CS Applications in Graphics & Vision

27 Colóquio Brasileiro de Matemática

Outline

- Overview of Applications
 - How & Where to Use CS
- Hardware
 - Single-Pixel Camera
- Software
 - Light Transport Sensing

The Good and Bad of CS

- Good:
 - Simultaneous Sensing & Compression
 - Minimal Non-Adaptive Measurements
 - Stable / Robust to Noise
- · Bad:
 - Global Probing ~ Special Devices
 - Non-Linear Estimation ~ Expensive Recovery

Where to Use CS?

- Massive (Sparse) Raw Data
- Hardware Options
 - Existing Suitable Devices (i.e., MRI, CT, etc..)
 - Data Parallel Acquisition (i.e., Sensor Networks)
 - New Analog-Digital Converters
- * Break Technological Limits

How to Use CS?

- Asymmetrical
 - Low Rate Sampling + Large Scale Optimization
- Universality
 - Representation Independent Sensing
- Model-Based Estimation
 - Dimensionality Reduction
- Operator Sparseness
 - Statistical Analysis / Processing

Application Areas

- Biomedical Imaging
- Geophysics / Radar
- Astronomy
- Analog-Digital Converters
- Machine Learning
- Vision and Graphics

Single-Pixel Camera

- Early Example of Dedicated CS Device
- http://dsp.rice.edu/cscamera (data)
- Rice University / DSP Group (2006)

MIT Technology Review:
 Top 10 emerging technologies for 2007

Comparison

- Conventional Camera (CCD/CMOS array)
 - Millions of Sensors (ray bundle per pixel)
 - Space Multiplexed

- CS Camera (CS integrator)
 - One Sensor (all rays)
 - Time Multiplexed

Experimental Setup

Image Sensing

- Measurements in Time
 - Flip Mirrors M Times

Image Recovery

CS Optimization (TV)

Example I

First Image Acquisition

target 65536 pixels

11000 measurements (16%)

1300 measurements (2%)

Example 2

4096 pixels

500 random measurements

Advantages

- When the sensor is expensive:
 - Low Light Imaging
 - High Dynamic Range
 - Hyperspectral Imaging
 - Shutterless Video
 - etc...

Low-Light Imaging

Photomultiplier Tube

Hyperspectral Imaging

- Layer Sensors (Multi-Photodiodes, etc)
- Prism Assembly

Shutterless Video

Space-Time Reconstruction (3D Wavelets)

Dual Photography

- The Reciprocity Principle
- Single Pixel Dual Camera
- Compressive Light Transport Sensing
- Relighting
- CS Dual Camera

First Application in Graphics

- Compressive Dual Photography
 - Sen, P. and Darabi, S. EUROGRAPHICS 2009
- Compressive Light Transport Sensing
 - Peers et al. SIGGRAPH 2009
- Compressive Structured Light for Recovering Inhomogeneous Participating Media
 - Gu et al. ECCV 2008

The Reciprocity Principle

 Interchange Camera and Light (Helmholtz, 1856)

The Reciprocity Principle

 Interchange Camera and Light (Helmholtz, 1856)

Dual Single Pixel Camera

Primal Configuration

Dual Single Pixel Camera

Dual Configuration

4D Light Transport

Replace Photocell with a Camera

4D Light Transport Matrix

· Replace Photocell with a Camera

The 4D Transport Matrix

Primal Configuration

The 4D Transport Matrix

Primal Configuration

The 4D Transport Matrix

Primal Configuration

Helmholtz Reciprocity

$$\mathbf{c} = \mathbf{T}\mathbf{l} \quad \Leftrightarrow \quad \mathbf{l}' = \mathbf{T^t}\mathbf{c}'$$

Dual Photography

Example I

• (Sen et al., SIGGRAPH 2005)

Primal Photograph (projector is the light source)

Dual Image (as seen from projector)

Example 2 • Dual Photography from Diffuse Reflections Dook aperture projector Camera's View Projector's View

Analysis

- Properties of the 4D Light Transport Matrix
 - little inter-reflection → sparse matrix
 - many inter-reflections → dense matrix
 - convex object → diagonal matrix
 - concave object → full matrix
- ▶ How to Compute the Transport Matrix ?

Brute Force Approach

- Project "Canonical Basis"
- Capture Each Column of the Matrix
- Acquisition Costs
 - Image / Projector Resolution:
 - 800 x 600 pixels = 480000 images
 - ~ 30 seg. / image = 4000 hours (167 days!)
- * Not Feasible in Practice... (CS to the Rescue!)

CS Dual Photography

- ▶ Compressive Light Transport Sensing
 - Few Non-Adaptive Measurements
- Sparsity Properties
 - Simple Scene and Lighting
 - ▶ Matrix T Directly Sparse
 - Complex Scene and Lighting (columns of T are images)
 - Sparse in the Wavelet Domain

Sensing

Light Transport Equation

$$C = TL$$

Brute Force (N images)

$$\begin{bmatrix} c_0 & \cdots & c_k \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{n \times n} & \end{bmatrix} \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

Compressive Sensing (K images, i.e, K << N)

$$\begin{bmatrix} c_0 & \cdots & c_k \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{n \times k} \end{bmatrix} \begin{bmatrix} l_0 & \cdots & l_k \end{bmatrix}$$

The Recovery Trick

- Must Relate
 - Light Transport Equation

Recovery: Step I • Single Pixel through Time

Recovery: Step II

Transpose Equation

$$C^t = L^t T^t$$

Solve for each pixel

$$c_i^t = \mathbf{L}^t t_i^t$$
 for $i = 1, \dots, K$

Implementation Details

- Matrix L
 - Sparse T → L = Φ (i.e., Bernoulli Matrix)
 - Dense T → L = ΦΨ (i.e., Daubechies Wavelets)

- Optimization Algorithm
 - ROMP (Regularized Orthogonal Matching Pursuit)
- ▶ OBS: Solve in Parallel for each pixel !!!

camera, lights, .. action!

Images

Projected Pattern

from the camera

from the projector

Results I

Figure: Image of size 128 x 128, captured with 1500 patterns.

Results II

Figure: Image of size 128 × 128, captured with 1000 patterns.

Image-Based Relighting

- Pipeline:
 - Measure 4D Light Transport Matrix T

$$C^t = L^t T^t$$

2. Synthesize Incident Light Field I'

$$l' = f(p)$$

3. Relight Scene with Transport Matrix

$$c' = \mathbf{T}l'$$

Relighting I

(Schulz, et al., 2009)

(a) Image Relighting

(b) Image Relighting

(c) Image Relighting

Figure: Image of size 128 × 128, captured with 1500 patterns.

Relighting II

(a) Image Relighting

(b) Image Relighting

Figure: Image of size 128 × 128, captured with 100 patterns.

Dual CS Single Pixel Camera

- Use Camera as a Photocell
 - Integrate over All Image Pixels

$$c = \sum_{j} c_{j}$$

Solve using Wavelet basis

$$c = \mathbf{L}^t \Psi^t \hat{t}$$

Reconstruct

$$t = \Psi^t \hat{t}$$

Example

Comparison: Dual Single Pixel x Full DLT

Image Resolution: 128 x 128 (16.384)

Full DLT (512 patterns)

Conclusions

to be continued...