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Introduction

Question: Paul Erdés and Leo Moser asked - Given a positive integer x, what is the
maximum number m of positive integers a; satisfying

ap<a<---<am<x
such that all the 2™ possible sums of the a;:

ajyta,+---+a; 0<j<m

are different.

@ m depends on x, i.e. mis a function of x i.e. m = f(x)
o we include 0 as the empty sum in the above

o There are 2™ sums because that is the number of subsets of {a1,...,am}
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Introduction

Equivalent formulation: Given a positive integer x, what is the maximum number m
of positive integers a; satisfying

ag<a<--<am<x

such that the sum of the elements of each subset of {a1,...,amn} is distinct.

4/128



Introduction
000800000

Consider when x = 2k

Q: What is the maximum number m of positive integers a; satisfying
a1 < ap < --- < am < x such that all possible sums of the a; are distinct. J

Consider the case when x = 2% in our original question.

Proposition: The set of integers
{2'0<i<k}

, of cardinality k + 1, has the property that the sums of all its 21 subsets are distinct.

Thus in the case when x = 2K, we see that k+1 < m.
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Introduction

Q: What is the maximum number m of positive integers a; satisfying
a1 < a2 < --- < am < x such that all possible sums of the a; are distinct. J

We saw from the proposition on the prev. slide that when x = 2K, we have that
k+1<m.

Conjecture: When x = 2k, we must have m = k + O(1). This conjecture is still open.
Erdds offers a $500 reward for the proof or disproof of this. J
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Introduction

Q: What is the maximum number m of positive integers a; satisfying
a1 < ap < -+ < am < x such that all possible sums of the a; are distinct. J
Conjecture: When x = 2K, we must have m = k + O(1). )

Main goal of the seminar: We saw that when x = 2, we have that k+1 < m. In the
case for x = 2%, we will show in this seminar that it is possible to have m = k + 2. J

Remark: In particular this shows that m > k 4 2, but it doesn't go so far as to show
that m = k + 2 in general for x = 2k,
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How to achieve our main goal

How do we achieve this goal? Need to find positive integers a; satisfying
al<32<---<am§2k

such that all possible sums of the a; are distinct.

How will we find such a;? Modify the Conway-Guy sequence. [

Further goals for the seminar: Later on in the seminar we will discuss some results
which could be used to resolve this conjecture for arbitrary k. J
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The case when x is arbitrary

Q: What is the maximum number m of positive integers a; satisfying
a1 < ap < --- < am < x such that all possible sums of the a; are distinct. J

o Can find m = k 4 2 such positive integers a; when x = 2k (shall see later)
o Is this maximum such m? What if x # 2k?

o Are there any bounds on m?

Answer: 1
llogoyx] +1 < m< logx+ > loglogx + 1.3

where log here means log to the base 2.

First goal of the seminar: Prove the inequality above in the next section.
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Goals for the seminar

Q: What is the maximum number m of positive integers a; satisfying
a1 < a2 < --- < am < x such that all possible sums of the a; are distinct. J

o Goal 1: Prove |log, x| +1 < m < logx + % loglogx + 1.3
o Goal 2: When x = 2k, show that it is possible to have m = k + 2.
o Goal 3: Prove further properties about the Conway-Guy sequence.
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Introduction

Proposition: The set of integers {2/ | 0 < i < k}, of cardinality k + 1, has the
property that the sums of all its 2K subsets are distinct. J

Proof:
@ Suppose we have subsets A = {21,...,20n} and B = {21,...,2m} of
{2"| 0 < i < k} such that
n i m i
S-S
v=1 v=1
@ We will show that A = B which will conclude the proof.

@ WLOG we can assume that both A and B don’t contain 2° = 1 since we can just
remove it from both sets in that case to end up with sets A’ = A\ {2°} and
B’ = B\ {2°} whose elements still sum up to the same value.
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Proof contd.:

Recall A= {2%,...,2/n} and B = {21,... 2im}
Let p=min{i,...,in,J1,---,Jjm}-
Assume WLOG that p = i, for some 1 < v < n, then we have that

n

1 ol — 1 (- v
o =
1 v=1

v=

This implies that
14 3 ar=3 g
v=1,v#p

Now the left hand side above is odd, and the right hand side is odd if and only if
there is a 1 < w < m such that j,, = p. If there is no such j,, we arrive at a
contradiction.

Then we can form A’ = A\ {2P} and B’ = B\ {2P} and then repeat this process
again.

The end result of this inductive process is that A= B [.

13/128



Bounds for m
©00800000000000000

Lower bound for m

Recall our original question.

Q: What is the maximum number m of positive integers a; satisfying
a1 < ap < --- < am < x such that all possible sums of the a; are distinct.

Lower bound for m. Assume we are given some positive integer x. If we set
k = [logy x],

then the set of integers {2/ | 0 < i < k},
o has cardinality kK + 1
o the property that the sums of all its 2k*1 subsets are distinct and
0 0 <2 < xforall i.

So we have
llogox] +1<m
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Theorem 1

Theorem 1: If a; < ap < - < am < x are positive integers whose subsets have

distinct sums then

m
mx > a2 >2" - 1.
i=1

We obtain equality 37, a; = 2™ — 1 if a; = 2/~ for each i.
4

Proof:
o We first check that >, a; =2
o Note that if a; = 2/~ ! for 1 < i < m, then ay, ...,

m _ 1 if a; = 2/~ for each i.
am is a geometric sequence and

1-2m

Z Zz'— — =2m_1

i=1
4
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Theorem 1

Theorem 1: If a; < ap < - < am < x are positive integers whose subsets have
distinct sums then

m
mx > a2 >2" - 1.
i=1

Proof:

e Now we show that in general mx > Y7, a; > 2™ — 1.
o The fact that 1 < a; < x and a; < aj41 implies that

m m
Z a; < ZX = mx
i=1 i=1
o Let Aj,...,Aom_1 denote the complete list of the 2™ — 1 non-zero subsets of
{ai1,...,am}-
o Let

S,': Zaj

ajEA;
denote the sum of the elements in each A;
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Theorem 1

Want to show: mx > > ", a; > 2™ — 1. }

Proof:
o By assumption each of the S; are distinct. So we may reorder the S; so that

1<5<S<---<Sm_1 < mx (1)

o Note that we must have that Som_; = 37, a.
@ From equation 1 it follows that
Si>i
and hence that

m
Za, =Som_1 >2m—1.
i=1

@ Thus we have that

m
mx>z.a,-22'"fl.
i=1
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Theorem 1

Theorem 1: If a; < ap < -+ < am < x are positive integers whose subsets have

distinct sums then
m

mx>23,—22’"—1.
i=1

Corollary: If a; < ap < --- < am < x are positive integers whose subsets have distinct
sums then
2™ < mx

Corollary: If a1 < ap < --- < am < x are positive integers whose subsets have distinct
sums then

2m

Z<m

X
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Theorem 2

Theorem 2: If a; < a» < - -+ < any are positive integers whose subsets have distinct
sums then

Z 1
Dy &t > (4" -1).
i=1 3

(Sketch) Proof:

@ We have equality if a; = 2/ =1 for each i. (check using geometric sequence
formula)

@ Consider the sum of the squares of the 2™ quantities *a; £ ap &+ --- £+ ap,

@ Justtobeclear,ay —ax+as+as+---+am—2—am—1 — am and
—ai+a+a3—as+---—am—2+ am—1 + am are just two examples of such
quantities.

