent endomorphism of 𝑉 .

3.4 Lemma. Let 𝑎 ∈ End𝑘(𝑉 ) be a nilpotent operator, then there exists a non-zero vector 𝑣 ∈ 𝑉 such that
𝑎𝑣 = 0.

Proof. If 𝑎 = 0 then any vector of 𝑉 would do. Otherwise let 𝑚 ≥ 0 be such that 𝑎𝑚 ≠ 0 and 𝑎𝑚+1 = 0.
Since 𝑎𝑚 ≠ 0 there exists a non-zero vector 𝑣0 ∈ 𝑉 such that 𝑣 = 𝑎𝑚𝑣0 ≠ 0. It follows that 𝑎𝑣 = 𝑎𝑚𝑣0 =
0.

3.5 Lemma. Let 𝑎 ∈ End𝑘(𝑉 ) be a nilpotent operator. Then so is ad𝑎.

Proof. Consider the associative algebra 𝐴 = End𝑘(𝑉 ). Let 𝑏, 𝑐 ∈ 𝐴, and denote by 𝐿𝑏 (resp. 𝑅𝑐) the
operator of leftmultiplication by 𝑏 (resp. right multiplication by 𝑐). That is 𝐿𝑏(𝑑) = 𝑏⋅𝑑 (resp. 𝑅𝑐𝑑 = 𝑑⋅𝑐)
for any 𝑑 ∈ 𝐴. Since 𝐴 is associative we have 𝐿𝑏𝑅𝑐 = 𝑅𝑐𝐿𝑏. It follows that

(𝐿𝑏 − 𝑅𝑐)
𝑛 =

𝑛

∑
𝑗=0 (

𝑛
𝑗)(−1)𝑗𝐿𝑛−𝑗

𝑏 𝑅𝑗
𝑐 =

𝑛

∑
𝑗=0 (

𝑛
𝑗)(−1)𝑗𝐿𝑏𝑛−𝑗 𝑅𝑐𝑗 . (3.5.1)

Applying (3.5.1) with 𝑏 = 𝑐 = 𝑎 and noting that ad𝑎 = 𝐿𝑎 − 𝑅𝑎 we obtain

ad𝑛
𝑎 =

𝑛

∑
𝑗=0 (

𝑛
𝑗)(−1)𝑗𝐿𝑎𝑛−𝑗 𝑅𝑎𝑗 . (3.5.2)

Suppose 𝑎𝑚 = 0, then choosing 𝑛 = 2𝑚 we see that each summand in the RHS of (3.5.2) vanishes as
either 𝑛 − 𝑗 ≥ 𝑚 or 𝑗 ≥ 𝑚.

3.6 Theorem Engel’s Theorem. Let 𝑉 be a finite dimensional 𝑘-vector space and let 𝔤 ⊂ 𝔤𝔩(𝑉 ) be a Lie
subalgebra consisting of nilpotent operators. Then there exists 0 ≠ 𝑣 ∈ 𝑉 such that 𝑎 ⋅ 𝑣 = 0 for every
𝑎 ∈ 𝔤.

Proof. We proceed by induction in 𝑚 = dim 𝔤. If 𝑚 = 1 then 𝔤 = 𝑘 ⋅ 𝑎 for a non-zero nilpotent operator
𝑎 and the Theorem in this case reduces to Lemma 3.4.

