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Introduction

Question: Paul Erdös and Leo Moser asked - Given a positive integer x , what is the
maximum number m of positive integers ai satisfying

a1 < a2 < · · · < am ≤ x

such that all the 2m possible sums of the ai :

ai1 + ai2 + · · ·+ aij , 0 ≤ j ≤ m

are different.

m depends on x , i.e. m is a function of x i.e. m = f (x)

we include 0 as the empty sum in the above

There are 2m sums because that is the number of subsets of {a1, . . . , am}
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Introduction

Equivalent formulation: Given a positive integer x , what is the maximum number m
of positive integers ai satisfying

a1 < a2 < · · · < am ≤ x

such that the sum of the elements of each subset of {a1, . . . , am} is distinct.
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Consider when x = 2k

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

Consider the case when x = 2k in our original question.

Proposition: The set of integers

{2i | 0 ≤ i ≤ k}

, of cardinality k +1, has the property that the sums of all its 2k+1 subsets are distinct.

Thus in the case when x = 2k , we see that k + 1 ≤ m.

5 / 128



Introduction Bounds for m The Conway-Guy sequence Distinct Sums Results on the Conway-Guy Sequence Appendix

Introduction

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

We saw from the proposition on the prev. slide that when x = 2k , we have that
k + 1 ≤ m.

Conjecture: When x = 2k , we must have m = k +O(1). This conjecture is still open.
Erdös offers a $500 reward for the proof or disproof of this.
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Introduction

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

Conjecture: When x = 2k , we must have m = k + O(1).

Main goal of the seminar: We saw that when x = 2k , we have that k +1 ≤ m. In the
case for x = 2k , we will show in this seminar that it is possible to have m = k + 2.

Remark: In particular this shows that m ≥ k + 2, but it doesn’t go so far as to show
that m = k + 2 in general for x = 2k .
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How to achieve our main goal

How do we achieve this goal? Need to find positive integers ai satisfying

a1 < a2 < · · · < am ≤ 2k

such that all possible sums of the ai are distinct.

How will we find such ai? Modify the Conway-Guy sequence.

Further goals for the seminar: Later on in the seminar we will discuss some results
which could be used to resolve this conjecture for arbitrary k.
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The case when x is arbitrary

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

Can find m = k + 2 such positive integers ai when x = 2k (shall see later)

Is this maximum such m? What if x ̸= 2k?

Are there any bounds on m?

Answer:

⌊log2 x⌋+ 1 ≤ m < log x +
1

2
log log x + 1.3

where log here means log to the base 2.

First goal of the seminar: Prove the inequality above in the next section.
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Goals for the seminar

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

Goal 1: Prove ⌊log2 x⌋+ 1 ≤ m < log x + 1
2
log log x + 1.3

Goal 2: When x = 2k , show that it is possible to have m = k + 2.

Goal 3: Prove further properties about the Conway-Guy sequence.
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Introduction

Proposition: The set of integers {2i | 0 ≤ i ≤ k}, of cardinality k + 1, has the
property that the sums of all its 2k+1 subsets are distinct.

Proof:

Suppose we have subsets A = {2i1 , . . . , 2in} and B = {2j1 , . . . , 2jm} of
{2i | 0 ≤ i ≤ k} such that

n∑
v=1

2iv =
m∑

v=1

2jv

We will show that A = B which will conclude the proof.

WLOG we can assume that both A and B don’t contain 20 = 1 since we can just
remove it from both sets in that case to end up with sets A′ = A \ {20} and
B′ = B \ {20} whose elements still sum up to the same value.
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Introduction

Proof contd.:

Recall A = {2i1 , . . . , 2in} and B = {2j1 , . . . , 2jm}
Let p = min{i1, . . . , in, j1, . . . , jm}.
Assume WLOG that p = iv for some 1 ≤ v ≤ n, then we have that

1

2p

n∑
v=1

2iv =
1

2p

m∑
v=1

2jv .

This implies that

1 +
n∑

v=1,v ̸=p

2iv−p =
m∑

v=1

2jv−p

Now the left hand side above is odd, and the right hand side is odd if and only if
there is a 1 ≤ w ≤ m such that jw = p. If there is no such jw we arrive at a
contradiction.

Then we can form A′ = A \ {2p} and B′ = B \ {2p} and then repeat this process
again.

The end result of this inductive process is that A = B □.

13 / 128



Introduction Bounds for m The Conway-Guy sequence Distinct Sums Results on the Conway-Guy Sequence Appendix

Lower bound for m

Recall our original question.

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

Lower bound for m. Assume we are given some positive integer x . If we set

k = ⌊log2 x⌋,

then the set of integers {2i | 0 ≤ i ≤ k},
has cardinality k + 1

the property that the sums of all its 2k+1 subsets are distinct and

0 < 2i ≤ x for all i .

So we have
⌊log2 x⌋+ 1 ≤ m
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Theorem 1

Theorem 1: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have
distinct sums then

mx >
m∑
i=1

ai ≥ 2m − 1.

We obtain equality
∑m

i=1 ai = 2m − 1 if ai = 2i−1 for each i .

Proof:

We first check that
∑m

i=1 ai = 2m − 1 if ai = 2i−1 for each i .

Note that if ai = 2i−1 for 1 ≤ i ≤ m, then a1, . . . , am is a geometric sequence and

m∑
i=1

ai =
m∑
i=1

2i−1 =
1− 2m

1− 2
= 2m − 1
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Theorem 1

Theorem 1: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have
distinct sums then

mx >
m∑
i=1

ai ≥ 2m − 1.

Proof:

Now we show that in general mx >
∑m

i=1 ai ≥ 2m − 1.

The fact that 1 ≤ ai ≤ x and ai < ai+1 implies that

m∑
i=1

ai <
m∑
i=1

x = mx .

Let A1, . . . ,A2m−1 denote the complete list of the 2m − 1 non-zero subsets of
{a1, . . . , am}.
Let

Si =
∑
aj∈Ai

aj

denote the sum of the elements in each Ai
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Theorem 1

Want to show: mx >
∑m

i=1 ai ≥ 2m − 1.

Proof:

By assumption each of the Si are distinct. So we may reorder the Si so that

1 ≤ S1 < S2 < · · · < S2m−1 < mx (1)

Note that we must have that S2m−1 =
∑m

i=1 ai .

From equation 1 it follows that
Si ≥ i

and hence that
m∑
i=1

ai = S2m−1 ≥ 2m − 1.

Thus we have that

mx >
m∑
i=1

ai ≥ 2m − 1.

□
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Theorem 1

Theorem 1: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have
distinct sums then

mx >
m∑
i=1

ai ≥ 2m − 1.

Corollary: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have distinct
sums then

2m ≤ mx

Corollary: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have distinct
sums then

2m

x
≤ m
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Theorem 2

Theorem 2: If a1 < a2 < · · · < am are positive integers whose subsets have distinct
sums then

m∑
i=1

a2i ≥
1

3
(4m − 1).

(Sketch) Proof:

We have equality if ai = 2i−1 for each i . (check using geometric sequence
formula)

Consider the sum of the squares of the 2m quantities ±a1 ± a2 ± · · · ± am

Just to be clear, a1 − a2 + a3 + a4 + · · ·+ am−2 − am−1 − am and
−a1 + a2 + a3 − a4 + · · · − am−2 + am−1 + am are just two examples of such
quantities.

We write the sum of the squares simply as S =
∑

(±a1 ± a2 ± · · · ± am)2.

One can check that

S =
∑

(±a1 ± a2 ± · · · ± am)
2 = 2m(

m∑
i=1

a2i )
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Theorem 2

Theorem 2: If a1 < a2 < · · · < am are positive integers whose subsets have distinct
sums then

m∑
i=1

a2i ≥
1

3
(4m − 1).

Proof:

The 2m quantities ±a1 ± a2 ± · · · ± am.
They are distinct
Different from zero
Of the same parity (i.e. all either even or odd)

By Theorem 1, each of the 2m quantities lies between

−(2m − 1) ≤ ±a1 ± a2 ± · · · ± am ≤ 2m − 1

Hence
1 ≤ (±a1 ± a2 ± · · · ± am)

2 ≤ (2m − 1)2

The estimates above and the fact that the 2m quantities are distinct, different
from zero and of the same parity, implies the sum of their squares, S , is at least

12 + (−1)2 + 33 + (−3)2 + · · ·+ (2m − 1)2 + (1− 2m)2 ≤ S
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Theorem 2

Proof continued:

We saw on the prev. slide that

12 + (−1)2 + 33 + (−3)2 + · · ·+ (2m − 1)2 + (1− 2m)2 ≤ S

Note now that

12 + (−1)2 + 33 + (−3)2 + · · ·+ (2m − 1)2 + (1− 2m)2 = 2
m∑
i=1

(2i − 1)2

One can then check using basic results on the sums of geometric sequences that

2
m∑
i=1

(2i − 1)2 =
1

3
2m(22m − 1).