@ We write the sum of the squares simply as S = > (a1 £ ap + -+ - & am)?.
@ One can check that

m

$= Z(:ﬁ:al +ayt.. - tam)?= 2"’(2 a?)

i=1
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Theorem 2

Theorem 2: If a; < ap < -+ < anp are positive integers whose subsets have distinct

sums then

Proof:
@ The 2™ quantities a; = a +--- £ ap,.

o They are distinct
o Different from zero
o Of the same parity (i.e. all either even or odd)

@ By Theorem 1, each of the 2™ quantities lies between

—2"-1)<taytat---tan<2"-1

@ Hence
1<(daitapt---+an)? < (2m—1)>°

@ The estimates above and the fact that the 2™ quantities are distinct, different
from zero and of the same parity, implies the sum of their squares, S, is at least

P4 (1243 +(=3)+ -+ (2"-12+(1-2")2<S
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Theorem 2

Proof continued:

@ We saw on the prev. slide that
12+(*1)2+33+(73)2+...+(2m,1)2+(172m)2 <s

@ Note now that
m .
Pt (-1 +3 4+ (=3P -+ (27 -1+ (A -27)? =2 (2T - 1)
i=1
@ One can then check using basic results on the sums of geometric sequences that
- 1
23 (27 —1)2 = Z2m(22m —1).
3@ -1 = 2@ -

@ Thus we have that 1
52"’(22’" -1)<S
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Theorem 2

Proof continued:

@ We saw on the prev. slide that
1 m(o2m
52 2m-1)<Ss

@ We also saw earlier that

@ Thus we've shown that
m 2 m—1/52m
2 E > So=lpPm — 1)

@ Hence

w \

as desired. [J
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A false conjecture

Recall -if a; < a» < -+ < anm are positive integers whose subsets have distinct sums
then
m
Theorem 1: Z a; >2"—1.

1
Theorem 2: 2> Z(4m—1).
>4t > 3l )

Conjecture:

& 1
> ar > (@ = 1)
i=1 2n-1

False: n = 4 yields a counterexample.
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A false conjecture

Conjecture:
a 1
>4t > (167~ 1)
: 15
i=1
y
Falsity: The set of six numbers
{a;j} = {11,17,20,22,23,24}
whose subsets have distinct sums. The sum of their fourth powers is 1 104 035, but
£(16™ — 1) for m =6 is 1 118 481.
y
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Theorem 3

Theorem 3: If a; < ap < - < am < x are positive integers whose subsets have

distinct sums then 1
m < log x + 3 loglog x + 1.3
for x > 2. Here log means log,.
y
Proof:
@ Note 1 < a; < x implies 1 < a? < X2
o Furthermore the fact that a; < aj;1 implies that
m m
Z a2 < sz = mx?
i=1 i=1
y
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Theorem 3

Theorem 3: If a1 < a» < --- < a;m < x are positive integers whose subsets have

distinct sums then 1
m < log x + > loglog x + 1.3
for x > 2. Here log means log,. )
Proof contd.:
@ Theorem 2 then applies to show that
1 m
5(4"1 -1)< Za? < mx2.
i=1
e Claim: This implies
4™ < 3mx?
(see appendix for details)
y
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Theorem 3

Proof contd.:
o Starting with 4™ < 3mx? take log to the base 2 on either side.

@ Then we see that
2m < log3mx? = log 3m + 2log x. (2)

Now 2™ < mx = m < log(mx) = m < log m + log x

Also m < x = logm <logx =—> m < log x + logx = 2log x.

Using this we see that

log3m < log(3 - 2log x) = log(6 log x) = log 6 + log log x

Putting everything together we see that

2m < log 6 + log log x + 2 log x.

Now log6 < 2.6 and so we have that

2m < 2log x + log log x 4+ 2.6

and the result follows after diving by 2 on both sides. [J

27/128



Bounds for m
©00000000000000008

First goal achieved

Q: What is the maximum number m of positive integers a; satisfying
a1 < ap < --- < am < x such that all possible sums of the a; are distinct. J

Bounds for m: 1
llogoyx] +1 < m< logx+ > loglogx + 1.3

where log here means log to the base 2.
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The Conway-Guy sequence

Definition (Conway-Guy Sequence): We define a sequence of integers {u;}icn in the
following way:

o up=20
o =1

® upy1 =2up — Up—, for n > 1,
(where r = (v/2n), the nearest integer to v/2n)
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The Conway-Guy sequence

Definition (Conway-Guy Sequence): We define a sequence of integers {u;};cn in the
following way: up = 0; u; =1 and

Upyl = 2Up — Up—y

for n > 1, (where r = (v/2n), the nearest integer to v/2n

Some values of u, for small n:

n Uy Up—r n=r r
1 1 0 0 1
2 2 0 0 2
3 4 1 1 2
4 7 1 1 3
5 13 2 3
6 1 4 3 3
7 44 4 3 4
8 84 7 4 4
9 161 13 5 4

10 309 24 6 4
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The Conway-Guy sequence

Definition (Conway-Guy Sequence): We define a sequence of integers {u;}icn in the
following way: up = 0; u; =1 and

Upy1 = 2up — Up—r

for n > 1, (where r = (v/2n), the nearest integer to v2n

Some values of u, for larger n:

n U, Uy, n—r r
22 1051905 8807 15 7
23 2095003 17305 16 7
24 4172701 34301 17 7
25 8311101 68008 18 7
26 16 554194 134852 19 7
27 32973536 267420 20 7
28 65 679652 530356 21 7
29 130 828948 530356 21 8
30 261 127540 1051905 22 8
31 521203175 2095003 23 8
32 1040 311347 4172701 24 8
33 2076 449993 8311101 25 8
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The Conway-Guy sequence

Definition: We define a sequence of integers {u;};cn in the following way:
@ Uy = 0
o =1

® upy1 =2up — Up—, for n > 1,
(where r = (v/2n), the nearest integer to v/2n)

Graph of wu, up ton =15
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The Conway-Guy sequence

Lemma 1: u, is strictly increasing with n

Proof:
@ The proof follows by induction
@ As a base case we have that uyy =1 > up = 0.
@ Suppose that upm+1 > um forall 0 < m < n.
o We now show that w11 > up.
By definition up+1 = 2up — up—,

We can rewrite this as upy1 — Up = Up — Up—,.

Since up > up—, by our induction hypothesis, we have that u,+; — up > 0 which
implies that up+1 > up. O

34/128



The Conway-Guy sequence
00000080000

The Conway-Guy sequence

Lemma 2: 0 < u, < 2" ! forn>0

Proof:

The proof follows by induction

Base case: 0 = ug < 2° = 1. Moreover u, > up = 0 since {u;} is strictly
increasing by Lemma 1.

Suppose 0 < um < 2™ Lfor0< m<n

We will show 0 < w43 < 2mH1=1 = 2n,

By definition up+1 = 2up — up—, for n > 1.

Since up > up—r > up = 0 (Lemma 1) we must have that up+1 < 2u,

By the induction hypothesis u, < 2n=1 hence
Upy1 <2u, <2-2071 =21

as desired. [J
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The Conway-Guy sequence

Lemma 3: The sequence
Un
2"
is a decreasing function of n for n > 1 and strictly decreasing for n > 4. )
Proof:
@ For n=0, u, =0, hence ;’—8:0
o Forn=1, un:1andso;—{:%
o For n=2, u, =2u; — ug = 2 and so 5’—,2:2%:%
oForn:3,U3:2UQ—u0:4andso‘2’—Z:£i3:% )
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The Conway-Guy sequence

Lemma 3: The sequence

Un
on
is a decreasing function of n for n > 1 and strictly decreasing for n > 4. )
Proof:
o Now by definition up41 = 2up — up—, for n > 1.
o This implies that
Upt+1  Un _ Up—r
ontl ~ on  ontl’
o For n > 3, we have that r = (v/2n) < n, so that n— r > 0 and u,—, > 0.
@ Thus for n > 3 we have that
Up+1 Up
on+1 ?
o Stated equivalently g—g is strictly decreasing for n > 4. [
y
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The Conway-Guy sequence

Theorem 4: We have that

u 1
lim — =a where 0<a< —.
n—oo 2N

Remark: In particular, this result implies that the sequence u, behaves/grows like 2.
Proof: See Appendix.

Graph of w,/2" up to n =200
0.5 - . /2"
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Main goal of the seminar

Recall the main goal of the seminar.

Q: What is the maximum number m of positive integers a; satisfying
g <a<--<am<x

such that all the 2™ sums of the a; are distinct.

Main goal of the seminar: In the case for x = 2%, we will show in this seminar that it
is possible to have m = k + 2. J
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The sequence {a;}

First recall the definition of the Conway-Guy sequence.