Assume the Theorem holds for 𝑚 ≥ 1, we will prove that it holds for 𝑚 + 1. So let 𝔤 be of dimension
𝑚+1 and let 𝔥 ⊊ 𝔤 be a proper subalgebra of maximal dimension. Notice dim 𝔥 ≥ 1 since every non-zero
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element of 𝔤 generates a proper subalgebra. Consider the adjoint representation of 𝔥 on 𝔤. Since 𝔥 ⊂ 𝔤
is a subalgebra, it is also a subrepresentation. It follows from 2.13 b) 𝔤/𝔥 is an 𝔥-module, that is, we have
a map ad ∶ 𝔥 → 𝔤𝔩(𝔤/𝔥). By Lemma 3.5, the image ad 𝔥 ⊂ 𝔤𝔩(𝔤/𝔥) consists of nilpotent operators and
by the inductive hypothesis we have a vector 𝑎 ∈ 𝔤 ⧵ 𝔥 such that adℎ 𝑎 ∈ 𝔥 for all ℎ ∈ 𝔥. It follows
that 𝔥 ⊕ 𝑘𝑎 ⊂ 𝔤 is a subalgebra, and by the maximality assumption on 𝔥 we must have dim 𝔥 = 𝑚 and
𝔥 ⊕ 𝑘𝑎 = 𝔤.

By the inductive hypothesis there exists a non-zero vector 𝑣0 ∈ 𝑉 such that 𝔥 ⋅ 𝑣0 = 0. Let 𝑈 ⊂ 𝑉
be the subspace of all such vectors. 𝑈 is invariant by 𝑎, indeed for 𝑢 ∈ 𝑈 we have

ℎ𝑎𝑢 = [ℎ, 𝑎]𝑢 + 𝑎ℎ𝑢 = 0,
since [ℎ, 𝑎] ∈ 𝔥 and ℎ𝑢 = 0. By Lemma 3.4 applied to the nilpotent operator 𝑎 ∈ End𝑘(𝑈) we see that
there exists a non-zero vector 𝑣 ∈ 𝑈 such that 𝑎𝑣 = 0. This vector therefore satisfies the conditions for
the Theorem.

3.7 Corollary. Let 𝔤 ⊂ 𝔤𝔩(𝑉 ) be a Lie subalgebra as in Theorem 3.6 then there exists a complete flag
𝐹• ⊂ 𝑉 and 𝔤 ↪ 𝔫 ↪ 𝔟𝐹 .

Proof. By the theorem there exists a vector 0 ≠ 𝑣1 ∈ 𝑉 such that 𝔤𝑣1 = 0. We let 𝐹1 = 𝑘𝑣1. Consider
the representation 𝜌 ∶ 𝔤 → 𝔤𝔩 (𝑉 /𝐹1). The image 𝜌𝔤 consists of nilpotent operators, hence by the
theorem there exists a non-zero vector 𝑣2 ∈ 𝑉 /𝐹1 such that 𝔤𝑣2 = 0. Equivalently, there exists a vector
𝑣2 ∈ 𝑉 ⧵𝐹1 such that 𝔤𝑣2 ∈ 𝐹1. We let 𝐹2 = 𝐹1 ⊕𝑘𝑣2. Repeating this procedure we obtain the required
flag.

3.8. Let 𝔤 be a Lie algebra. Define the following descending sequence of ideals of 𝔤:
(central series) 𝔤 ⊃ 𝔤1 = [𝔤, 𝔤] ⊃ ⋯ ⊃ 𝔤𝑘+1 = [𝔤𝑘, 𝔤] ⊃ ⋯ ,

(derived series) 𝔤 =⊃ 𝔤(1) = [𝔤, 𝔤] ⊃ ⋯ ⊃ 𝔤(𝑘+1) = [𝔤(𝑘), 𝔤(𝑘)] ⊃ ⋯ .

3.9 Definition. A Lie algebra 𝔤 is called nilpotent (resp. solvable) if 𝔤𝑖 = 0 (resp. 𝔤(𝑖) = 0) for some 𝑖.
3.10 Remark. It follows from Exercise 3.6 that if 𝔤 is nilpotent it is also solvable.
3.11 Proposition. A non-trivial nilpotent Lie algebra 𝔤 has nontrivial center.

Proof. Let 𝑘 be such that 0 ≠ 𝔤𝑘 ⊃ 𝔤𝑘+1 = [𝔤𝑘, 𝔤] = 0. Then we have 0 ≠ 𝔤𝑘 ⊂ 𝑍(𝔤).

