Combpressive Sensing:

Concepts & Applications

27 Coloquio Brasileiro de Matematica

People / Motivation

® |nstructors
= LuizVelho (IMPA)
- Eduardo Silva (UFR])
- Adriana Schulz (IMPA)

® |nside Stories
= Curves and Surfaces 2006, Avignon
= Final Project, COPPE / UFR]




Course Outline

Introduction / Classical Sampling Theory

e Compression / Representation Theory

® The Compressive Sensing Framework

Quantization / Image Processing

e Applications in Graphics

New Topic!

® Communications of ACM, May 2009

= Rethinking Signal Processing

*“The theory was so revolutionary when it was created a
fe'w years ago that an early paper outlining it was
initially rejected on the basis that its claims appeared
impossible to substantiate.”
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Change of Paradigm

e Sampling / Reconstruction
~ }rears!.

® Sensing / Recovery

Who is Who!

® Emmanuel Candes
® David Doncho

® Richard Baraniuk

p Many others....




Historical Events

® |MA - U. Minnesota, New Directions Short Course:
Compressive Sampling and Frontiers in Signal Processing

(June, 2007)

® Duke University Compressive Sensing Workshop
(February, 2009)

Resources

® Rice CS Resources W—
{httpd'www.compressedsensing.com/)

e L|-Magic p—




Where it all begun?

® The “Phantom” Case: Experimental Mathematics

= MRI Reconstruction from 5% samples in K-space

-

back-projection total variation (exact)

“That's where the surprise came in. What [ was not
expecting that it would give me the truth! [t was the birth
of compressed sensing” - E. Candes (CACM 049)

Sampling & Reconstruction

Scattered Data Interpolation

e Signal Representation

Shannon's Sampling Theorem
® Characteristics and Properties

® Examples




Scattered Data Interpolation

® Data Samples (non-uniform)

® PL Interpolation (approximation)

Signal Representation (l)

® Uniform Point Sampling
= Impulse Train

e 1111111

jr
. 2 sarrpling period
= Function Sampling

)
fa(ty= ) flnAt)8(t —nAt)

= Sample Sequence

fa={....f(At), f(24t),.. .}




Signal Representation (lI)

® |deal Reconstruction
—+
f(t) = Z WAL f(kAL) sinc(2rQ(t — kAL))
o= — g

® Shannon Basis

= 5inc Function

., . sin(x)
gine(z) = —— AANS
r

Sampling Theorem

® (Shannon-Whittaker, | 949)

Let f be a bandlimited signal with f C (11,92
Then, f can be exactly reconstructed from the
uniform sample sequence {f(mat) | m € Z}

by interpolation functions { sinc(t — maAt) }
if At < 1/(2902).




Key Concepts

® Bandlimited Signal
{09
(Le., no frequencies above £2)

® Sampling Frequency

2
T AL
® Nyguist Limit
1
alss
Example |

e Signal: f(t)




Example |

o Uniform Sampling: {f(t)}

Example |

® Reconstruction: step |




Example |

e Reconstruction: step 2

Example |

e Reconstruction: step 3




Example |

e Reconstruction: complete

Example |

e Shannon Interpolation Basis




Example |

® Fourier Transform: f(w)

What is going on ? ()

b bR

f s,

e WAL L




What is going on ? (1)

spatial domain fraguancy domdesn

fa

Shannon was a Pessimist!

® [MNyquist Limit = worst case bound:

= Highest Frequency

® Global vs. Local
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CS to the Rescue :)

® New Paradigm: Sensing & Recovery
= First C5 Theorem
- Basic Framework
- Toy Example
- Key Notions
- CS§ Fourier Sampling

= Back to Phantom

First CS Theorem

® Theorem (Candes, Romberg and Tao, 2004)

Supose f € RY is K-sparse, sample jﬁ'
at M random frequencies, wq,...uhy,
M2z EKlogN
then, solving
min || f|le, st _f.'[_.-:_..,] e
reconstructs £ with overwhelming probahbility,




Matlab

® nonlinear_sampling.m (E. Candes)

'FADATS® ALl
mo= 512; Size of the
m= §

1
4

na

k= =1 £ = JQrp=13

F = agp(-L*d®*piek " oe/n)/aqree(n); Fourier itrix
freq = randsamplein,m);
A= [real[Fifreq,:}); imag(F{freg,:}i]; mip 1 SuEde
E = JB3
gupport = rapdeamplein,S);
20 = zarosin,lp; =0(support] = randni{S,1l});
b o= R*xlii
Solve
cvx bagln
variabkle x(nj;
minimizeinormi{x, 1))
subject to
Rty == o
evi_end
e Sparse fin Time Domain (K=28)
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Example 2

® Fourier Transform of f (dense)

Example 2

e Random Fourier Sampling of M = 64 frequencies
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Example 2

o [ 1 Reconstruction (Perfect Recovery!)