Definition (Conway-Guy Sequence): We define a sequence of integers {u;};cn in the
following way:

@ ug = 0

e u =1

® Upy1 =2up — Up—r forn > 1,
(where r = (v/2n), the nearest integer to v/2n)
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The sequence {a;}

Definition (Auxiliary Sequence): Using the Conway-Guy sequence, we define an
auxiliary sequence {a;} of k + 2 integers by setting

aj = Uk+2 — Ukt2—

for1<i<k+2.
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The sequence {a;}

Conjecture: Conway & Guy claim that the set of k + 2 integers given by
A={ai = U2 — Uky2—i | 1 < i < k+2}

has subsets with distinct sums. Conway and Guy also claim that A gives the best
possible solution, that being m = k + 2 to the problem.

y
Resolution: This conjecture was resolved. The above was proven to be true by Tom
Bohman in 1996 in the paper - "A Sum Packing Problem of Erdés and the
Conway-Guy Sequence” ?
?See remarks below Theorem 1 in this paper, Sp11 there is the set A above.
)
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The sequence {a;}

Conjecture: Conway & Guy claim that the set of k + 2 integers given by
A={aj = tpj2 — Upjo—i | 1 < i < k+2}

has subsets with distinct sums and gives the best possible solution, that being
m = k + 2 to the problem.

Partial result: With the aid of the theorems that will soon be proved and increasing
amounts of computational power it is possible to verify this conjecture for small values
of k, for example for k < 40.

o

We will see that k < 40 is enough to achieve our main goal of the seminar.
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The "trick” part 1.

Proposition (Trick): Given any set S of k -+ 2 numbers each less than 2k whose
subsets have distinct sums, the set S’ obtained by S by doubling each member and
adding an odd number, i.e.

S'={2alae S}u{m}=25uU{m}

where m € 2Z + 1 has distinct sums.
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The "trick” part 1.

Want to show: If S is a set with |S| = k 4+ 2 and max S < 2k then S’ = 2S U {m}
where m € 27 + 1 has distinct sums.

Proof:

The subsets of 25 each yield distinct sums, since each sum is just 2 times the
corresponding sum of elements in S and by assumption those sums are distinct.
()

Suppose now we have two subsets A and B of S’ whose sum of their elements
yield the same sum.

If one subset of S’ contains m and another subset does not, then their respective
sums must be distinct since one sum is even and the other odd (a contradiction).

If both subsets of S’ contain m, we may simply remove m from the sum and fall
into case (*) again.

Thus we've proven the claim. [J
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The "trick” part 2.

Lemma (Trick): Given any set S of k + 2 numbers each less than 2%, whose subsets
have distinct sums then for any positive integer /, the set
dsu{i|o<i<i-1}
has cardinality k 4+ 2 + / and also has distinct sums. )
Proof:
o Let S(U =25U {1}. By the previous proposition this has subsets with distinct
sums.
o Let S@ =251 U {1} =225 U {2} U {1}. By the previous proposition this has
subsets with distinct sums.
o Let SG) =25@ U {1} = 235U {22,2} U {1}. By the previous proposition this
has subsets with distinct sums.
o Continue inductively to obtain
s —osU=Dy1}=2'suf2i|o<i<i—1}
which also has distinct sums by the previous proposition. [J )
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Main goal of the seminar

Q: What is the maximum number m of positive integers a; satisfying
aa<a<---<am<x

such that all the 2™ sums of the a; are distinct.

Main goal of the seminar: In the case for x = 2k we will show in this seminar that it
is possible to have m = k + 2. J

Claim: The sequence {a;} we've defined along with the two tricks will give the above
result. J
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Main goal of the seminar

How it goes:
o Consider the sequence {a; = U1 — Ugi2—i}-
o Recall earlier we defined oy := ‘z‘—g One can verify by hand/computation that
U3 1,
a3 = 2@ < Z =2

Moreover we know that «, is a strictly decreasing sequence for n > 4 by Lemma
3. Hence ay = g—’; <272 for k > 23

e Then ;’—’; < 272 for k > 23 implies that we have Ukt < 2k for k > 21.
o Thus a; < 2K for k > 21.
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Main goal of the seminar

How it goes: (continued)
o Let x = 2k be given for k > 21.
@ Pick z =21 (for simplicity)
o Consider the set A = {a; = ugyp — Ukyo—; |1 < i< z+2}
One can verify by computation that A has subsets with distinct sums.
We have a; < 27 for each a; € A.
Let | =k — z.
Then the set

A =2Au{2 jo<i<I—1}
has cardinality (z + /) + 2 = k + 2 and also has distinct sums by the previous
Lemma (trick).

@ Moreover if a € A’ then a < 2k

v

Anecdote: | managed to verify that A had distinct sums for z = 23 before my 16GB of
RAM could not take any more.
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Main goal of the seminar - completed

Q: What is the maximum number m of positive integers a; satisfying
ag <ap<---<am<x

such that all the 2™ sums of the a; are distinct.

Main goal of the seminar: In the case for x = 2%, we will show in this seminar that it
is possible to have m = k + 2. J

We just showed on the prev. slide that we can have m = k + 2
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A shift in the seminar

@ We now turn to proving results that are useful towards the conjecture made by
Conway & Guy.

Conjecture: Conway & Guy claim that the set of k + 2 integers given by
A={aj=upo — g2 i |1 <i < k+2}

has subsets with distinct sums and also claim that A gives the best possible solution,
that being m = k + 2 to the problem.

@ Alternatively you can view everything that follows as us basically proving a lot of
properties of the Conway-Guy sequence.
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Lemma 4

Lemma 4: For n > 1 we have that u,+1 > up + up—1.

N—

Proof:
@ Forn=1, we havethat up =2 > u; +up=1+0=1.
@ Forn=2, we havethat 3 =4 > up +u; =2+ 1=3.
@ For n=3, we have that uy =7 > us +up =4+2 = 6.
@ For n =4, we have that us =13 > ug +u3 =7+ 4 = 11.

Some values of u, for small n:

n Uy Un—r n=r r
! 1 0 0 1
2 2 0 0 2
3 4 1 1 2
4 7 1 1 3
5 13 2 2 3
6 24 4 3 3
7 4 4 3 4
8 84 7 4 4
9 161 13 5 4
10 309 24 6 4
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4

Lemma 4: For n > 1 we have that up+1 > up + up—1.

N—

Proof continued:

Induction hypothesis: Suppose that for n —1 > m > 1 we have that
Unt+1l > Um + Up—1.
Now suppose n > 4, then in particular V2n>+8=2-v/2>2. This implies that
r= (m) > 2 and in particular that n — r < n — 2 and that u,—, < u,_».
Then by definition we know that
Upy1 = 2Up — Up—r = Up + (Un - Unfr) > up + (Un - Un—2)
From the induction hypothesis we know that u, > u,—1 + up—2 which implies
that up — up—2 > up—1
This implies that
Upt1 > Up + Up—1

as desired. [J
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Lemma 5

Lemma 5: For n > 4 we have that

n

Upt1 < E Ui < Upt1 + Up—2.
i=0

Proof: See Appendix
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Equal sums warm-up

Proposition: There are no singletons, pairs, triples or quadruples of the u; with equal J
sums

Singletons: Just note that {u;} is a strictly increasing sequence.

o Pairs: Follows from the fact that

Upt1 > Up + Up—1

Triples: Follows from the fact that

Uny1 > Un + Up—1 + Up—2 for n > 2

Quadruples: Follows from the fact that
Upt1 2> Un + Up_1 4+ Up—2 +up_3 for n > 11

Proofs: See Appendix.
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Theorem 5

Theorem 5: If two subsets of the {a;} have equal sums, then there are two subsets of
the {u;} with equal sums and equal cardinalities. Conversely if there are two subsets
of the {u;} with equal sums then there are two subsets of the {a;} with equal sums
and equal cardinalities.

o For cardinalities less than 4 the theorem is vacuously true by the preceding
Lemmas.

o We now prove it for k +1 > 4.
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Theorem 5

Theorem 5: If two subsets of the {a;} have equal sums, then there are two subsets of
the {u;} with equal sums and equal cardinalities. Conversely if there are two subsets
of the {u;} with equal sums then there are two subsets of the {a;} with equal sums
and equal cardinalities.