3.12 Definition. An extension of Lie algebras is a short exact sequence of Lie algebras

0 ↪ 𝔥 𝜄−→ �̃� 𝜋↠ 𝔤 → 0. (3.12.1)
That is, 𝜄 is an injective morphism of Lie algebras, 𝜋 a surjective morphism of Lie algebras and ker𝜋 =
Im 𝜄. We say that �̃� is an extension of 𝔤 by 𝔥. The extension is called central if 𝔥 ⊂ 𝑍(�̃�).
3.13 Proposition. A central extension of a nilpotent Lie algebra is nilpotent.

Proof. Consider an extension as in (3.12.1) and assume it is central with 𝔤 nilpotent. Notice that 𝜋�̃�𝑘 ⊂ 𝔤𝑘
hence there exist 𝑘 such that 𝜋�̃�𝑘 = 0. It follows that �̃�𝑘 ⊂ 𝔥 and therefore �̃�𝑘+1 = 0 since 𝔥 is central.

3.14 Corollary. If 𝔤/𝑍(𝔤) is nilpotent then 𝔤 is nilpotent.

3.15 Theorem Engel’s characterization of nilpotent Lie algebras. A finite dimensional Lie algebra 𝔤 is
nilpotent if and only if ad𝑎 is nilpotent for every 𝑎 ∈ 𝔤.
Proof. If 𝔤 is nilpotent and 𝑎 ∈ 𝔤 we see that ad𝑘

𝑎 𝔤 ⊂ 𝔤𝑘+1, so for 𝑘 ≫ 0 we have ad𝑘
𝑎 = 0.

Conversely, suppose every ad𝑎 is nilpotent. It follows that ad 𝔤 ⊂ 𝔤𝔩(𝔤) is a nilpotent Lie algebra by
Theorem 3.6. Therefore 𝔤 is nilpotent by Corollary 3.14.
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Exercises

3.1. Let 𝑉 be a finite dimensional vector space and 𝐹• ⊂ 𝑉 a flag. Show that 𝔭 ⊂ 𝔤𝔩(𝑉 ) is a Lie
subalgebra and that 𝔫 ⊂ 𝔭 is a nilpotent ideal.

3.2. Prove that a subalgebra 𝔤 ⊂ 𝔤𝔩𝑛 consists of nilpotent matrices if and only if there exists a matrix
𝑆 ∈ 𝐺𝐿𝑛 such that 𝑆𝔤𝑆−1 is a subalgebra of strictly upper triangular matrices.

3.3. Find a subspace of 𝔤𝔩(𝑉 ) consisting of nilpotent operators such that there is no common eigenvector.

3.4. If 𝑎 and 𝑏 are commuting nilpotent operators on a vector space over a field of characteristic zero.
Show that 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏 where

𝑒𝑎 = ∑
𝑛≥0

𝑎𝑛

𝑛! .

Notice that this sum is finite. What can you say if the characteristic of the base field is positive?

3.5. Compute the center of 𝔤𝔩𝑛, 𝔰𝔩𝑛 and 𝔰𝔬𝑛.

3.6. Show that 𝔤𝑖 and 𝔤(𝑖) as defined in 3.8 are ideals of 𝔤 and that 𝔤(𝑖) ⊂ 𝔤𝑖.

3.7. Let 𝑉 be a finite dimensional vector space and 𝐹• ⊂ 𝑉 a full flag. Consider the corresponding Lie
subalgebras 𝔫 ⊊ 𝔟 ⊊ 𝔤𝔩(𝑉 ). Show that 𝔟 is solvable and 𝔫 is nilpotent. What happens if the flag is not
full?

Lecture 4: Lie’s Theorem

4.1 Lemma. Consider an extension of Lie algebras

0 → 𝔥 𝜄−→ �̃� 𝜋−→ 𝔤 → 0.

Then �̃� is solvable if and only if 𝔥 and 𝔤 are solvable.