Thus we have that
1

3
2m(22m − 1) ≤ S
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Theorem 2

Proof continued:

We saw on the prev. slide that

1

3
2m(22m − 1) ≤ S

We also saw earlier that

S = 2m(
m∑
i=1

a2i )

Thus we’ve shown that

2m
m∑
i=1

a2i ≥
2

3
2m−1(22m − 1)

Hence
m∑
i=1

a2i ≥
1

3
(4m − 1)

as desired. □
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A false conjecture

Recall -if a1 < a2 < · · · < am are positive integers whose subsets have distinct sums
then

Theorem 1:
m∑
i=1

ai ≥ 2m − 1.

Theorem 2:
m∑
i=1

a2i ≥
1

3
(4m − 1).

Conjecture:
m∑
i=1

ani ≥
1

2n − 1
(2nm − 1)

False: n = 4 yields a counterexample.
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A false conjecture

Conjecture:
m∑
i=1

a4i ≥
1

15
(16m − 1)

Falsity: The set of six numbers

{ai} = {11, 17, 20, 22, 23, 24}

whose subsets have distinct sums. The sum of their fourth powers is 1 104 035, but
1
15
(16m − 1) for m = 6 is 1 118 481.
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Theorem 3

Theorem 3: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have
distinct sums then

m < log x +
1

2
log log x + 1.3

for x ≥ 2. Here log means log2.

Proof:

Note 1 ≤ ai ≤ x implies 1 ≤ a2i ≤ x2.

Furthermore the fact that ai < ai+1 implies that

m∑
i=1

a2i <
m∑
i=1

x2 = mx2
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Theorem 3

Theorem 3: If a1 < a2 < · · · < am ≤ x are positive integers whose subsets have
distinct sums then

m < log x +
1

2
log log x + 1.3

for x ≥ 2. Here log means log2.

Proof contd.:

Theorem 2 then applies to show that

1

3
(4m − 1) ≤

m∑
i=1

a2i < mx2.

Claim: This implies
4m < 3mx2

(see appendix for details)
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Theorem 3

Proof contd.:

Starting with 4m < 3mx2 take log to the base 2 on either side.

Then we see that
2m < log 3mx2 = log 3m + 2 log x . (2)

Now 2m ≤ mx =⇒ m ≤ log(mx) =⇒ m ≤ logm + log x

Also m ≤ x =⇒ logm ≤ log x =⇒ m ≤ log x + log x = 2 log x .

Using this we see that

log 3m ≤ log(3 · 2 log x) = log(6 log x) = log 6 + log log x

Putting everything together we see that

2m < log 6 + log log x + 2 log x .

Now log 6 < 2.6 and so we have that

2m < 2 log x + log log x + 2.6

and the result follows after diving by 2 on both sides. □
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First goal achieved

Q: What is the maximum number m of positive integers ai satisfying
a1 < a2 < · · · < am ≤ x such that all possible sums of the ai are distinct.

Bounds for m:

⌊log2 x⌋+ 1 ≤ m < log x +
1

2
log log x + 1.3

where log here means log to the base 2.
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The Conway-Guy sequence

Definition (Conway-Guy Sequence): We define a sequence of integers {ui}i∈N in the
following way:

u0 = 0

u1 = 1

un+1 = 2un − un−r for n ≥ 1,
(where r = ⟨

√
2n⟩, the nearest integer to

√
2n)
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The Conway-Guy sequence

Definition (Conway-Guy Sequence): We define a sequence of integers {ui}i∈N in the
following way: u0 = 0; u1 = 1 and

un+1 = 2un − un−r

for n ≥ 1, (where r = ⟨
√
2n⟩, the nearest integer to

√
2n

Some values of un for small n:
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The Conway-Guy sequence

Definition (Conway-Guy Sequence): We define a sequence of integers {ui}i∈N in the
following way: u0 = 0; u1 = 1 and

un+1 = 2un − un−r

for n ≥ 1, (where r = ⟨
√
2n⟩, the nearest integer to

√
2n

Some values of un for larger n:
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The Conway-Guy sequence

Definition: We define a sequence of integers {ui}i∈N in the following way:

u0 = 0

u1 = 1

un+1 = 2un − un−r for n ≥ 1,
(where r = ⟨

√
2n⟩, the nearest integer to

√
2n)
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The Conway-Guy sequence

Lemma 1: un is strictly increasing with n

Proof:

The proof follows by induction

As a base case we have that u1 = 1 > u0 = 0.

Suppose that um+1 > um for all 0 ≤ m ≤ n.

We now show that un+1 > un.

By definition un+1 = 2un − un−r

We can rewrite this as un+1 − un = un − un−r .

Since un > un−r by our induction hypothesis, we have that un+1 − un > 0 which
implies that un+1 > un. □
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The Conway-Guy sequence

Lemma 2: 0 ≤ un ≤ 2n−1 for n ≥ 0

Proof:

The proof follows by induction

Base case: 0 = u0 < 20 = 1. Moreover un ≥ u0 = 0 since {ui} is strictly
increasing by Lemma 1.

Suppose 0 ≤ um ≤ 2m−1 for 0 ≤ m ≤ n

We will show 0 ≤ un+1 ≤ 2n+1−1 = 2n.

By definition un+1 = 2un − un−r for n ≥ 1.

Since un > un−r > u0 = 0 (Lemma 1) we must have that un+1 ≤ 2un

By the induction hypothesis un ≤ 2n−1, hence

un+1 ≤ 2un ≤ 2 · 2n−1 = 2n

as desired. □
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The Conway-Guy sequence
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The Conway-Guy sequence

Lemma 3: The sequence
un

2n

is a decreasing function of n for n ≥ 1 and strictly decreasing for n ≥ 4.

Proof:

For n = 0, un = 0, hence u0
20

= 0

For n = 1, un = 1 and so u1
21

= 1
2

For n = 2, un = 2u1 − u0 = 2 and so un
2n

= 2
22

= 1
2
.

For n = 3, u3 = 2u2 − u0 = 4 and so un
2n

= 4
23

= 1
2
.
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The Conway-Guy sequence

Lemma 3: The sequence
un

2n

is a decreasing function of n for n ≥ 1 and strictly decreasing for n ≥ 4.

Proof:

Now by definition un+1 = 2un − un−r for n ≥ 1.

This implies that
un+1

2n+1
=

un

2n
−

un−r

2n+1
.

For n ≥ 3, we have that r = ⟨
√
2n⟩ < n, so that n − r > 0 and un−r > 0.

Thus for n ≥ 3 we have that
un+1

2n+1
<

un

2n
.

Stated equivalently un
2n

is strictly decreasing for n ≥ 4. □

38 / 128



Introduction Bounds for m The Conway-Guy sequence Distinct Sums Results on the Conway-Guy Sequence Appendix

The Conway-Guy sequence

Theorem 4: We have that

lim
n→∞

un

2n
= α where 0 < α <

1

2
.

Remark: In particular, this result implies that the sequence un behaves/grows like 2n.
Proof: See Appendix.
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Main goal of the seminar

Recall the main goal of the seminar.

Q: What is the maximum number m of positive integers ai satisfying

a1 < a2 < · · · < am ≤ x

such that all the 2m sums of the ai are distinct.

Main goal of the seminar: In the case for x = 2k , we will show in this seminar that it
is possible to have m = k + 2.
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The sequence {ai}

First recall the definition of the Conway-Guy sequence.

Definition (Conway-Guy Sequence): We define a sequence of integers {ui}i∈N in the
following way:

u0 = 0

u1 = 1

un+1 = 2un − un−r for n ≥ 1,
(where r = ⟨

√
2n⟩, the nearest integer to

√
2n)
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The sequence {ai}

Definition (Auxiliary Sequence): Using the Conway-Guy sequence, we define an
auxiliary sequence {ai} of k + 2 integers by setting

ai = uk+2 − uk+2−i

for 1 ≤ i ≤ k + 2.
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The sequence {ai}

Conjecture: Conway & Guy claim that the set of k + 2 integers given by

A = {ai = uk+2 − uk+2−i | 1 ≤ i ≤ k + 2}

has subsets with distinct sums. Conway and Guy also claim that A gives the best
possible solution, that being m = k + 2 to the problem.