Proof:
@ Suppose that two subsets of the {a;} have equal sums. Denote these sets by
{aj;,...,a,} and {a,...,a;,}.

@ Since a; = uyyp — Uk+2—; we have that
(Ukpo —tpgo—ip )+ -+ (Uks2—tkio—i.) = (Uks2—Ukqo—jy ) ++ - -+ (Uks2— Ukso—j,)
3

o We may assume that (i) the two sets are disjoint (else we could just cancel
common terms); (i) that i < i <--- < s and j1 < j» < --- < ji and (iii) that
s>t

@ By rearranging equation (3) we arrive at

(s — t)ukyo = uy +upy 4+ +up, — (u, + - ;) (4)J
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Theorem 5

Theorem 5: If two subsets of the {a;} have equal sums, then there are two subsets of

the {u;} with equal sums and equal cardinalities. Conversely if there are two subsets
of the {u;} with equal sums then there are two subsets of the {a;} with equal sums
and equal cardinalities. )
Proof:
@ On the prev. slide we arrived at equation 4 which says that
(sit)uk+2 = uj +ui2 +"'+ui5 7(”]1 +ujz)

@ Since 1 <ipm < k+1forl<m<s, we have that ug < u;, < ugyq and hence
that uwj, + up + -+ u, < Zk“ u; which implies that the RHS of equation 4
above is strlct/y/ less than ZHOI u;.

o Now by Lemma 5, we know that Z,':ol uj < Ukt — Uky1, hence we see that

(s — t)upy2 < Upy2 — Upya-
@ Thus
Uktip — U u
57t<M:17ﬁ<2
Uk42 Uk42
@ Thus we either have s —t=0ors—t=1,ie. s=tors=t+1 )
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Theorem 5

Proof continued:

o Recall equation 4 which says that
(s = upre =y +ujp + -+ + vy — (ujy + - )
o If s =t then from equation 4 above we simply have
Up +up +- Ui = Uy U

and so we obtain subsets of the {u;} with equal sums and equal cardinalities.

o If s =t + 1 then by rearranging equation 4 above we have that
Uy + Ujp + - F U = Ujy - U, + Uy

and again we obtain subsets of the {u;} with equal sums and equal cardinalities,
this time the cardinality of both sets is s + 1.
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Theorem 5

Proof continued:

@ Now conversely suppose that there are two subsets {u;,,...,u; } and
{uj,...,u;} of the {u;} with equal sums and cardinalities.

o We can assume without loss of generality that i1 < --- < is and j; < --- < Jjs.
@ Then we have
up -+ upp = upp + e+ U
o We can rewrite each im,jm as im = k+2— i/, and jm = k+2—j/ for 1 < m <s.
@ Thus

Upo—if Tt Uppojr = Ugqojr + - Ukya 1
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Theorem 5

Proof continued:

@ We saw on the prev. slide that
Upo—if Tt Upojr = Uggo_jr + -+ Ukya
@ Then for any n > max(k +2 — i/, k + 2 — j.) we have that
(un = tpyo i)+ 4 (un — tkgo—ir) = (Un — Upgo_jr) + - + (un — Uy j7)
@ In particular if n = k + 2 we then obtain that
(Uh2—tpio—if)+ - F (k2= tiro—iy) = (Ukp2—Upio_ )+ -+ (U2 —tis2—j7)
@ This is the same as saying that

ay+---+ayp=ay+---+aj
il s J1 Js

which completes the proof. [J
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Triangular numbers and the Conway-Guy sequence

Definition: Triangular numbers are given in the form

1
Ts = 55(5 +1)

o If r = (v/2n), then
T—1<n<T,

for n >0
o For ut, we have that r = (\/s(s + 1)) ~s. Thus

ur, ~2uT, 1 — UT, s
o We have the identity

UT q+t+1 = 20T, +t — UT,4t—1

where 1 <t <s+2
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Theorem 6

Theorem 6: If T; = 1s(s+1), s >0and 0 < t <s+2, then

Tsp1t+t

s
E Ui = UT, +t+1 + E ur;.

i=To+t i=2

(If s=1 or s =0, interpret the empty or 'less than empty’ sum on the right as 0 or
—1 respectively.)

Example: If s =3, then Ts =6 and Toq1 = Ty = %(4)(5) = 10 and the theorem says
that for 0 < t < 5 we have that

t+10

Z ui = upr11 + (U3 + ue) .
i=t+6

The left hand side is the set {utt6, Ur+7, Ut+s, Urto, Urt10} of cardinality s+2 =5 and
the right hand side is the set {ust11, u3, ug} of cardinality s = 3.

v
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Importance of Theorem 6

Theorem 6: If T, = 1s(s+1), s >0and 0 < t < s+ 2, then

Tsy1+t s
E Ui = UT, y+e+1 + E ur,;.
i=Ts+t i=2

(If s=1 or s =0, interpret the empty or 'less than empty’ sum on the right as 0 or
—1 respectively.)

Remark: Theorem 6 exhibits sets of the u; with equal sums whose cardinalities are
s + 2 (on the LHS) and either s or s + 1 (on the RHS). J
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Theorem 6

Theorem 6: If T; = 1s(s+1), s >0and 0 < t < s+2, then

Toqp1+t
Z Ui = UT, 1 4e41 + Z ur;.
i=Ts+t
(If s =1 or s = 0, interpret the empty or 'less than empty’ sum on the right as 0 or
—1 respectively.)
y
Proof:
@ The theorem may be verified by hand from Table 1 for s =0,1,2 and
0<t<s+2
@ Note that the result for t = s + 2 is the same as that for t = 0 and s+ 1 in place
of s, if we add ut,11 to each side. This is because Ts11 + 5+ 2 = Tsy2 and
Ts+ s+ 2= Tsr1+ 1 (one can verify this by routine algebra) imply that
Tsy1+s+2 Tsio
> w3
i=Ts+s+2 i=Top1+1
4
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Theorem 6

Proof:

o Induction hypothesis: We assume the result holds true for some s > 2 and some t
with 0 < t < s+ 1 and we prove that it is true for the same s and for t + 1 in
place of t.

@ So by assumption we have that

Tsp1t+t

E Uj = U, +t41 + E ur;.

i=Tg+t

@ Then we add u7,_,t++1 — UT,+¢ to either side to get

Tsy1+t s
§ Ui +UT, 441 — UT4e = UT, 441 + E UT; + UT, g 4e4+1 — UT 4t
i=Ts+t i=2

o This implies that

Tsp1+t+1

S
E Up =207, 4¢41 — UT,+t + g ur;.
i=Tott+1 i
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Proof:

o We have from prev. slide

Tep1+t+1 s
E Ui = 2UT  4e41 — UT,4t + E ur;.
i=Ts+t+1 i=2

@ By definition of the sequence of the u; we have that
2uT, 441 — UTeht = UT, +e42 for 0 <t <s + 1.
o This implies that

Tsi1+t+1 s
E Uj = UT, +t42 + E ur;
i=Ts+t+1 i=2

which is what we wanted. [J
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Lemmas 8 & 9

Lemma 8: If s > 0, with the convention of Theorem 6,

S
1
Z ur, < - (UTS+1 + UTS,1+2)
i=2 2

Lemma 9: If v > T,.4, then

v
E up < Uyy1.

i=v—s

They generalize...

Lemma 5: For n > 4 we have that

n

Upt1 < E uj < Upg1 + Up_2.
i=0
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Theorem 7

Theorem 7: If s > 0and 1 < t < s+ 2, then with the same convention as in Theorem
6,
Ts+t—

1 s
UT 4t+1 > E uj + E ur;.
i=0 i=2

Proof: See appendix. [

It generalizes...