Proof. We have 𝜄 𝔥(𝑘) ⊂ �̃�(𝑘) and 𝜋, �̃�(𝑘) = 𝔤(𝑘), hence if �̃� is solvable we have �̃�(𝑘) = 0 and therefore
𝜄 𝔥(𝑘) = 𝔤(𝑘) = 0. Therefore 𝔤 is solvable and since 𝜄 is injective this implies 𝔥 is solvable.

Conversely. Suppose 𝔤(𝑘) = 0, therefore by exactness of the extension we have �̃�(𝑛) ⊂ 𝜄 𝔥(𝑛) for every
𝑛 ≥ 𝑘. In particular for 𝑛 ≫ 0 we have �̃�(𝑛) ⊂ 𝔥(𝑛) = 0 and �̃� is solvable.

4.2 Definition. Let 𝔥 a Lie algebra and 𝑉 its representation. Let 𝜆 ∈ 𝔥∗ and define the subspace

𝑉𝜆 = 𝑉 𝔥
𝜆 = {𝑣 ∈ 𝑉 |𝑎𝑣 = 𝜆(𝑎)𝑣 ∀ 𝑎 ∈ 𝔤} .

Then provided 𝑉𝜆 ≠ 0 we call 𝜆 a weight of 𝑉 and 𝑉𝜆 its weight space.

4.3 Lemma Lie’s Lemma. Let 𝔤 be a Lie algebra over a field 𝑘 of characteristic zero. Let 𝑉 be its finite
dimensional representation. Let 𝔥 ⊂ 𝔤 be an ideal and 𝜆 ∈ 𝔥∗. Then the weight spaces of 𝑉 (viewed as
𝔥-module) are 𝔤-invariant. That is

𝔤 ⋅ 𝑉 𝔥
𝜆 ⊂ 𝑉 𝔥

𝜆 .
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Proof. Let 𝑎 ∈ 𝔤 and 𝑣 ∈ 𝑉 𝔥
𝜆 . We want to prove that for every ℎ ∈ 𝔥 we have

ℎ𝑎𝑣 = 𝜆(ℎ)𝑎𝑣.

Note that the LHS equals

[ℎ, 𝑎]𝑣 + 𝑎ℎ𝑣 = [ℎ, 𝑎]𝑣 + 𝜆(ℎ)𝑎𝑣 = 𝜆([ℎ, 𝑎])𝑣 + 𝜆(ℎ)𝑎𝑣,

where we have used that 𝔥 is an ideal. It is therefore equivalent to prove that 𝜆([ℎ, 𝑎]) = 0 when 𝑉 𝔥
𝜆 ≠ 0.

Let 0 ≠ 𝑣 ∈ 𝑉 𝔥
𝜆 and 0 ≠ 𝑎 ∈ 𝔤. Consider the vector subspaces 𝑊𝑛 of 𝑉 generated by vectors of the

form 𝑎𝑘𝑣, 0 ≤ 𝑘 ≥ 𝑛. We have 𝑘 ⋅ 𝑣 = 𝑊0 ⊂ 𝑊1 ⊂ ⋯ ⊂ 𝑉 . As 𝑉 is finite dimensional there exists a
minimal 𝑛 such that 𝑊𝑛 = 𝑊𝑚 for all 𝑚 ≥ 𝑛. Let 𝑊 = 𝑊𝑛 and consider the full flag 𝑊• ⊂ 𝑊 . I claim
that a) 𝔥 preserves 𝑊 , b) 𝔥 preserves the flag 𝑊•, that is 𝔥|𝑊 ⊂ 𝔟 and c) ℎ ∈ 𝔥 acts by 𝜆(ℎ) on 𝑊𝑖/𝑊𝑖−1.
We prove this by induction on 𝑛. For 𝑛 = 0 we have ℎ|𝑊0 = 𝜆(ℎ) Id for every ℎ ∈ 𝔥. Suppose that the
claim is true for 𝑛 then we have