Resolution: This conjecture was resolved. The above was proven to be true by Tom
Bohman in 1996 in the paper - ”A Sum Packing Problem of Erdös and the
Conway-Guy Sequence” a

aSee remarks below Theorem 1 in this paper, Sn+1 there is the set A above.
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The sequence {ai}

Conjecture: Conway & Guy claim that the set of k + 2 integers given by

A = {ai = uk+2 − uk+2−i | 1 ≤ i ≤ k + 2}

has subsets with distinct sums and gives the best possible solution, that being
m = k + 2 to the problem.

Partial result: With the aid of the theorems that will soon be proved and increasing
amounts of computational power it is possible to verify this conjecture for small values
of k, for example for k ≤ 40.

We will see that k ≤ 40 is enough to achieve our main goal of the seminar.
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The ”trick” part 1.

Proposition (Trick): Given any set S of k + 2 numbers each less than 2k whose
subsets have distinct sums, the set S ′ obtained by S by doubling each member and
adding an odd number, i.e.

S ′ = {2a | a ∈ S} ∪ {m} = 2S ∪ {m}

where m ∈ 2Z+ 1 has distinct sums.
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The ”trick” part 1.

Want to show: If S is a set with |S | = k + 2 and max S ≤ 2k then S ′ = 2S ∪ {m}
where m ∈ 2Z+ 1 has distinct sums.

Proof:

The subsets of 2S each yield distinct sums, since each sum is just 2 times the
corresponding sum of elements in S and by assumption those sums are distinct.
(∗)
Suppose now we have two subsets A and B of S ′ whose sum of their elements
yield the same sum.

If one subset of S ′ contains m and another subset does not, then their respective
sums must be distinct since one sum is even and the other odd (a contradiction).

If both subsets of S ′ contain m, we may simply remove m from the sum and fall
into case (∗) again.

Thus we’ve proven the claim. □
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The ”trick” part 2.

Lemma (Trick): Given any set S of k + 2 numbers each less than 2k , whose subsets
have distinct sums then for any positive integer l , the set

2lS ∪ {2i | 0 ≤ i ≤ l − 1}

has cardinality k + 2 + l and also has distinct sums.

Proof:

Let S(1) = 2S ∪ {1}. By the previous proposition this has subsets with distinct
sums.

Let S(2) = 2S(1) ∪ {1} = 22S ∪ {2} ∪ {1}. By the previous proposition this has
subsets with distinct sums.

Let S(3) = 2S(2) ∪ {1} = 23S ∪ {22, 2} ∪ {1}. By the previous proposition this
has subsets with distinct sums.

Continue inductively to obtain

S(l) = 2S(l−1) ∪ {1} = 2lS ∪ {2i | 0 ≤ i ≤ l − 1}

which also has distinct sums by the previous proposition. □
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Main goal of the seminar

Q: What is the maximum number m of positive integers ai satisfying

a1 < a2 < · · · < am ≤ x

such that all the 2m sums of the ai are distinct.

Main goal of the seminar: In the case for x = 2k , we will show in this seminar that it
is possible to have m = k + 2.

Claim: The sequence {ai} we’ve defined along with the two tricks will give the above
result.
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Main goal of the seminar

How it goes:

Consider the sequence {ai = uk+2 − uk+2−i}.
Recall earlier we defined αn := un

2n
. One can verify by hand/computation that

α23 =
u23

223
<

1

4
= 2−2

Moreover we know that αn is a strictly decreasing sequence for n ≥ 4 by Lemma
3. Hence αk = uk

2k
< 2−2 for k ≥ 23

Then uk
2k

< 2−2 for k ≥ 23 implies that we have uk+2 ≤ 2k for k ≥ 21.

Thus ai ≤ 2k for k ≥ 21.
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Main goal of the seminar

How it goes: (continued)

Let x = 2k be given for k ≥ 21.

Pick z = 21 (for simplicity)

Consider the set A = {ai = uk+2 − uk+2−i | 1 ≤ i ≤ z + 2}
One can verify by computation that A has subsets with distinct sums.

We have ai ≤ 2z for each ai ∈ A.

Let l = k − z.

Then the set
A′ := 2lA ∪ {2i | 0 ≤ i ≤ l − 1}

has cardinality (z + l) + 2 = k + 2 and also has distinct sums by the previous
Lemma (trick).

Moreover if a ∈ A′ then a ≤ 2k

Anecdote: I managed to verify that A had distinct sums for z = 23 before my 16GB of
RAM could not take any more.
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Main goal of the seminar - completed

Q: What is the maximum number m of positive integers ai satisfying

a1 < a2 < · · · < am ≤ x

such that all the 2m sums of the ai are distinct.

Main goal of the seminar: In the case for x = 2k , we will show in this seminar that it
is possible to have m = k + 2.

We just showed on the prev. slide that we can have m = k + 2
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A shift in the seminar

We now turn to proving results that are useful towards the conjecture made by
Conway & Guy.

Conjecture: Conway & Guy claim that the set of k + 2 integers given by

A = {ai = uk+2 − uk+2−i | 1 ≤ i ≤ k + 2}

has subsets with distinct sums and also claim that A gives the best possible solution,
that being m = k + 2 to the problem.

Alternatively you can view everything that follows as us basically proving a lot of
properties of the Conway-Guy sequence.
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Lemma 4

Lemma 4: For n ≥ 1 we have that un+1 > un + un−1.

Proof:

For n = 1, we have that u2 = 2 > u1 + u0 = 1 + 0 = 1.

For n = 2, we have that u3 = 4 > u2 + u1 = 2 + 1 = 3.

For n = 3, we have that u4 = 7 > u3 + u2 = 4 + 2 = 6.

For n = 4, we have that u5 = 13 > u4 + u3 = 7 + 4 = 11.

Some values of un for small n:
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Lemma 4

Lemma 4: For n ≥ 1 we have that un+1 > un + un−1.

Proof continued:

Induction hypothesis: Suppose that for n − 1 ≥ m ≥ 1 we have that
um+1 > um + um−1.

Now suppose n ≥ 4, then in particular
√
2n ≥

√
8 = 2 ·

√
2 > 2. This implies that

r = ⟨
√
2n⟩ > 2 and in particular that n − r < n − 2 and that un−r < un−2.

Then by definition we know that
un+1 = 2un − un−r = un + (un − un−r ) > un + (un − un−2)

From the induction hypothesis we know that un > un−1 + un−2 which implies
that un − un−2 > un−1

This implies that
un+1 > un + un−1

as desired. □
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Lemma 5

Lemma 5: For n ≥ 4 we have that

un+1 <
n∑

i=0

ui ≤ un+1 + un−2.

Proof: See Appendix
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Equal sums warm-up

Proposition: There are no singletons, pairs, triples or quadruples of the ui with equal
sums

Singletons: Just note that {ui} is a strictly increasing sequence.

Pairs: Follows from the fact that

un+1 > un + un−1

Triples: Follows from the fact that

un+1 ≥ un + un−1 + un−2 for n ≥ 2

Quadruples: Follows from the fact that

un+1 ≥ un + un−1 + un−2 + un−3 for n ≥ 11

Proofs: See Appendix.
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Theorem 5

Theorem 5: If two subsets of the {ai} have equal sums, then there are two subsets of
the {ui} with equal sums and equal cardinalities. Conversely if there are two subsets
of the {ui} with equal sums then there are two subsets of the {ai} with equal sums
and equal cardinalities.

For cardinalities less than 4 the theorem is vacuously true by the preceding
Lemmas.

We now prove it for k + 1 ≥ 4.
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Theorem 5

Theorem 5: If two subsets of the {ai} have equal sums, then there are two subsets of
the {ui} with equal sums and equal cardinalities. Conversely if there are two subsets
of the {ui} with equal sums then there are two subsets of the {ai} with equal sums
and equal cardinalities.

Proof:

Suppose that two subsets of the {ai} have equal sums. Denote these sets by
{ai1 , . . . , ais } and {aj1 , . . . , ajt }.
Since ai = uk+2 − uk+2−i we have that

(uk+2−uk+2−i1 )+· · ·+(uk+2−uk+2−is ) = (uk+2−uk+2−j1 )+· · ·+(uk+2−uk+2−jt )
(3)

We may assume that (i) the two sets are disjoint (else we could just cancel
common terms); (ii) that i1 < i2 < · · · < is and j1 < j2 < · · · < jt and (iii) that
s ≥ t.

By rearranging equation (3) we arrive at

(s − t)uk+2 = ui1 + ui2 + · · ·+ uis − (uj1 + · · · ujt ) (4)
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Theorem 5

Theorem 5: If two subsets of the {ai} have equal sums, then there are two subsets of
the {ui} with equal sums and equal cardinalities. Conversely if there are two subsets
of the {ui} with equal sums then there are two subsets of the {ai} with equal sums
and equal cardinalities.