Lemma 4: For n > 1 we have that upy1 > up + up—1.
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Theorem 7

Theorem 7: If s > 0and 1 < t < s+ 2, then with the same convention as in Theorem

6,
Ts+t—1 s
UT 4141 > Z uj + Z ur;.
i=0 i=2
4
Example: For s = 4, we have that T4 = %(4)(5) =10and 1 <t < 6. Then the
theorem says that
t+9
Upy11 > Z uj + u3 + ug + u10-
i=0
y
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Theorem 8

Theorem 8: Suppose there are two sets of the u; with equal sums and the largest
member of either set is UT, g +t41 where 1 < t < s+ 2.

Then the other set contains at least s + 2 members, including the s + 1 members u;
for iintherange Ts +t+1< i< Teyg + t.

Remark: This theorem is not vacuous since there are sets of the u; with equal sums,
but which do not have the same cardinality (cf. Theorem 6). J
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Theorem 8

Theorem 8: Suppose there are two sets of the u; with equal sums and the largest
member of either set is ur, ,yr+1 Where 1 <t <s+ 2.

Then the other set contains at least s + 2 members, including the s + 1 members u;
for iintherange Ts +t+1<i < Tgyg + t.

Example: Take s = 4 in the above, then we have Ts = 10 that Ts;1 = 15. The
largest member of either set is UT, 1 +t+1 = Ut416 where 1 < t < 6. The other
contains the s +1 = 5 members u; for i in the range t + 11 < j < t + 15. Taking

t = 3 implies that one set contains as its largest member w19 and the other contains
{u14, u1s, U6, U17, U8}
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of
either set is ur_ ;111 where 1 <t < s+ 2, then the other set contains at least s + 2
members, including the s + 1 members u; for i in therange Ts +t+1 < i < Tgy1 + t.)

Proof:

o Call the sets of the u; which have equal sums A and B.

Let S; be the sum of the elements of A and Sy be the sum of the elements of B.
We have S; = S by assumption.

Suppose B does not contain the s + 1 members u; for i in the range
Ts+t+1Si§ Ts+1+t-

@ Then the sum of the elements of B is at most
Tsq1+t Top1+t
S < E u; — E uj.
i=0 Tet+t+1
@ Now certainly we have that
Top1+t Top1+t Top1+t
g uj — E up < E Ujp — UT4t41
i=0 Ts+t+1 i=0
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of
either set is ur, ;i1 where 1 < t <'s + 2, then the other set contains at least s + 2
members, including the s+ 1 members u; for i in the range Ts +t+1<i < Teyg + t.)

Proof contd.:

o We saw on the prev. slide that

Tsp1+t

S < E Uj — UT, 441

Tsy1+t - Tsy1+t impli
o Thissince 3,53t uy = S50y + 31271 uj the above implies that
Ts+t—1 Tsq1+t
S < E uj + E Ui — UT,1¢41
i=0 =T+t
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of

either set is ut_ ;111 where 1 <t < s+ 2, then the other set contains at least s + 2

members, including the s +1 members u; for i in the range Ts +t+1 </ < Tgpq + t.
D

Proof contd.:

o Continuing from prev. slide:

Tsy1+t Ts+t—1
S < Z Up — U441 + z uj
i=Te+t i=0
s Ts+t—1
= U7, +t+1 + Z UT, — UTgyi41 + Z uj (by Thm. 6)
i=2 i=0

AN

UT,y+t41 + UT 4041 — UT,4e41 (by Thm. 7)
= UTgpi+t+1
o Now ur,,;+r+1 is either:
o an element of A in which case $; > UT, q+e+1 and we have that

UT g +e4+1 <S5 =5< UTg,q+t41 @ contradiction
o an element of B in which case ur, t+1 is a summand of S, and so we also have a
s+1ttt

contradiction.
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of
either set is ur, ;i1 where 1 <t <'s + 2, then the other set contains at least s + 2
members, including the s+ 1 members u; for i in the range Ts +t+1 < i< Teyq + t.)

Proof contd.:

@ So we've shown that B must contain the s + 1 members u; for i in the range
Ts+t+1<i< Tey1+t
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of
either set is ut_ ;111 where 1 <t < s+ 2, then the other set contains at least s + 2
members, including the s + 1 members u; for i in therange Ts +t+1 < i < Tgyg + t.J

Proof contd.:
@ Now we show that B must contain s 4+ 2 members.

@ Now we can write the sum R of the s + 1 members as

Tst1t+t Tsp1t+t
R = E § Ui — UT 4t
i=To+t+1 i=Ts+t

@ From Theorem 6 we know that

Tsi1tt

Z Uj = U, +t41 + Z ur;

i=Ts+t
@ Using the equality derived from Theorem 6 above we see that

s

R=ur yem1 + E :“T,' — UTg4t
i—2
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of

either set is ut_ ;111 where 1 <t < s+ 2, then the other set contains at least s + 2

members, including the s +1 members u; for i in the range Ts +t+1 < /i < Tgypq + t.
y

Proof contd.:

@ Then we can apply Lemma 8 to see that
2 1
Z ur, < E(UT5+1 +ur,_42)
i=2
@ Thus
s
R=ur +e11+ Z ut, — UT 4+t
i=2

1
< Ut te+1 + E(UTS-H +UT,_42) — UTot

= UT g +t+1 — 5(2UT5+t —UTe4+1 — UTS,1+2)

< UT 4141
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Theorem 8

Theorem 8: If there are two sets of the u; with equal sums and the largest member of
either set is ut_ ;111 where 1 <t < s+ 2, then the other set contains at least s + 2
members, including the s + 1 members u; for i in therange Ts +t+1 < i < Tgy1 + t.)

Proof contd.:

@ We saw on the previous slide that

R <ut  +es1-

@ Now remember S, is the sum of all the elements in B and S; is the sum of all the

elements in A and we have that
5=5

Either A or B contains ut_,,++1 and the fact that R < ur,, ;1141 (where R is
the sum over s + 1 elements of B) implies that B must contain at least one other
element in addition to the s 4 1 elements which comprise the sum R in order for
S1 = S, to hold.

@ Thus B has at least s + 2 elements. [J
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Conditions for Theorems 9-13

@ In Theorems 9-13 we will assume some extra conditions.

@ Two of these conditions will be that there are two sets of the u; with equal sums
and equal cardinalities.

@ Theorem 5 then would imply that the sequence {a;} will have equal sums. This is
opposite to the conjecture made by Conway and Guy.

@ So the author of the paper conjectures that these theorems are only vacuously
true.
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Conditions for Theorems 9-13

Conditions C and D are of 'minimal criminal’ type as the author puts it.

Condition A: There are two sets of the u; with equal sums [
v
Condition B: The two sets have the same cardinality ¢ [
v
Condition C: Of such pairs of sets we choose one with the least possible greatest
element u,41 and write n in the form Tgyj + t where 1 < t < s+ 2. J

Condition D: Among pairs of sets satisfying conditions A to C, choose one with the
smallest value of c. This condition implies that the two sets are disjoint. Lemmas 1,
4, 6 and 7 imply that ¢ > 5.
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Minor and Major sets

Definition: Suppose we have two sets of the u; with equal sums. We call the set
containing u,y1 the major set and the other set the minor set. J

Theorem 9: Under conditions A to D, ut,+—; belongs to the minor set. [

Theorem 10: Under conditions A to D, the minor set does not contain all the s + 4
members u; for Ts +t —2 < i < Tgyg + t. J

Proofs: See Appendix
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Theorems 12 & 13

Theorem 11: Under conditions A to D, ut,; belongs to neither set. [
V.

Theorem 12: If s > 4 and 1 < t < s, the minor set contains u; for

Ts +1<i<Ts+t—1. Ift=s+1ort=s+ 2, the minor set contains u; for

Tet2<i<Tst+t—1.