ℎ𝑎𝑛+1𝑣 = [ℎ, 𝑎]𝑎𝑛𝑣 + 𝑎ℎ𝑎𝑛𝑣.
By induction we have ℎ𝑎𝑛𝑣 = 𝜆(ℎ)𝑎𝑛𝑣 mod (𝑊𝑛−1), therefore 𝑎ℎ𝑎𝑛𝑣 = 𝜆(ℎ)𝑎𝑛+1𝑣 mod (𝑊𝑛). Also
since 𝔥 is an ideal, by induction we have [ℎ, 𝑎]𝑎𝑛𝑣 ∈ 𝑊𝑛. It follows that ℎ𝑎𝑛+1𝑣 = 𝜆(ℎ)𝑎𝑛+1𝑣 mod (𝑊𝑛)
proving the induction step.

Now consider the action of ℎ, 𝑎 and [ℎ, 𝑎] on 𝑊 and we consider the trace of the corresponding
operators. By the claim in the previous paragraph and the fact that dim𝑊 = 𝑛 + 1 we have

tr[ℎ, 𝑎] = (𝑛 + 1)𝜆([ℎ, 𝑎])

On the other hand, the trace is amorphism of Lie algebras, hence tr[ℎ, 𝑎] = 0. It follows that 𝜆([ℎ, 𝑎]) = 0
as wanted.

4.4Theorem Lie’s Theorem. Let 𝔤 be a solvable Lie algebra over an algebraically closed field of character-
istic zero. Let 𝑉 be its finite dimensional representation. Then there exists a 𝜆 ∈ 𝔤∗ with non-trivial weight
space 0 ≠ 𝑉 𝔤

𝜆 ⊂ 𝑉 .

Proof. It is enough to prove the Theorem for the image of 𝔤 in 𝔤𝔩(𝑉 ) hence we may assume 𝔤 is finite
dimensional and use induction in dim 𝔤. If dim 𝔤 = 1, that is 𝔤 = 𝑘 ⋅ 𝑎 for 𝑎 ∈ 𝔤𝔩(𝑉 ), there exists an
eigenvector for 𝑎 since 𝑘 is algebraically closed. Assume by induction that the theorem is known for
all solvable Lie algebras of dimension less than dim 𝔤. Since 𝔤 is solvable we have 𝔤 ⊇ 𝔤(1) = [𝔤, 𝔤]. It
follows that there exists a codimension 1 ideal 𝔥 of 𝔤, indeed any subspace of codimension 1 containing
[𝔤, 𝔤] would do. We have therefore 𝔤 = 𝔥 ⊕ 𝑘 ⋅ 𝑎 for some 0 ≠ 𝑎 ∈ 𝔤. By induction there exists a
𝜆′ ∈ 𝔥∗ such that 𝑉 𝔥

𝜆′ ≠ 0, and by Lie’s Lemma we have 𝑎𝑉 𝔥
𝜆′ ⊂ 𝑉 𝔥

𝜆′ . Since 𝑘 is algebraically closed the
operator 𝑎 acting on 𝑉 𝔥

𝜆′ has an eigenvector, say 𝑣 ∈ 𝑉 𝔥
𝜆′ , with eigenvalue 𝜇. Then defining 𝜆 ∈ 𝔤 by

𝜆(ℎ + 𝛼𝑎) = 𝜆′(ℎ) + 𝛼𝜇 for ℎ ∈ 𝔥 and 𝛼 ∈ 𝑘, we obtain that 0 ≠ 𝑣 ∈ 𝑉 𝔤
𝜆 as we wanted.

4.5 Corollary. Let 𝜌 ∶ 𝔤 → 𝔤𝔩(𝑉 ) be a finite dimensional representation of a solvable Lie algebra 𝔤 over
an algebraically closed field of characteristic zero. Then there exists a full flag 𝐹• ⊂ 𝑉 such that 𝜌(𝔤) ⊂ 𝔟𝐹 .