Proof:

On the prev. slide we arrived at equation 4 which says that

(s − t)uk+2 = ui1 + ui2 + · · ·+ uis − (uj1 + · · · ujt )

Since 1 ≤ im ≤ k + 1 for 1 ≤ m ≤ s, we have that u0 ≤ uim ≤ uk+1 and hence

that ui1 + ui2 + · · ·+ uis ≤
∑k+1

i=0 ui which implies that the RHS of equation 4

above is strictly! less than
∑k+1

i=0 ui .

Now by Lemma 5, we know that
∑k+1

i=0 ui ≤ uk+2 − uk+1, hence we see that

(s − t)uk+2 < uk+2 − uk+1.

Thus

s − t <
uk+2 − uk+1

uk+2
= 1−

uk+1

uk+2
< 2.

Thus we either have s − t = 0 or s − t = 1, i.e. s = t or s = t + 1
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Theorem 5

Proof continued:

Recall equation 4 which says that

(s − t)uk+2 = ui1 + ui2 + · · ·+ uis − (uj1 + · · · ujt )

If s = t then from equation 4 above we simply have

ui1 + ui2 + · · ·+ uis = uj1 + · · · ujt

and so we obtain subsets of the {ui} with equal sums and equal cardinalities.

If s = t + 1 then by rearranging equation 4 above we have that

ui1 + ui2 + · · ·+ uis = uj1 + · · · ujt + uk+2

and again we obtain subsets of the {ui} with equal sums and equal cardinalities,
this time the cardinality of both sets is s + 1.
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Theorem 5

Proof continued:

Now conversely suppose that there are two subsets {ui1 , . . . , uis } and
{uj1 , . . . , ujs } of the {ui} with equal sums and cardinalities.

We can assume without loss of generality that i1 < · · · < is and j1 < · · · < js .

Then we have
ui1 + · · ·+ uis = uj1 + · · ·+ ujs

We can rewrite each im, jm as im = k +2− i ′m and jm = k +2− j ′m for 1 ≤ m ≤ s.

Thus
uk+2−i′1

+ · · ·+ uk+2−i′s
= uk+2−j′1

+ · · ·+ uk+2−j′s
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Theorem 5

Proof continued:

We saw on the prev. slide that

uk+2−i′1
+ · · ·+ uk+2−i′s

= uk+2−j′1
+ · · ·+ uk+2−j′s

Then for any n > max(k + 2− i ′s , k + 2− j ′s) we have that

(un − uk+2−i′1
) + · · ·+ (un − uk+2−i′s

) = (un − uk+2−j′1
) + · · ·+ (un − uk+2−j′s

)

In particular if n = k + 2 we then obtain that

(uk+2−uk+2−i′1
)+· · ·+(uk+2−uk+2−i′s

) = (uk+2−uk+2−j′1
)+· · ·+(uk+2−uk+2−j′s

)

This is the same as saying that

ai′1
+ · · ·+ ai′s = aj′1

+ · · ·+ aj′s

which completes the proof. □
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Triangular numbers and the Conway-Guy sequence

Definition: Triangular numbers are given in the form

Ts =
1

2
s(s + 1)

If r = ⟨
√
2n⟩, then

Tr−1 < n ≤ Tr

for n > 0

For uTs we have that r = ⟨
√

s(s + 1)⟩ ∼ s. Thus

uTs ∼ 2uTs−1 − uTs−s

We have the identity

uTs+1+t+1 = 2uTs+1+t − uTs+t−1

where 1 ≤ t ≤ s + 2
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Theorem 6

Theorem 6: If Ts = 1
2
s(s + 1), s ≥ 0 and 0 ≤ t ≤ s + 2, then

Ts+1+t∑
i=Ts+t

ui = uTs+1+t+1 +
s∑

i=2

uTi
.

(If s = 1 or s = 0, interpret the empty or ’less than empty’ sum on the right as 0 or
−1 respectively.)

Example: If s = 3, then Ts = 6 and Ts+1 = T4 = 1
2
(4)(5) = 10 and the theorem says

that for 0 ≤ t ≤ 5 we have that

t+10∑
i=t+6

ui = ut+11 + (u3 + u6) .

The left hand side is the set {ut+6, ut+7, ut+8, ut+9, ut+10} of cardinality s +2 = 5 and
the right hand side is the set {ut+11, u3, u6} of cardinality s = 3.
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Importance of Theorem 6

Theorem 6: If Ts = 1
2
s(s + 1), s ≥ 0 and 0 ≤ t ≤ s + 2, then

Ts+1+t∑
i=Ts+t

ui = uTs+1+t+1 +
s∑

i=2

uTi
.

(If s = 1 or s = 0, interpret the empty or ’less than empty’ sum on the right as 0 or
−1 respectively.)

Remark: Theorem 6 exhibits sets of the ui with equal sums whose cardinalities are
s + 2 (on the LHS) and either s or s + 1 (on the RHS).

67 / 128



Introduction Bounds for m The Conway-Guy sequence Distinct Sums Results on the Conway-Guy Sequence Appendix

Theorem 6

Theorem 6: If Ts = 1
2
s(s + 1), s ≥ 0 and 0 ≤ t ≤ s + 2, then

Ts+1+t∑
i=Ts+t

ui = uTs+1+t+1 +
s∑

i=2

uTi
.

(If s = 1 or s = 0, interpret the empty or ’less than empty’ sum on the right as 0 or
−1 respectively.)

Proof:

The theorem may be verified by hand from Table 1 for s = 0, 1, 2 and
0 ≤ t ≤ s + 2.

Note that the result for t = s + 2 is the same as that for t = 0 and s + 1 in place
of s, if we add uTs+1 to each side. This is because Ts+1 + s + 2 = Ts+2 and
Ts + s + 2 = Ts+1 + 1 (one can verify this by routine algebra) imply that

Ts+1+s+2∑
i=Ts+s+2

ui =

Ts+2∑
i=Ts+1+1

ui
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Theorem 6

Proof:

Induction hypothesis: We assume the result holds true for some s ≥ 2 and some t
with 0 ≤ t ≤ s + 1 and we prove that it is true for the same s and for t + 1 in
place of t.

So by assumption we have that

Ts+1+t∑
i=Ts+t

ui = uTs+1+t+1 +
s∑

i=2

uTi
.

Then we add uTs+1+t+1 − uTs+t to either side to get

Ts+1+t∑
i=Ts+t

ui + uTs+1+t+1 − uTs+t = uTs+1+t+1 +
s∑

i=2

uTi
+ uTs+1+t+1 − uTs+t .

This implies that

Ts+1+t+1∑
i=Ts+t+1

ui = 2uTs+1+t+1 − uTs+t +
s∑

i=2

uTi
.

69 / 128



Introduction Bounds for m The Conway-Guy sequence Distinct Sums Results on the Conway-Guy Sequence Appendix

Theorem 6

Proof:

We have from prev. slide

Ts+1+t+1∑
i=Ts+t+1

ui = 2uTs+1+t+1 − uTs+t +
s∑

i=2

uTi
.

By definition of the sequence of the ui we have that
2uTs+1+t+1 − uTs+t = uTs+1+t+2 for 0 ≤ t ≤ s + 1.

This implies that
Ts+1+t+1∑
i=Ts+t+1

ui = uTs+1+t+2 +
s∑

i=2

uTi

which is what we wanted. □
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Lemmas 8 & 9

Lemma 8: If s ≥ 0, with the convention of Theorem 6,

s∑
i=2

uTi
<

1

2

(
uTs+1 + uTs−1+2

)
Lemma 9: If v > Ts+1, then

v∑
i=v−s

ui < uv+1.

They generalize...

Lemma 5: For n ≥ 4 we have that

un+1 <
n∑

i=0

ui ≤ un+1 + un−2.
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Theorem 7

Theorem 7: If s ≥ 0 and 1 ≤ t ≤ s +2, then with the same convention as in Theorem
6,

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
.

Proof: See appendix. □

It generalizes...

Lemma 4: For n ≥ 1 we have that un+1 > un + un−1.
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Theorem 7

Theorem 7: If s ≥ 0 and 1 ≤ t ≤ s +2, then with the same convention as in Theorem
6,

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
.

Example: For s = 4, we have that T4 = 1
2
(4)(5) = 10 and 1 ≤ t ≤ 6. Then the

theorem says that

ut+11 >
t+9∑
i=0

ui + u3 + u6 + u10.
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Theorem 8

Theorem 8: Suppose there are two sets of the ui with equal sums and the largest
member of either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2.