Theorem 13: The minor set contains ux where x = Ts_; if t =1 (or 2) and
x=Te_1+t—-2if2<t<s+2 J
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Geometric sequence

Formula for geometric sequence used: If we have a geometric sequence

{r% 1, ..., r"~1} that
n
S ekl = c(1—r")
‘ 1—r
i=1
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Theorem 2

Theorem 2: If a; < ap < -+ < a; are positive integers whose subsets have distinct

sums then
Z 1
D &> - (am-1).
: 3
i=1
y
Proof:
o Consider the sum of the squares of the 2™ quantities +a; £ ap +--- + ap
@ Justtobeclear,ay —ax+as+as+---+am—2—am-1 — am and
—ai+a+a3—as+---—am—2+ am—1 + am are just two examples of such
quantities.
o We write the sum of the squares simply as S = > (a1 £ ap & -+ & am)?.
o Let's try and find a simpler expression for S = > (a1 + ap & -+ - & am)?.
o Now consider (for the moment) m = 2. We have 22 = 4 quantities
° a1+ a
e —a + a
@ a1 — a2
@ —a; — a
o What is > (da; & a2)?? Let's investigate )
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Theorem 2

Proof contd.:

o We have the 22 = 4 quantities

ap+ax; —ar+ax; ag—ax,; —ay—az

and we want to know what is > (&a; & a)??
@ We have the following values for (+a; + ap)?
(a1 + 32)2 =) af + 2a1a; + ag
(—a1 + @)% = a3 — 2a1a, + a3
(a1 — 22)2 = af — 2a1ay + ag
(—a1 — a2)2 = af + 2a1ar + a§

@ Then we see that

D (Far £ a)? = (a1 + 22)° + (—a1 + 22)° + (a1 — a2)* + (—a1 — 2)?
=4(af + a3)

2
=223 a?)
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Theorem 2

Theorem 2: If a; < ap < - < a;p are positive integers whose subsets have distinct

sums then
& 1
> a7 > (am-1)
— 3
i=1
y
Proof contd.:
o For m = 2 we had that
2
D (Fa £ a)? =2°() )
i=1
this generalizes and we have that
m
S= S (e kot anl =230 )
i=1
y
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Theorem 2

Proof:
o Recall the 2™ quantities £a; = a> £ --- £ am.
o Claim: They are all distinct.

@ Suppose to the contrary that two of them are equal, then that means that

IDEEDIE S DY AT

ieJ iekK
|I|<m [J|<m |K|<m \L\<m

where |I| 4+ |J| = m and |K| + |L| = m.

o If INK # 0 or JN L =0, then they have a common term and we can cancel it
from the sum and then use induction to prove that / = K and J = L and the
result follows.

o Otherwise IN K =0 and JN L =0 and in this case we can rearrange to get
DAt D a= D Z ai
icl ieL icK
[I]<m [L|<m |K|<m \J\<m

and the LHS cannot equal the RHS because the a; have distinct sums by
assumption so we get a contradiction.
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Theorem 2

Theorem 2: If a; < ap < -+ < anp are positive integers whose subsets have distinct
sums then

Proof:
o Recall the 2™ quantities £a; = a> £ --- £ am.

o They are distinct
o Different from zero
o Of the same parity (i.e. all either even or odd)

@ By Theorem 1, each of the 2™ quantities lies between
—2"-1)<tatat---+an<2"-1

@ Hence
(fartapt---£am)? < (2™ —1)>2

@ The estimates above and the fact that the 2™ quantities are distinct, different
from zero and of the same parity, implies the sum of their squares, S, is at least

P4 (1243 +(=3)+ -+ (2"-12+(1-2")2<S
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Theorem 2

Proof continued:

@ We saw on the prev. slide that
12+(*1)2+33+(73)2+...+(2m,1)2+(172m)2 <s

@ Note now that
m .
Pt (-1 +3 4+ (=3P -+ (27 -1+ (A -27)? =2 (2T - 1)
@ One can then check using basic results on the sums of geometric sequences that
2y (2 - 2om-1(2m _ 1,
Z( = Zomi@in )

@ Thus we have that 2
§2m—1(22m _ 1) < S
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Theorem 2

Proof continued:

@ We saw on the prev. slide that

§2m—1(22m _ 1) < S

@ We also saw earlier that

@ Thus we've shown that

m

2

2"y "at > 32"’*1(22'" - 1)
i=1

@ Hence

as desired. [J
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Theorem 3

Proof contd.:

@ Theorem 2 then applies to show that

1 m
3(4m -1)< Za? < mx2.
i=1
o Claim: %(4’” —1) < 37, a? implies that 4™ < 3mx?
@ In order to prove this we have two cases to examine.
o Case 1: We need to check that if %(4’" —1) =31, a? then 4™ < 3mx?

o Case 2: We need to check that if 3(4™ — 1) < 3", a? then 4™ < 3mx?
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Theorem 3

Want to show: Case 1: If %(4"’ —1) =37, a? then 4™ < 3mx? J
Proof contd.:
o If (4™ —1) = 37, a? then by Theorem 2 we have that a; = 2/~ for each /.

Moreover in this case we have that x = 2m~ L,

@ Thus we have

3mx? > 2mx?

— 2m(2m71)2
— m22m71
2m 2m
> (7) 22m=1 gince m> Z— and x =2m!
2m—1 %
—9. 22m—1
— 22m
—4m
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Theorem 3

Want to show: Case 2: If %(4"’ —1) < Y7, a? then 4™ < 3mx? J

Proof contd.:

o If

1 m
5(4’" -1)< Za? < mx?,
i=1

since we are only working with integers we then see that
1 m
§(4m—1)§Za?—1§mx2—1.
i=1

o Forget about the center term in this inequality and multiply by 3 throughout to
see that
4m — 1< 3mx? — 3.
o From this we get that 4™ < 3mx2.

@ Thus the claim is proven and we have in all cases that 4™ < 3mx?.
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Lemma 5

Lemma 5: For n > 4 we have that

n
Upy1 < Z ui < Upy1 + Up—2.
i=0
y
Proof:
o We first show this explicitly for n = 4,5 and 6.
e n=4:
o us =13
o utuwt+uwtuz+uu=0+1+2+4+7=14
o us + uy =15
e So us < Z?:o“i < us + up.
@ n=>5 and n = 6 can check explicitly similarly. )
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Lemma 5

Proof continued:

@ Suppose that up11 < ZLO uj < Upt1 + up—2 is true for n = k > 6, we will show
that it is true for k + 1.

o We see that

k+1 K
E Ui = Ugy1 + g Uj > Uy + Ukyl = 2Up4
i=0 i=0

with the last inequality occurring because Zf:o uj > Uk by the induction
hypothesis.

o Now because n = k > 6 we see that v, 1), > 0 (where r = (\/2(k + 1))) so
that 2uky1 > 2up1 — Ugkgr)—r = Ukt2-

@ Hence
k+1

E up > Upyo
i=0
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Lemma 5

Proof continued:
@ We saw on the last slide that

k+1

E uj > Ugyo
i=0

o Now also using the induction hypothesis on Z,‘k:o u; we see that

k+1 k
Z Uj = Ugy1 + Z Ui < Ukt + U1 + Uk—2.
i=0 i=0
o Now
Uk+1 + Ukt1 + Uk—2 = 2Uk41 + Uk—2
= (2uk41 = U(g1)—r) + Yghp1)—r + Uk—2
= Up42 + U(kt1)—r + Uk—2.
@ Hence
k+1
Z uj < Ut + Uky1)—r + Uk—2.
i=0

v
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Lemma 5

Proof continued:

o We saw that
k+1

Z uj < U2 + Ukyr)—r + Uk—2.
i=0

@ Now for k > 6 we have that (k+ 1) — r < k — 2, so by Lemma 4

U(kt1)—r + Uk—2 < U1

@ Thus
Up42 + Ugg1)—r + Uk—2 < Uj2 + U1
@ Hence
k+1
Z Ui < Ugy2 + Ug—1
i=0

which completes the proof. [J
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Lemma 5.5

Lemma 5.5: There are no singletons or pairs of the u; with equal sums [

Proof:
@ There are no equal singletons because {u;} is a strictly increasing sequence.
@ Suppose we have two pairs of the u; with equal sums. In other words suppose we
have sets {uj, uj,} and {uj, uj, } which are disjoint such that
Ujp + Uj, = Uj + Uj-
Assume without loss of generality that u; < uj,, uj; < uj,.