Proof. By Lie’s theorem there exists a some common eigenvector 0 ≠ 𝑣1 ⊂ 𝑉 . Let 𝐹1 = 𝑘 ⋅ 𝑣1 ⊂ 𝑉 .
Consider the quotient representation of 𝔤 on 𝑉 /𝐹1. Proceed by induction on dim𝑉 .

4.6 Corollary. A subalgebra 𝔤 ⊂ 𝔤𝔩(𝑉 ) of a finite dimensional vector space 𝑉 over an algebraically closed
field of characteristic zero is solvable if and only if there exists a flag 𝐹• ⊂ 𝑉 such that 𝔤 ⊂ 𝔟𝐹 .
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4.7 Corollary. If 𝔤 is a finite dimensional solvable algebra over an algebraically closed field of characteristic
zero, then [𝔤, 𝔤] is a nilpotent Lie algebra.

Proof. Consider the adjoint representation of 𝔤. By the previous corollary we have ad 𝔤 ⊂ 𝔟𝐹 for some
full flag 𝐹• ⊂ 𝔤. It follows that [ad 𝔤, ad 𝔤] ⊂ 𝔫𝐹 so that ad 𝔤 is nilpotent by Exercise 4.3. It follows that
ad[𝔤, 𝔤] is nilpotent, and therefore [𝔤, 𝔤] is nilpotent by Corollary 3.14.

4.8 Some other consequences of algebraically closed base field

Let 𝔤 be a Lie algebra and 𝑉 , 𝑊 be 𝔤-modules. Suppose 0 ≠ 𝜑 ∈ Hom𝔤(𝑉 , 𝑊 ) is a morphism. Then
ker𝜑 ⊊ 𝑉 is an 𝔤-submodule. If 𝑉 is irreducible we see that any non-zero morphism from it has to
be injective. Similarly, 0 ≠ Im𝜑 ⊂ 𝑊 is an 𝔤-submodule, therefore if 𝑊 is irreducible any non-zero
morphism to it has to be surjective. It follows that any non-trivial morphism between two irreducible
modules has to be an isomorphism. When in addition the base field is algebraically closed we have

4.9 Lemma Schur’s Lemma. Let 𝑉 be a finite dimensional irreducible representation of a Lie algebra 𝔤
over an algebraically closed field. Then

End𝔤(𝑉 ) = 𝑘 ⋅ Id𝑉 .

Proof. We have seen that any non-zero endomorphism has to be an isomorphism. Let 0 ≠ 𝜑 ∈ End𝔤(𝑉 ).
For 𝜆 ∈ 𝑘 we have 𝜆 Id𝑉 ∈ End𝔤(𝑉 ), therefore we have 𝜑𝜆 ∶= 𝜑 − 𝜆 Id𝑉 ∈ End𝔤(𝑉 ). On the other
hand, since 𝑘 is algebraically closed, 𝜑 has an eigenvector, say with eigenvalue 𝜆 ∈ 𝑘. It follows that
ker𝜑𝜆 ≠ 0. Therefore we must have 𝜑𝜆 = 0 and 𝜑 = 𝜆 Id𝑉 .

Exercises

4.1. Let 𝜋 ∶ 𝔤 ↠ 𝔥 be a surjective morphism of Lie algebras. Show that for any ideal 𝐼 ⊂ 𝔥, its preimage
𝜋−1𝐼 ⊂ 𝔤 is an ideal. Is the converse true?

4.2. Find a counterexample to Lie’s Theorem if the characteristic of 𝑘 is not zero.

4.3. Let 𝐹• ⊂ 𝑉 be a full flag of a finite dimensional vector space. Prove that 𝔟𝐹 is solvable and 𝔫𝐹 is
nilpotent.

4.4. Let char 𝑘 = 𝑝 > 0. Consider the Lie subalgebra 𝔤 of 𝔤𝔩(𝑝) generated by

𝑎 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ⋯ 0
0 0 2 ⋯ 0

⋯ ⋯
0 0 ⋯ 𝑝 − 2 0
0 0 ⋯ 0 𝑝 − 1
0 0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ⋯ 0 0
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0