Then the other set contains at least s + 2 members, including the s + 1 members ui
for i in the range Ts + t + 1 ≤ i ≤ Ts+1 + t.

Remark: This theorem is not vacuous since there are sets of the ui with equal sums,
but which do not have the same cardinality (cf. Theorem 6).
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Theorem 8

Theorem 8: Suppose there are two sets of the ui with equal sums and the largest
member of either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2.

Then the other set contains at least s + 2 members, including the s + 1 members ui
for i in the range Ts + t + 1 ≤ i ≤ Ts+1 + t.

Example: Take s = 4 in the above, then we have Ts = 10 that Ts+1 = 15. The
largest member of either set is uTs+1+t+1 = ut+16 where 1 ≤ t ≤ 6. The other
contains the s + 1 = 5 members ui for i in the range t + 11 ≤ i ≤ t + 15. Taking
t = 3 implies that one set contains as its largest member u19 and the other contains
{u14, u15, u16, u17, u18}.
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof:

Call the sets of the ui which have equal sums A and B.

Let S1 be the sum of the elements of A and S2 be the sum of the elements of B.
We have S1 = S2 by assumption.

Suppose B does not contain the s + 1 members ui for i in the range
Ts + t + 1 ≤ i ≤ Ts+1 + t.

Then the sum of the elements of B is at most

S2 ≤
Ts+1+t∑
i=0

ui −
Ts+1+t∑
Ts+t+1

ui .

Now certainly we have that

Ts+1+t∑
i=0

ui −
Ts+1+t∑
Ts+t+1

ui <

Ts+1+t∑
i=0

ui − uTs+t+1
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof contd.:

We saw on the prev. slide that

S2 <

Ts+1+t∑
i=0

ui − uTs+t+1

This since
∑Ts+1+t

i=0 ui =
∑Ts+t−1

i=0 ui +
∑Ts+1+t

i=Ts+t ui the above implies that

S2 <

Ts+t−1∑
i=0

ui +

Ts+1+t∑
i=Ts+t

ui − uTs+t+1
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof contd.:

Continuing from prev. slide:

S2 <

Ts+1+t∑
i=Ts+t

ui − uTs+t+1 +

Ts+t−1∑
i=0

ui

= uTs+1+t+1 +
s∑

i=2

uTi
− uTs+t+1 +

Ts+t−1∑
i=0

ui (by Thm. 6)

< uTs+1+t+1 + uTs+t+1 − uTs+t+1 (by Thm. 7)

= uTs+1+t+1

Now uTs+1+t+1 is either:

an element of A in which case S1 ≥ uTs+1+t+1 and we have that

uTs+1+t+1 ≤ S1 = S2 < uTs+1+t+1 a contradiction

an element of B in which case uTs+1+t+1 is a summand of S2 and so we also have a

contradiction.
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof contd.:

So we’ve shown that B must contain the s + 1 members ui for i in the range
Ts + t + 1 ≤ i ≤ Ts+1 + t.
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof contd.:

Now we show that B must contain s + 2 members.

Now we can write the sum R of the s + 1 members as

R =

Ts+1+t∑
i=Ts+t+1

ui =

Ts+1+t∑
i=Ts+t

ui − uTs+t

From Theorem 6 we know that

Ts+1+t∑
i=Ts+t

ui = uTs+1+t+1 +
s∑

i=2

uTi

Using the equality derived from Theorem 6 above we see that

R = uTs+1+t+1 +
s∑

i=2

uTi
− uTs+t
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof contd.:

Then we can apply Lemma 8 to see that

s∑
i=2

uTi
<

1

2
(uTs+1 + uTs−1+2)

Thus

R = uTs+1+t+1 +
s∑

i=2

uTi
− uTs+t

< uTs+1+t+1 +
1

2
(uTs+1 + uTs−1+2)− uTs+t

= uTs+1+t+1 −
1

2
(2uTs+t − uTs+1 − uTs−1+2)

< uTs+1+t+1
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Theorem 8

Theorem 8: If there are two sets of the ui with equal sums and the largest member of
either set is uTs+1+t+1 where 1 ≤ t ≤ s + 2, then the other set contains at least s + 2
members, including the s +1 members ui for i in the range Ts + t +1 ≤ i ≤ Ts+1 + t.

Proof contd.:

We saw on the previous slide that

R < uTs+1+t+1.

Now remember S2 is the sum of all the elements in B and S1 is the sum of all the
elements in A and we have that

S1 = S2

.

Either A or B contains uTs+1+t+1 and the fact that R < uTs+1+t+1 (where R is
the sum over s + 1 elements of B) implies that B must contain at least one other
element in addition to the s + 1 elements which comprise the sum R in order for
S1 = S2 to hold.

Thus B has at least s + 2 elements. □
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Conditions for Theorems 9-13

In Theorems 9-13 we will assume some extra conditions.

Two of these conditions will be that there are two sets of the ui with equal sums
and equal cardinalities.

Theorem 5 then would imply that the sequence {ai} will have equal sums. This is
opposite to the conjecture made by Conway and Guy.

So the author of the paper conjectures that these theorems are only vacuously
true.
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Conditions for Theorems 9-13

Conditions C and D are of ’minimal criminal’ type as the author puts it.

Condition A: There are two sets of the ui with equal sums

Condition B: The two sets have the same cardinality c

Condition C: Of such pairs of sets we choose one with the least possible greatest
element un+1 and write n in the form Ts+1 + t where 1 ≤ t ≤ s + 2.

Condition D: Among pairs of sets satisfying conditions A to C , choose one with the
smallest value of c. This condition implies that the two sets are disjoint. Lemmas 1,
4, 6 and 7 imply that c ≥ 5.
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Minor and Major sets

Definition: Suppose we have two sets of the ui with equal sums. We call the set
containing un+1 the major set and the other set the minor set.

Theorem 9: Under conditions A to D, uTs+t−1 belongs to the minor set.

Theorem 10: Under conditions A to D, the minor set does not contain all the s + 4
members ui for Ts + t − 2 ≤ i ≤ Ts+1 + t.

Proofs: See Appendix
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Theorems 12 & 13

Theorem 11: Under conditions A to D, uTs+t belongs to neither set.

Theorem 12: If s ≥ 4 and 1 ≤ t ≤ s, the minor set contains ui for
Ts + 1 ≤ i ≤ Ts + t − 1. If t = s + 1 or t = s + 2, the minor set contains ui for
Ts + 2 ≤ i ≤ Ts + t − 1.

Theorem 13: The minor set contains ux where x = Ts−1 if t = 1 (or 2) and
x = Ts−1 + t − 2 if 2 ≤ t ≤ s + 2
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Geometric sequence

Formula for geometric sequence used: If we have a geometric sequence
{r0, r1, . . . , rn−1} that

n∑
i=1

crk−1 =
c(1− rn)

1− r
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Theorem 2

Theorem 2: If a1 < a2 < · · · < am are positive integers whose subsets have distinct
sums then

m∑
i=1

a2i ≥
1

3
(4m − 1).

Proof:

Consider the sum of the squares of the 2m quantities ±a1 ± a2 ± · · · ± am

Just to be clear, a1 − a2 + a3 + a4 + · · ·+ am−2 − am−1 − am and
−a1 + a2 + a3 − a4 + · · · − am−2 + am−1 + am are just two examples of such
quantities.

We write the sum of the squares simply as S =
∑

(±a1 ± a2 ± · · · ± am)2.

Let’s try and find a simpler expression for S =
∑

(±a1 ± a2 ± · · · ± am)2.

Now consider (for the moment) m = 2. We have 22 = 4 quantities
a1 + a2
−a1 + a2
a1 − a2
−a1 − a2

What is
∑

(±a1 ± a2)2? Let’s investigate
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Theorem 2

Proof contd.:

We have the 22 = 4 quantities

a1 + a2 ; −a1 + a2 ; a1 − a2 ; −a1 − a2

and we want to know what is
∑

(±a1 ± a2)2?

We have the following values for (±a1 ± a2)2

(a1 + a2)
2 = a21 + 2a1a2 + a22

(−a1 + a2)
2 = a21 − 2a1a2 + a22

(a1 − a2)
2 = a21 − 2a1a2 + a22

(−a1 − a2)
2 = a21 + 2a1a2 + a22

Then we see that∑
(±a1 ± a2)

2 = (a1 + a2)
2 + (−a1 + a2)

2 + (a1 − a2)
2 + (−a1 − a2)

2

= 4(a21 + a22)

= 22(
2∑

i=1

a2i )
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Theorem 2

Theorem 2: If a1 < a2 < · · · < am are positive integers whose subsets have distinct
sums then

m∑
i=1

a2i ≥
1

3
(4m − 1).