@ Since the sets are disjoint, one of them must contain a largest element (from
both sets), so assume without loss of generality that uj, > uj,.

o Now we know by Lemma 4 that uj, > uj, 1+ uj 2
@ Since uj, > uj, > uj we see that u;, < w3 and v, < uj,_».

@ Hence uj, > uj, + u;; and since uj; > 0 we see that we cannot have that
uj + uj, = uj + uj, and hence we obtain a contradiction. [J
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Lemma 6

Lemma 6: There are no distinct triples of the u; with equal sums [

v
Proof:
@ The result will follow (using the same technique used in the previous lemma) if
we show that
Upy1 > Up + Up—1 + Up—2 for n > 2
@ This can be verified by hand from the earlier Table for 2 < n < 7 with equality
occuring for 3 < n < 6.
o Induction hypothesis: suppose that umi1 > Um + Um—1 + Um—2 for m > 2 holds
for 1 < m < n— 1. We will show it holds for n too.
@ For n > 7 we have that r > 3 sothat n—r < n— 3.
o By definition upt1 = 2up — up—r, hence upy1 > 2up — Up—3 = U + (Un — Up—3).
o By the induction hypothesis we see that u, > up—1 + up—2 + up—3. Hence
Upt+1 > Up + Up—1 + Up—2 + Up—3 — Up—3 = Up + Up—1 + Up—2
as desired. y
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Proof of Theorem 4

Theorem 4: We have that

whereO<o¢<%

Remark: In particular, this result implies that the sequence u, behaves/grows like 2.

Proof:

o Define u
n
ap = —

=
@ In the range %m(m +1)+1<n< %m(m + 1)(m + 2) we have that r = m + 1.
@ Now we know by definition of the Conway-Guy sequence that u,+1 = 2up — Up—r.
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Proof of Theorem 4

Proof:
@ Thus
Unt+1 2up Un—r Up—m—1 _ _ %n—m-1
T T o T YT Tompe

Gntl = on+l — on+l on+1

o If we sum 41 over the range %m(er 1)+1<n< %m(m +1)(m+ 2) we get

L m(m+1)(m+2)

_ o—(m+2) Z an

C( et 1)(m42)/2 = OL (1) +1
n:%m(mfl)

o If we substitute m 4 j — 1 for m and sum the above from j =1 to j = p, we get
L(m+)j)(m+j+1)

+i—1)
CLm(m+p)(mtp+1) — Fm(mt1)/2+41 22 " > @@
~ L (mtj—1)(m4i—2)
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Proof of Theorem 4

Proof:
@ Since ap3 = 2095003 x 2~23 < %, Lemma 3 implies that

1
a<oap< —
4

for n > 23.

@ Thus for m > 8, we have that (m+j — 1)(m+j —2)/2+1 > 29 and thus in the
range %(m—i—j— N(m+,j—-2)<n< %(m—l—j)(m—&-j—i—l) we see that
a < ap < % and hence that

L(m+))(m+j+1) q
a(m+j) < E an<1(m+j)
n=1(m+j—1)(m+j—2)
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Proof of Theorem 4

Proof:
o Recall we had that
3 (m+))(m+j+1)
+j—1)
AL m(m+p)(mtp+1) — Em(m+1)/2+41 = 22 T Z Gn
n=2(m+j—1)(m+j—2)

(m-+j)(m+j+1)
o Let T(p) =37, —(m+j— 1)22 L(mj—1)(mti—2) @7 5° that

a%m(m+p)(m+p+1) = Om(m+1)/2+1 — T(p)
@ Since
L(m+j)(m+j+1) "
a(m+j) < > an < Z(m-&-j)

n="1(m+j—1)(m+j—2)

we have that

2=(mPNa(m + p) < T(p) < 2*‘"7*"*1)%(m +p)
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Proof of Theorem 4

Proof:
@ Just through some algebraic manipulations we then have that

27" la(m+2—(m+p+2)2P)< T(p) <2 " 3(m+2—(m+p+2)277P)
o If we keep m fixed and let p — co and 8 = limp_oo T(p), then we have that
2= lam42) < g <27 3(m+2)

o Now recall that
AL m(mp)(mtp+1) = Fm(m+1)/2+1 — T(p)

@ So if we keep m fixed and let p — co then

a= lm o1 mmip) mipty) = Ym(m+1)/241 — B

where 3 lies between a(m +2)2=™~! and (m + 2)2— ™3,

o Now we have a good bound on « to work with.
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Proof of Theorem 4

Proof:

@ From the prev. slide we had

a= lm o1 mmip)mip+1) = Cmmi1)/2+1 — B

where 3 lies between a(m +2)2=™=1 and (m +2)2—"—3.
@ Thus

Am(me1)/241 — (M+2)27" 72 < a < Am(ma1y/241 — a(m+2)27"71
e For m = 26, using the fact that a < ap(my1)/24+1 We have

Q352 2_29
1428 x2-27

a352—28><2_29<a< < azgy — 26 X
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Proof of Theorem 4

Proof:
@ We saw that for m = 26 we have

Q352

Toaswa SO —20x2°0

azr —28x27¥ <a<

@ A computer calculation gave
azsy = 0.235125333862141...

o One then gets
o = 0.23512524581118...

O
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Theorem 7

Theorem 7: If s > 0 and 1 <t < s+ 2, then with the same convention as in Theorem

6,
To+t—1
UT 4t+1 > Z uj + Z ur;.
4
Proof:
@ The theorem may be checked by hand from Table 1 for 0 < s < 2 and
1<t<s+2
@ We claim that if the theorem is true for some value of s and t, it is also true for
the same value of s and t + 1 in place of t.
@ Suppose that for s and t we have that
Ts+t—1 s
UT4t+1 > Z uj + Z ur;
i=2
D
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Theorem 7

Want to show:

To+t—1
UT, 4t+1 > Z uj + Z ur;.
y
Proof:
@ From Lemma 4 we know that ur, ¢1p > U7, 441 + UT, ¢ Thus
UTg4t42 — UT4t41 > UT 4t
@ Thus we can add u7, 442 — UT,4¢41 to the left hand side of the inequality and
uT, 4+ to the right hand side of the inequality to yield that:
UTgt4+1 T UTot42 — UTo4t41 = UT 4142
Tott—1
> Uty + Z ul+ZuT
Ts+t s
=3 w3
i=0 i=2
y
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Theorem 7

Want to show:
Tertrz—1l

UT4t+1 > Z uj + Z ur;.

Proof:

o We claim that if the theorem is true for some s > 2 and t = 1, then it is also true
for the same value of s+ 1 and t = 1.

@ Suppose that for s > 2 and t = 1 we have that

Ts+t—1

UT i1 > Z uj + Z ur, (5)

o Claim:
Tst1

UTypttdl — UTypep1 > D Ui+ ur,, (6)
i=Ts+t
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Theorem 7

Want to show:
Ts+t—1

UTgt41 > z uj + Z ur;.

Proof:

o If we add the left hand side of 6 to the left of 5 and the right hand side of 6 to
the right hand side of 5 we get:

UT, +t+1 = UT, 41 — UT4e41 T UT 441

Ts+t—1 Ts+1
> § uj + § ur; aF E U1+UTS+1
i=0 i=Ts+t
Ts+t—1 Tsi1 s
= D w+ D ow|+ (D unFun,
i=0 i=Ts+t i=2
Tst1 s+1
:::ui+::u7—i+u7—s+l
i=0 i=2

as desired, provided the claim holds. OJ
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Theorem 9

Theorem 9: Under conditions A to D, ut,4:—; belongs to the minor set.