Back to Phantom

® MRI - Connection with Fourier Data and E:l

= k-space measures / inverse problem

Fourier Transform sampling Pattern TV Reconstruction




Simple CS
® Thecrem:

siven a k-sparse signal X of size N,

( | - Sig

then X can be recovered with overwhelming
probability by [sensing|it M times,

with M < N.

Basic Framework

® Sensing
Ui =< T,¢; >

= lest Functions

o O R (R |

e Recovery
= Optimization

min ||z|| 5.t =Pz
H




Toy Example

o K=

e N=16

s M=7

e ¢ = Bernoulli

- P(-1)=05
- P(+1)=05

Matlab

® simple_cs.m

L
no= L&}
m= 7;

phi = sign{rand{m,nj = 0.5);

i = 9;

£f = B;

X = garos(n,l);
wfL) = £3

y = phi * x;

t = eye(n,n) * £}
£ = phi * &;




Finding the Answer

e Exhaustive Search

Rules of the Game

o What we know ?

= k, Number of Samples # 0 (i.e, Sparseness)
- @, Test Functions (i.e., Probing Mechanism)

® What we don't know ?
- f,Signal (i.e., Location /Value of Significant Samples)

® How to determine M ?

- Depends on k and &




A Bit of Intuition...

® Why does it work?
(i.e., uniqueness of solution)

- Probability of €, = ;@ Wi #j
® Questions:

- Size M!?
» Sparseness
- Wvhich p ?

» Incoherency

Fundamental Premises

® Sparseness

= Compressible Representation

® |[ncoherency
= Uncorrelated Measurements
e (| Optimization

= |Inverse Problem of Estimation




Sparseness

® Signal is sparse if it is concentrated on
a “'small” set of variables:

= # Degrees of Freedom << Dimension of Signal

® Many Signals have a Sparse Representation

- Sparseness Domain

T =Wz

Sparse Representations

® Audio Signals

= Local Cosines

=

[ -

-
ime

® |mages

= Vvavelets

more on tuesday!




Incoherency

® Representation and Sensing
- Sparsity Basis 1

- Measurement Basis @y,

o Coherence between Basis

JI!II:{{I]-_ l]:_ll') — .h-"rl” . ]'il H:“:.-. -::: {:.':.:'Fl- " t'._ll :-'--L
N

Uncertainty Relation

® Uniform Uncertainty Principle (UUF)

= |f x is sparse, then t',b must be dense

M P2 M
- fak = = Cp—
N ||| N

C

® Restricted |sometry Property (RIP)

= Any choice of k { ¢r; } must form a basis

|®x||E
g < Tt <146
|13 “

P OBS: M and e are related to p(d, W)

more on wednesday!




Back to Fourier

® Sparse Signals in Frequency Domain
= Smooth Signals: Low Frequencies

= Oscillating Patterns: High Frequencies

® Remember Example (1)

space frequency

CS Fourier Sampling

® Thecrem
SUpOse f € CV is K-sparse, sample f
at M random time locations, f....1,,
M= KlogN
then, solving
it ||'3" |I': 5.1 ﬁ“-’h} e _III.I.;]Fr.'Jm.I
reconstructs f with overwhelming probability.

p OBS: Switch Time and Frequency !




Comparison

f e C* support on © in Fourier domain
® Shannon-Whittaker
= (1is a known and connected set of size K
- exact reconstruction from ¢ K uniform samples in time

= linear interpolation with sinc function

® Candes-Romberg-Tao

- (1is unknown and arbitrary set of size K
= exact recovery from ~ K log N random samples
= nonlinear estimation by optimization

General CS

® Random Sensing Acquisition Theorem:
= Signal f € BY is K-sparse in ¥ domain

- Take
M2z K -logN
measurements
nh=<Ffidr>....um=<f,o0mu >

1 random incoherent wavelorm

-~ Then solving

min ||x|le, st. PV =y
u .

recovers [ exactly




Characteristics

® Recovery from few non-adaptive measurements
® Simple acquisition followed by optimization

® Sense and compress simultaneously

p Asymmetric Process

What Next ?

® Tuesday (Eduardo)
= Representation Theory & Compression
® Wednesday (Adriana)
= CSTheory & Construction of Sensing Ensembles
® Thursday (Adriana)
- Image Processing & Quantization
® Friday (Luiz)
= | Pixel Camera & Dual Photography




Website

Thanks!