Proof contd.:

For m = 2 we had that

∑
(±a1 ± a2)

2 = 22(
2∑

i=1

a2i )

this generalizes and we have that

S =
∑

(±a1 ± a2 ± · · · ± am)
2 = 2m(

m∑
i=1

a2i )
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Theorem 2

Proof:

Recall the 2m quantities ±a1 ± a2 ± · · · ± am.

Claim: They are all distinct.

Suppose to the contrary that two of them are equal, then that means that∑
i∈I

|I |<m

ai −
∑
i∈J

|J|<m

ai =
∑
i∈K

|K |<m

ai −
∑
i∈L

|L|<m

ai

where |I |+ |J| = m and |K |+ |L| = m.

If I ∩ K ̸= ∅ or J ∩ L = ∅, then they have a common term and we can cancel it
from the sum and then use induction to prove that I = K and J = L and the
result follows.

Otherwise I ∩ K = ∅ and J ∩ L = ∅ and in this case we can rearrange to get∑
i∈I

|I |<m

ai +
∑
i∈L

|L|<m

ai =
∑
i∈K

|K |<m

ai +
∑
i∈J

|J|<m

ai

and the LHS cannot equal the RHS because the ai have distinct sums by
assumption so we get a contradiction.
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Theorem 2

Theorem 2: If a1 < a2 < · · · < am are positive integers whose subsets have distinct
sums then

m∑
i=1

a2i ≥
1

3
(4m − 1).

Proof:

Recall the 2m quantities ±a1 ± a2 ± · · · ± am.
They are distinct
Different from zero
Of the same parity (i.e. all either even or odd)

By Theorem 1, each of the 2m quantities lies between

−(2m − 1) ≤ ±a1 ± a2 ± · · · ± am ≤ 2m − 1

Hence
(±a1 ± a2 ± · · · ± am)

2 ≤ (2m − 1)2

The estimates above and the fact that the 2m quantities are distinct, different
from zero and of the same parity, implies the sum of their squares, S , is at least

12 + (−1)2 + 33 + (−3)2 + · · ·+ (2m − 1)2 + (1− 2m)2 ≤ S
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Theorem 2

Proof continued:

We saw on the prev. slide that

12 + (−1)2 + 33 + (−3)2 + · · ·+ (2m − 1)2 + (1− 2m)2 ≤ S

Note now that

12 + (−1)2 + 33 + (−3)2 + · · ·+ (2m − 1)2 + (1− 2m)2 = 2
m∑
i=1

(2i − 1)2

One can then check using basic results on the sums of geometric sequences that

2
m∑
i=1

(2i − 1)2 =
2

3
2m−1(22m − 1).

Thus we have that
2

3
2m−1(22m − 1) ≤ S
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Theorem 2

Proof continued:

We saw on the prev. slide that

2

3
2m−1(22m − 1) ≤ S

We also saw earlier that

S = 2m(
m∑
i=1

a2i )

Thus we’ve shown that

2m
m∑
i=1

a2i ≥
2

3
2m−1(22m − 1)

Hence
m∑
i=1

a2i ≥
1

3
(4m − 1)

as desired. □
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Theorem 3

Proof contd.:

Theorem 2 then applies to show that

1

3
(4m − 1) ≤

m∑
i=1

a2i < mx2.

Claim: 1
3
(4m − 1) ≤

∑m
i=1 a

2
i implies that 4m < 3mx2

In order to prove this we have two cases to examine.

Case 1: We need to check that if 1
3
(4m − 1) =

∑m
i=1 a

2
i then 4m < 3mx2

Case 2: We need to check that if 1
3
(4m − 1) <

∑m
i=1 a

2
i then 4m < 3mx2
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Theorem 3

Want to show: Case 1: If 1
3
(4m − 1) =

∑m
i=1 a

2
i then 4m < 3mx2

Proof contd.:

If 1
3
(4m − 1) =

∑m
i=1 a

2
i then by Theorem 2 we have that ai = 2i−1 for each i .

Moreover in this case we have that x = 2m−1.

Thus we have

3mx2 > 2mx2

= 2m(2m−1)2

= m22m−1

≥
(

2m

2m−1

)
22m−1 since m ≥

2m

x
and x = 2m−1

= 2 · 22m−1

= 22m

= 4m
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Theorem 3

Want to show: Case 2: If 1
3
(4m − 1) <

∑m
i=1 a

2
i then 4m < 3mx2

Proof contd.:

If
1

3
(4m − 1) <

m∑
i=1

a2i < mx2,

since we are only working with integers we then see that

1

3
(4m − 1) ≤

m∑
i=1

a2i − 1 ≤ mx2 − 1.

Forget about the center term in this inequality and multiply by 3 throughout to
see that

4m − 1 ≤ 3mx2 − 3.

From this we get that 4m < 3mx2.

Thus the claim is proven and we have in all cases that 4m < 3mx2.
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Lemma 5

Lemma 5: For n ≥ 4 we have that

un+1 <
n∑

i=0

ui ≤ un+1 + un−2.

Proof:

We first show this explicitly for n = 4, 5 and 6.

n = 4:
u5 = 13
u0 + u1 + u2 + u3 + u4 = 0 + 1 + 2 + 4 + 7 = 14
u5 + u2 = 15
So u5 <

∑4
i=0 ui ≤ u5 + u2.

n = 5 and n = 6 can check explicitly similarly.
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Lemma 5

Proof continued:

Suppose that un+1 <
∑n

i=0 ui ≤ un+1 + un−2 is true for n = k ≥ 6, we will show
that it is true for k + 1.

We see that
k+1∑
i=0

ui = uk+1 +
k∑

i=0

ui > uk+1 + uk+1 = 2uk+1

with the last inequality occurring because
∑k

i=0 ui > uk+1 by the induction
hypothesis.

Now because n = k ≥ 6 we see that u(k+1)−r > 0 (where r = ⟨
√

2(k + 1)⟩) so
that 2uk+1 > 2uk+1 − u(k+1)−r = uk+2.

Hence
k+1∑
i=0

ui > uk+2
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Lemma 5

Proof continued:

We saw on the last slide that

k+1∑
i=0

ui > uk+2

Now also using the induction hypothesis on
∑k

i=0 ui we see that

k+1∑
i=0

ui = uk+1 +
k∑

i=0

ui ≤ uk+1 + uk+1 + uk−2.

Now

uk+1 + uk+1 + uk−2 = 2uk+1 + uk−2

=
(
2uk+1 − u(k+1)−r

)
+ u(k+1)−r + uk−2

= uk+2 + u(k+1)−r + uk−2.

Hence
k+1∑
i=0

ui ≤ uk+2 + u(k+1)−r + uk−2.
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Lemma 5

Proof continued:

We saw that
k+1∑
i=0

ui ≤ uk+2 + u(k+1)−r + uk−2.

Now for k ≥ 6 we have that (k + 1)− r < k − 2, so by Lemma 4

u(k+1)−r + uk−2 < uk−1

Thus
uk+2 + u(k+1)−r + uk−2 < uk+2 + uk−1

Hence
k+1∑
i=0

ui < uk+2 + uk−1

which completes the proof. □
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Lemma 5.5

Lemma 5.5: There are no singletons or pairs of the ui with equal sums

Proof:

There are no equal singletons because {ui} is a strictly increasing sequence.

Suppose we have two pairs of the ui with equal sums. In other words suppose we
have sets {ui1 , ui2} and {uj1 , uj2} which are disjoint such that

ui1 + ui2 = uj1 + uj2 .

Assume without loss of generality that ui1 < ui2 , uj1 < uj2 .

Since the sets are disjoint, one of them must contain a largest element (from
both sets), so assume without loss of generality that uj2 > ui2 .

Now we know by Lemma 4 that uj2 > uj2−1 + uj2−2

Since uj2 > ui2 > ui1 we see that ui2 ≤ uj2−1 and ui1 ≤ uj2−2.

Hence uj2 > ui2 + ui1 and since uj1 ≥ 0 we see that we cannot have that
ui1 + ui2 = uj1 + uj2 and hence we obtain a contradiction. □
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Lemma 6

Lemma 6: There are no distinct triples of the ui with equal sums

Proof:

The result will follow (using the same technique used in the previous lemma) if
we show that

un+1 ≥ un + un−1 + un−2 for n ≥ 2

This can be verified by hand from the earlier Table for 2 ≤ n ≤ 7 with equality
occuring for 3 ≤ n ≤ 6.