S

Proof:
o From condition A, we have two sets of the u; with equal sums, those being
{u,-l,uiz,...,u,-k} and {u_,-l,...,u_,-,}
. We order these sets so that v, < wu;, ., and uj, <u; ., for1<m<kand
1 < m < | respectively.
@ Suppose without loss of generality that uj, is the largest element from both sets.
o Rewrite jj to be jj = Tsy1 + t + 1 for some s and t so that the largest element
from both sets is ur_ ;11
@ So from the two sets {uj,, uj,,...,u; } and {uj, ..., u;}, the set
{ui, Uy, - - ., Uj, } is the minor set.
y
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Theorem 9

Theorem 9: Under conditions A to D, ut,4+—; belongs to the minor set. |

y.
Proof contd.:
@ Suppose uT, ;1 does not belong to the minor set, i.e.
UT,pe—1 & {Uis Uiy - - Ui T
@ Then by Theorem 8 the set {uj, uj,, ..., u; } must contain the s 4 1 elements, u;
for Ts +t+1<i< Tep1+t.
@ Thus we have
up tup - Fur et uT ot UT 1 UT e = U UT e
@ One can check that ur_ 111 = 2U7, 4t — UTort—1 (this follows just from the
definition of the Conway-Guy sequence)
o We substitute ur,,;++1 = 2UT,,;+t — UT,++—1 in the equality from the previous
slide to get
Up -t + T UT e FUT 2+ T UT e UT e
= Uyt T 20T e~ T )
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Theorem 9

Proof continued:

@ On the previous slide we arrived at the following equation:

Uy + U+ UT el T UT 2+ T UT -1+ UT 4t

= Uyt 20T UT e
© Then we cancel out a ut,_ ¢+ from either side to get that
Up tUp +e T UT ey T UT o2t HUT o1 = U e T UT e — UTope—1
@ Now we add a ut,4:_1 to either side to yield that

Uty & T UT et T UT 2 T UT -1 HUT 1 = U 0T

© But now the sets {uj, Ujy,** , UT, 4 t41, UT, 4142, " > UT, g +t—1, UT,4t—1) and
{up, upyy - 7”Ts+1+t} have equal sums but a smaller largest member, that being
UT5+1+t-

@ This contradicts condition C and the result follows. [
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Theorem 10: Under conditions A to D, the minor set does not contain all the s + 4
members u; for Ts +t —2 < i< Tgyg + t.

)

Proof:

@ If the minor set contained these s + 4 members, it's sum S; would be at least

Tsp1t+t
> u
i=Tott—2

@ Now we can rewrite the above as

Tep1+t Tsp1+t
E Ui = UT,4t—2 + UT -1+ E uj
i=Ts+t—2 i=Ts+t
Top1+t s
o Theorem 6 says that >, " | u; = ut,; +r11 + D ;o uT; hence
—T, =

s

S1 2> Ut 4e—2+ UT 4e—1 + g uT, + UT et
=0
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Theorem 10

Proof continued:

@ On the other hand, the sum of the major set, Sp would be at most

Ts+t—3

UT, 1 +t+1 + E uj
i=0

o This is because, by condition A, the major set cannot contain any of the elements
ufor Ts+t—2<i< Tep1+t

@ Lemma 5 says that Zi;art_3 Ui < UT 4t—2 + UT,4t—5

This implies that S, < UT,pq+t+1 T UToht—2 + UT 45
@ We thus have the following situation:

s

UT5+t72+UT5+t71+E UTFuT g re+1 < S1 =S S Ut e HUT 2T UT -5
=0

This implies that

s

UTg4t—2 + UT,+e—1 + E Ut + Ut o441 S UT, el + UTe—2 + UT 4¢3
i=0

v
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Theorem 10

Proof continued:

@ Which implies that

s
UT,4e—1+ g ur, < UT,4t—5
i=0
@ This is a contradiction since ur, 1+ 1 > uT,4+—5 because the {u;} is a strictly
increasing sequence.

@ This completes the proof. [J
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Lemma 8

Lemma 8: If s > 0, with the convention of Theorem 6,

zs: ur; < E (UTS+1 + UT5_1+2)
i=2 2 )
Proof:
o If s=0, then -1 < 1(1+2)
o lfs=1 then0< 1(2+2)
o If s=2, then 4 < 1(7+4)
o If s =3, then 4+ 24 < 1(44 +13) )
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Lemma 8

Proof:

@ Assume the theorem is true for s = v > 3, we show it is true for v + 1.
@ Then

v+1

v
Z ur, = U, + Z Wiy
i=0 i=0

<ur,,+ %(urﬁ.l + ut, ,4+2) by induction hypothesis

(2uT, ; +uT, 41 +uT,_;42)

((2“Tv+1 —ur,) +ur, Fur et “TV_1+2)

(UTV+1+1 +ur, +uT, 41+ UTV,1+2) since 2uT, ., — UT, = UT, ;41

< = (ur, 41+ UT, + UT 41 + UT,—1)

NIENIHENIEN|=

since Ty—1 +2 < Ty — 1 holds for n > 3 so that ur, 4> <ur,_1

1 .
< > (uT, 141+ UT,42) since ur, 4o > ur, + ut, 41+ U7, 1.0
y
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Lemma 9

Lemma 9: If v > Toyq, then D57 0 < uyya. J

Proof:
@ The case s = 0 is just Lemma 1, since it boils down to saying that u, < uy41
@ The case s = 1 is just Lemma 4, since it just says that u,—1 + uy < uy41

@ The case s = 2 just says that u,_» + uy,—1 + uy < uy4+1 and this is true by
inequality (12) in the paper

@ The case s = 3, just says that u,_3 + uy—2 + uy—1 + uy < uy41 and this is true
by inequality (13) in the paper.

124 /128



Appendix

©00000000000000000O0O0000C

Lemma 9

Lemma 9: If v > Tgyq, then D7 < uyy1. J

Proof continued:
o We now handle the case that v = T¢y; + 1.

o Note firstly that v — s = Ts11 + 1 — s. We saw earlier that
Ts+1+ 1= Ts + s+ 2 which implies that v — s = Ts + 2.

@ Hence
v Tst1+1
E u; = E uj
I=v—s Ts+2
@ Through simple algebra we see that
Tep1+1 Tep1+1
E up = § Uj — UT, 41
Ts+2 Ts+1

@ Then using Theorem 6 with t = 1 implies that

Tspa+1 s
D U= UT = UT g2 T D UT — U
Ts+1 i=2

v
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Lemma 9

Lemma 9: If v > Tgiq, then 357 0 < uyy1. J

Proof continued:

@ On the previous slide we arrived at

Tet1+1 s
D U= UTp = UT 2+ D UT — U
Te+1 i=2

® Then using Lemma 8 on >7 , uT, in the above we see that

S
1
uTs+1+2 + Z uTi —UT+1 < uTs#»l+2 + 5 <UTS+1 + UT571+2) —UT+1
i=2
@ Then provided Ts_1 + 2 < T + 1 (which is true for s > 1) we see that
UT 41 2 UT,_ 42
o This implies that

1
Ut 142 + 3 <UT5+1 + UTS,1+2> —uT,4+1 S UT, 0.

v
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Lemma 9

Lemma 9: If v > Tgyq, then 237w < uyy1. J

Proof continued:

o Putting all this together we see that

v
E up S Ut 42

i=v—s

@ Now suppose the result holds for v =w > T¢ ;.

@ Through simple algebra we get that

w+1

w
§ Uj = Uw+1 — Uw—s + E uj

i=w+1l—s i=w—s

w
i=w—s

@ Then since the result holds for w, we see that ) u; < uy+1 and hence that

w

Uy+1 — Upy—s + g uj < 22Uy t1 — Uw—s

i=w—s

4
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Lemma 9

Lemma 9: If v > Tgyq, then D7 < uyy1. J

Proof continued:
o Recall that
w
Uy+1 — Upy—s + Z Ui <2Uw+1 — Uw—s
i=w—s

@ Recall the defining property of the sequence of the u;, that being that
Upy1 = 2Up — Up—r

for n > 1 and r = (v/2n).

@ Recall that we assumes that w > Ts 1 = %(s +1)(s +2). Hence
w—s> Ts11 —s = Ts + 2 (since we have the identity that
Tex1+1=Ts+s+2)

@ This shows that w —s > w + 1 — r (here we take w + 1 in place of n which yields
a value for r) which implies that uy—s > uy+1—, since the u; are monotonically
increasing

@ This then shows that 2uy 11 — uw—s < 2Up+1 — Uw+1—r = Uw+2 using the
defining property of the sequence of the u; with w + 1 in place of n O

4
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