⋯ ⋯
0 0 ⋯ 1 0 0
0 0 ⋯ 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑐 = Id𝑝×𝑝

Show that 𝔤 is nilpotent therefore solvable but there is no full flag of 𝑘𝑝 such that 𝔤 ⊂ 𝔟.
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Lecture 5: Jordan Form

Exercises

5.1. Let 𝔤 = 𝔰𝔩2 and let 𝑉 be it’s two dimensional defining representation. Let ℎ = ( 1 0
0 −1 ) ∈ 𝔰𝔩2.

a) Describe 𝔤 = ⊕𝛼𝔤ℎ
𝛼 .

b) Describe 𝑉 = ⊕𝜆𝑉 ℎ
𝜆 .

c) Check 𝑔ℎ
𝛼 𝑉 ℎ

𝜆 ⊂ 𝑉 ℎ
𝜆+𝛼 .

5.2. Let 𝔤 be the three dimensional Lie algebra of Exercise 4.4 over a field 𝑘 with characteristic 𝑝. De-
scribe 𝔤 = ⊕𝔤𝑎

𝛼 .

5.3. Let 𝔤 be the Lie algebra of Exercise 4.4 and let 𝑉 = 𝑘𝑝 be its defining representation. Describe
𝑉 = ⊕𝑉 𝑎

𝜆 .

Lecture 6:

Lecture 7:

Lecture 8:

Lecture 9:

Exercises

9.1. Show that the defining representation of 𝔰𝔩𝑛 and 𝔰𝔬𝑛 is irreducible.

9.2. Show that the trace form on 𝔰𝔩𝑛 associated to the standard representation and the Killing form are
non-degenerate if char𝑘 = 0
9.3. Show that 𝔤𝑎

0 is a Cartan subalgebra of 𝔤 for every regular element 𝑎 ∈ 𝔤 for any field 𝑘.
9.4. Find a four dimensional irreducible representation of 𝔰𝔩2 ⊕ 𝔰𝔩2 such that each summand does not
act by zero.

9.5. Let 𝔤 be a semisimple finite dimensional Lie algebra over 𝑘 = 𝑘 with char𝑘 = 0 and let 𝔥 be a
Cartan subalgebra. Show that there exists another Cartan subalgebra 𝔥′ ⊂ 𝔤 such that 𝔥∩𝔥′ = 0. [Hint:
Use an inner automorphism similar to the one in the proof of Chevalley’s Theorem]

Lecture 10:

Exercises

10.1. Let 𝔤 be a finite dimensional solvable Lie algebra over 𝑘 = 𝑘, char𝑘 = 0. Show that [𝔤, 𝔤] is
nilpotent. Find counterexamples for 𝑘 ≠ 𝑘 or char𝑘 ≠ 0.
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10.2. Let

𝑏 =
⎛
⎜
⎜
⎝

1 0 0
2 2 0

−3 −3 −3

⎞
⎟
⎟
⎠

and let 𝔥 be the set of all 3 × 3 matrices 𝑎 with complex numbers and trace 0 such that [𝑎, 𝑏] = 0.

a) Find dim 𝔥.

b) Show that 𝔥 is a Cartan subalgebra of 𝔰𝔩3(ℂ).

*c) Can you find 𝔥 explicitly?

10.3. Let 𝔤 be a finite dimensional Lie algebra and let 𝜌 ∶ 𝔤 → 𝔰𝔩(𝑉 ) ⊂ 𝔤𝔩(𝑉 ) be a representation
with dim𝑉 = 𝑛. Define det𝑉 = ∧𝑛𝑉 . det𝑉 is naturally a one dimensional vector space and is a
representation of 𝔤. Show that this representation is trivial. Show also that this may not be the case if
𝜌 does not factor through 𝔰𝔩(𝑉 ).

10.4. Let 𝔤 ⊂ 𝔤𝔩𝑛 be a subspace consisting of matrices with arbitrary first rows and 0 for the rest of the
rows. Find 𝑅(𝔤).
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