Induction hypothesis: suppose that um+1 ≥ um + um−1 + um−2 for m ≥ 2 holds
for 1 ≤ m ≤ n − 1. We will show it holds for n too.

For n > 7 we have that r > 3 so that n − r < n − 3.

By definition un+1 = 2un − un−r , hence un+1 > 2un − un−3 = un + (un − un−3).

By the induction hypothesis we see that un > un−1 + un−2 + un−3. Hence

un+1 > un + un−1 + un−2 + un−3 − un−3 = un + un−1 + un−2

as desired.
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Proof of Theorem 4

Theorem 4: We have that
lim

n→∞

un

2n
= α

where 0 < α < 1
2

Remark: In particular, this result implies that the sequence un behaves/grows like 2n.

Proof:

Define
αn :=

un

2n
.

In the range 1
2
m(m + 1) + 1 ≤ n ≤ 1

2
m(m + 1)(m + 2) we have that r = m + 1.

Now we know by definition of the Conway-Guy sequence that un+1 = 2un − un−r .
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Proof of Theorem 4

Proof:

Thus

αn+1 =
un+1

2n+1
=

2un

2n+1
−

un−r

2n+1
= αn −

un−m−1

2n+1
= αn −

αn−m−1

2m+2

If we sum αn+1 over the range 1
2
m(m + 1) + 1 ≤ n ≤ 1

2
m(m + 1)(m + 2) we get

αm(m+1)(m+2)/2 = α 1
2
m(m+1)+1 − 2−(m+2)

1
2
m(m+1)(m+2)∑
n= 1

2
m(m−1)

αn

If we substitute m + j − 1 for m and sum the above from j = 1 to j = p, we get

α 1
2
m(m+p)(m+p+1) = αm(m+1)/2+1 −

p∑
j=1

2−(m+j−1)

1
2
(m+j)(m+j+1)∑

n= 1
2
(m+j−1)(m+j−2)

αn
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Proof of Theorem 4

Proof:

Since α23 = 2095003× 2−23 < 1
4
, Lemma 3 implies that

α < αn <
1

4

for n ≥ 23.

Thus for m ≥ 8, we have that (m+ j − 1)(m+ j − 2)/2 + 1 ≥ 29 and thus in the
range 1

2
(m + j − 1)(m + j − 2) ≤ n ≤ 1

2
(m + j)(m + j + 1) we see that

α < αn < 1
4
and hence that

α(m + j) <

1
2
(m+j)(m+j+1)∑

n= 1
2
(m+j−1)(m+j−2)

αn <
1

4
(m + j)
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Proof of Theorem 4

Proof:

Recall we had that

α 1
2
m(m+p)(m+p+1) = αm(m+1)/2+1 −

p∑
j=1

2−(m+j−1)

1
2
(m+j)(m+j+1)∑

n= 1
2
(m+j−1)(m+j−2)

αn

Let T (p) =
∑p

j=1 2
−(m+j−1)

∑ 1
2
(m+j)(m+j+1)

n= 1
2
(m+j−1)(m+j−2)

αn so that

α 1
2
m(m+p)(m+p+1) = αm(m+1)/2+1 − T (p)

Since

α(m + j) <

1
2
(m+j)(m+j+1)∑

n= 1
2
(m+j−1)(m+j−2)

αn <
1

4
(m + j)

we have that

2−(m+p−1)α(m + p) < T (p) < 2−(m+p−1) 1

4
(m + p)
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Proof of Theorem 4

Proof:

Just through some algebraic manipulations we then have that

2−m−1α(m + 2− (m + p + 2)2−p) < T (p) < 2−m−3(m + 2− (m + p + 2)2−p)

If we keep m fixed and let p → ∞ and β = limp→∞ T (p), then we have that

2−m−1α(m + 2) < β < 2−m−3(m + 2)

Now recall that
α 1

2
m(m+p)(m+p+1) = αm(m+1)/2+1 − T (p)

So if we keep m fixed and let p → ∞ then

α = lim
p→∞

α 1
2
m(m+p)(m+p+1) = αm(m+1)/2+1 − β

where β lies between α(m + 2)2−m−1 and (m + 2)2−m−3.

Now we have a good bound on α to work with.
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Proof of Theorem 4

Proof:

From the prev. slide we had

α = lim
p→∞

α 1
2
m(m+p)(m+p+1) = αm(m+1)/2+1 − β

where β lies between α(m + 2)2−m−1 and (m + 2)2−m−3.

Thus

αm(m+1)/2+1 − (m + 2)2−m−3 < α < αm(m+1)/2+1 − α(m + 2)2−m−1

For m = 26, using the fact that α < αm(m+1)/2+1 we have

α352 − 28× 2−29 < α <
α352

1 + 28× 2−27
< α352 − 26× 2−29
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Proof of Theorem 4

Proof:

We saw that for m = 26 we have

α352 − 28× 2−29 < α <
α352

1 + 28× 2−27
< α352 − 26× 2−29

A computer calculation gave

α352 = 0.235125333862141...

One then gets
α = 0.23512524581118...

□
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Theorem 7

Theorem 7: If s ≥ 0 and 1 ≤ t ≤ s +2, then with the same convention as in Theorem
6,

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
.

Proof:

The theorem may be checked by hand from Table 1 for 0 ≤ s ≤ 2 and
1 ≤ t ≤ s + 2.

We claim that if the theorem is true for some value of s and t, it is also true for
the same value of s and t + 1 in place of t.

Suppose that for s and t we have that

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
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Theorem 7

Want to show:

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
.

Proof:

From Lemma 4 we know that uTs+t+2 > uTs+t+1 + uTs+t . Thus
uTs+t+2 − uTs+t+1 > uTs+t .

Thus we can add uTs+t+2 − uTs+t+1 to the left hand side of the inequality and
uTs+t to the right hand side of the inequality to yield that:

uTs+t+1 + uTs+t+2 − uTs+t+1 = uTs+t+2

> uTs+t +

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi

=

Ts+t∑
i=0

ui +
s∑

i=2

uTi
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Theorem 7

Want to show:

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
.

Proof:

We claim that if the theorem is true for some s ≥ 2 and t = 1, then it is also true
for the same value of s + 1 and t = 1.

Suppose that for s ≥ 2 and t = 1 we have that

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
(5)

Claim:

uTs+1+t+1 − uTs+t+1 >

Ts+1∑
i=Ts+t

ui + uTs+1
(6)
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Theorem 7

Want to show:

uTs+t+1 >

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
.

Proof:

If we add the left hand side of 6 to the left of 5 and the right hand side of 6 to
the right hand side of 5 we get:

uTs+1+t+1 = uTs+1+t+1 − uTs+t+1 + uTs+t+1

>

Ts+t−1∑
i=0

ui +
s∑

i=2

uTi
+

Ts+1∑
i=Ts+t

ui + uTs+1

=

Ts+t−1∑
i=0

ui +

Ts+1∑
i=Ts+t

ui

+

(
s∑

i=2

uTi
+ uTs+1

)

=

Ts+1∑
i=0

ui +
s+1∑
i=2

uTi
+ uTs+1

as desired, provided the claim holds. □
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Theorem 9

Theorem 9: Under conditions A to D, uTs+t−1 belongs to the minor set.

Proof:

From condition A, we have two sets of the ui with equal sums, those being

{ui1 , ui2 , . . . , uik } and {uj1 , . . . , ujl }

. We order these sets so that uim < uim+1
and ujm < ujm+1

for 1 ≤ m ≤ k and
1 ≤ m ≤ l respectively.

Suppose without loss of generality that ujl is the largest element from both sets.

Rewrite jl to be jl = Ts+1 + t + 1 for some s and t so that the largest element
from both sets is uTs+1+t+1.

So from the two sets {ui1 , ui2 , . . . , uik } and {uj1 , . . . , ujl }, the set
{ui1 , ui2 , . . . , uik } is the minor set.
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Theorem 9

Theorem 9: Under conditions A to D, uTs+t−1 belongs to the minor set.

Proof contd.:

Suppose uTs+t−1 does not belong to the minor set, i.e.

uTs+t−1 ̸∈ {ui1 , ui2 , . . . , uik }.

Then by Theorem 8 the set {ui1 , ui2 , . . . , uik } must contain the s + 1 elements, ui
for Ts + t + 1 ≤ i ≤ Ts+1 + t.

Thus we have

ui1+ui2+· · ·+uTs+t+1+uTs+t+2+· · ·+uTs+1+t−1+uTs+1+t = uj1+· · ·+uTs+1+t+1

One can check that uTs+1+t+1 = 2uTs+1+t − uTs+t−1 (this follows just from the
definition of the Conway-Guy sequence)

We substitute uTs+1+t+1 = 2uTs+1+t − uTs+t−1 in the equality from the previous
slide to get

ui1 + ui2 + · · ·+ uTs+t+1 + uTs+t+2 + · · ·+ uTs+1+t−1 + uTs+1+t

= uj1 + · · ·+ 2uTs+1+t − uTs+t−1
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Theorem 9

Proof continued:

On the previous slide we arrived at the following equation:

ui1 + ui2 + · · ·+ uTs+t+1 + uTs+t+2 + · · ·+ uTs+1+t−1 + uTs+1+t

= uj1 + · · ·+ 2uTs+1+t − uTs+t−1

Then we cancel out a uTs+1+t from either side to get that

ui1 +ui2 + · · ·+uTs+t+1+uTs+t+2+ · · ·+uTs+1+t−1 = uj1 + · · ·+uTs+1+t−uTs+t−1

Now we add a uTs+t−1 to either side to yield that

ui1 +ui2 + · · ·+uTs+t+1+uTs+t+2+ · · ·+uTs+1+t−1+uTs+t−1 = uj1 + · · ·+uTs+1+t

But now the sets {ui1 , ui2 , · · · , uTs+t+1, uTs+t+2, · · · , uTs+1+t−1, uTs+t−1} and
{uj1 , uj2 , · · · , uTs+1+t} have equal sums but a smaller largest member, that being
uTs+1+t .

This contradicts condition C and the result follows. □
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Theorem 10

Theorem 10: Under conditions A to D, the minor set does not contain all the s + 4
members ui for Ts + t − 2 ≤ i ≤ Ts+1 + t.

Proof:

If the minor set contained these s + 4 members, it’s sum S1 would be at least

Ts+1+t∑
i=Ts+t−2

ui

Now we can rewrite the above as

Ts+1+t∑
i=Ts+t−2

ui = uTs+t−2 + uTs+t−1 +

Ts+1+t∑
i=Ts+t

ui

Theorem 6 says that
∑Ts+1+t

i=Ts+t ui = uTs+1+t+1 +
∑s

i=0 uTi
hence

S1 ≥ uTs+t−2 + uTs+t−1 +
s∑

i=0

uTi
+ uTs+1+t+1.
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Theorem 10

Proof continued:

On the other hand, the sum of the major set, S2 would be at most

uTs+1+t+1 +

Ts+t−3∑
i=0

ui

This is because, by condition A, the major set cannot contain any of the elements
ui for Ts + t − 2 ≤ i ≤ Ts+1 + t

Lemma 5 says that
∑Ts+t−3

i=0 ui ≤ uTs+t−2 + uTs+t−5

This implies that S2 ≤ uTs+1+t+1 + uTs+t−2 + uTs+t−5

We thus have the following situation:

uTs+t−2+uTs+t−1+
s∑

i=0

uTi
+uTs+1+t+1 ≤ S1 = S2 ≤ uTs+1+t+1+uTs+t−2+uTs+t−5

This implies that

uTs+t−2 + uTs+t−1 +
s∑

i=0

uTi
+ uTs+1+t+1 ≤ uTs+1+t+1 + uTs+t−2 + uTs+t−5
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Theorem 10

Proof continued:

Which implies that

uTs+t−1 +
s∑

i=0

uTi
≤ uTs+t−5

This is a contradiction since uTs+t−1 > uTs+t−5 because the {ui} is a strictly
increasing sequence.

This completes the proof. □
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Lemma 8

Lemma 8: If s ≥ 0, with the convention of Theorem 6,

s∑
i=2

uTi
<

1

2

(
uTs+1 + uTs−1+2

)

Proof:

If s = 0, then −1 < 1
2
(1 + 2)

If s = 1, then 0 < 1
2
(2 + 2)

If s = 2, then 4 < 1
2
(7 + 4)

If s = 3, then 4 + 24 < 1
2
(44 + 13)
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Lemma 8

Proof:

Assume the theorem is true for s = v ≥ 3, we show it is true for v + 1.

Then

v+1∑
i=0

uTi
= uTv+1

+
v∑

i=0

uTi

< uTv+1
+

1

2
(uTv+1 + uTv−1+2) by induction hypothesis

=
1

2
(2uTv+1

+ uTv+1 + uTv−1+2)

=
1

2

(
(2uTv+1

− uTv ) + uTv + uTv+1 + uTv−1+2

)
=

1

2

(
uTv+1+1 + uTv + uTv+1 + uTv−1+2

)
since 2uTv+1

− uTv = uTv+1+1

≤
1

2

(
uTv+1+1 + uTv + uTv+1 + uTv−1

)
since Tv−1 + 2 ≤ Tv − 1 holds for n ≥ 3 so that uTv−1+2 ≤ uTv−1

≤
1

2

(
uTv+1+1 + uTv+2

)
since uTv+2 ≥ uTv + uTv+1 + uTv−1.□
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Lemma 9

Lemma 9: If v > Ts+1, then
∑v

i=v−s ui < uv+1.

Proof:

The case s = 0 is just Lemma 1, since it boils down to saying that uv < uv+1

The case s = 1 is just Lemma 4, since it just says that uv−1 + uv < uv+1

The case s = 2 just says that uv−2 + uv−1 + uv < uv+1 and this is true by
inequality (12) in the paper

The case s = 3, just says that uv−3 + uv−2 + uv−1 + uv < uv+1 and this is true
by inequality (13) in the paper.
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Lemma 9

Lemma 9: If v > Ts+1, then
∑v

i=v−s ui < uv+1.

Proof continued:

We now handle the case that v = Ts+1 + 1.

Note firstly that v − s = Ts+1 + 1− s. We saw earlier that
Ts+1 + 1 = Ts + s + 2 which implies that v − s = Ts + 2.

Hence
v∑

i=v−s

ui =

Ts+1+1∑
Ts+2

ui

Through simple algebra we see that

Ts+1+1∑
Ts+2

ui =

Ts+1+1∑
Ts+1

ui − uTs+1

Then using Theorem 6 with t = 1 implies that

Ts+1+1∑
Ts+1

ui − uTs+1 = uTs+1+2 +
s∑

i=2

uTi
− uTs+1
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Lemma 9

Lemma 9: If v > Ts+1, then
∑v

i=v−s ui < uv+1.

Proof continued:

On the previous slide we arrived at

Ts+1+1∑
Ts+1

ui − uTs+1 = uTs+1+2 +
s∑

i=2

uTi
− uTs+1.

Then using Lemma 8 on
∑s

i=2 uTi
in the above we see that

uTs+1+2 +
s∑

i=2

uTi
− uTs+1 < uTs+1+2 +

1

2

(
uTs+1 + uTs−1+2

)
− uTs+1

Then provided Ts−1 + 2 ≤ Ts + 1 (which is true for s ≥ 1) we see that
uTs+1 ≥ uTs−1+2

This implies that

uTs+1+2 +
1

2

(
uTs+1 + uTs−1+2

)
− uTs+1 ≤ uTs+1+2.

126 / 128



Introduction Bounds for m The Conway-Guy sequence Distinct Sums Results on the Conway-Guy Sequence Appendix

Lemma 9

Lemma 9: If v > Ts+1, then
∑v

i=v−s ui < uv+1.

Proof continued:

Putting all this together we see that

v∑
i=v−s

ui ≤ uTs+1+2.

Now suppose the result holds for v = w > Ts+1.

Through simple algebra we get that

w+1∑
i=w+1−s

ui = uw+1 − uw−s +
w∑

i=w−s

ui

Then since the result holds for w , we see that
∑w

i=w−s ui < uw+1 and hence that

uw+1 − uw−s +
w∑

i=w−s

ui < 2uw+1 − uw−s
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Lemma 9

Lemma 9: If v > Ts+1, then
∑v

i=v−s ui < uv+1.

Proof continued:

Recall that

uw+1 − uw−s +
w∑

i=w−s

ui < 2uw+1 − uw−s

Recall the defining property of the sequence of the ui , that being that

un+1 = 2un − un−r

for n ≥ 1 and r = ⟨
√
2n⟩.

Recall that we assumes that w > Ts+1 = 1
2
(s + 1)(s + 2). Hence

w − s > Ts+1 − s = Ts + 2 (since we have the identity that
Ts+1 + 1 = Ts + s + 2)

This shows that w − s > w +1− r (here we take w +1 in place of n which yields
a value for r) which implies that uw−s > uw+1−r since the ui are monotonically
increasing

This then shows that 2uw+1 − uw−s < 2uw+1 − uw+1−r = uw+2 using the
defining property of the sequence of the ui with w + 1 in place of n □
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