Sobolev Spaces

We plan to give a brief introduction to the classical Sobolev spaces $H^{s}\left(\mathbb{R}^{n}\right)$. Sobolev spaces measure the differentiability (or regularity) of functions in $L^{2}\left(\mathbb{R}^{n}\right)$ and they are a fundamental tool in the study of partial differential equations.

Basics

We begin by defining Sobolev spaces.
Definition 1. Let $s \in \mathbb{R}$. We define the Sobolev space of order s, denoted by $H^{s}\left(\mathbb{R}^{n}\right)$, as

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right): \Lambda^{s} f(x)=\left(\left(1+|\xi|^{2}\right)^{s / 2} \widehat{f}(\xi)\right)^{\vee}(x) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

with norm $\|\cdot\|_{s, 2}$ defined as

$$
\|f\|_{s, 2}=\left\|\Lambda^{s} f\right\|_{2}
$$

Example 1. Let $n=1$ and $f(x)=\chi_{[-1,1]}(x)$. We have that $\widehat{f}(\xi)=$ $\sin (2 \pi \xi) /(\pi \xi)$.

$$
\begin{aligned}
\|f\|_{s, 2}^{2}=\left\|\Lambda^{s} f\right\|_{2}^{2} & =\int_{\mathbb{R}}\left(1+\xi^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d x \\
& =\int_{\mathbb{R}}\left(1+\xi^{2}\right)^{s}\left|\frac{\sin (2 \pi \xi)}{\pi \xi}\right|^{2} d \xi \\
& \lesssim \int_{\mathbb{R}}\left(1+\xi^{2}\right)^{s-1} d \xi .
\end{aligned}
$$

Thus $f \in H^{s}(\mathbb{R})$ if $s<1 / 2$.

Example 2. Let $n=1$ and $g(x)=\chi_{[-1,1]} * \chi_{[-1,1]}(x)$. We saw that

$$
\begin{aligned}
\widehat{g}(\xi) & =\frac{\sin ^{2}(2 \pi \xi)}{(\pi \xi)^{2}} \\
\|g\|_{s, 2}^{2}=\left\|\Lambda^{s} g\right\|_{2}^{2} & =\int_{\mathbb{R}}\left(1+\xi^{2}\right)^{s}|\widehat{g}(\xi)|^{2} d x \\
& =\int_{\mathbb{R}}\left(1+\xi^{2}\right)^{s}\left|\frac{\sin (2 \pi \xi)}{\pi \xi}\right|^{4} d \xi \\
& \lesssim \int_{\mathbb{R}}\left(1+\xi^{2}\right)^{s-2} d \xi
\end{aligned}
$$

Thus $g \in H^{s}(\mathbb{R})$ whenever $s<3 / 2$.

Example 3. Let $n \geq 1$ and $h(x)=e^{-2 \pi|x|}$. In a previous example we saw that

$$
\begin{align*}
\widehat{h}(\xi) & =\frac{\Gamma[(n+1) / 2]}{\pi^{(n+1) / 2}} \frac{1}{\left(1+|\xi|^{2}\right)^{(n+1) / 2}} \tag{0.1}\\
\|h\|_{s, 2}^{2}=\left\|\Lambda^{s} h\right\|_{2}^{2} & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{h}(\xi)|^{2} d x \\
& =c_{n} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \frac{1}{\left(1+|\xi|^{2}\right)^{n+1}} d \xi \\
& =c_{n} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s-n-1} d \xi . \quad\left(r^{2 s-2 n-2} r^{n-1}\right)
\end{align*}
$$

Using polar coordinates we see that $h \in H^{s}\left(\mathbb{R}^{n}\right)$ if $s<n / 2+1$. Notice that in this case s depends on the dimension.

Example 4. Let $n \geq 1$ and $f(x)=\delta_{0}(x)$. We already know $\widehat{\delta}_{0}(\xi)=1$. Then

$$
\|\delta\|_{s, 2}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{\delta}(\xi)|^{2} d x=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} d \xi \quad\left(r^{2 s} r^{n-1}\right)
$$

Thus $\delta_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ if $s<-n / 2$.

From the definition of Sobolev spaces we deduce the following properties.

Proposition 1.

1. If $s<s^{\prime}$, then $H^{s^{\prime}}\left(\mathbb{R}^{n}\right) \subsetneq H^{s}\left(\mathbb{R}^{n}\right)$.
2. $H^{s}\left(\mathbb{R}^{n}\right)$ is a Hilbert space with respect to the inner product $\langle\cdot, \cdot\rangle_{s}$ defined as follows:

$$
\text { If } f, g \in H^{s}\left(\mathbb{R}^{n}\right), \quad \text { then }\langle f, g\rangle_{s}=\int_{\mathbb{R}^{n}} \Lambda^{s} f(\xi) \overline{\Lambda^{s} g(\xi)} d \xi
$$

We can see, via the Fourier transform, that $H^{s}\left(\mathbb{R}^{n}\right)$ is equal to

$$
L^{2}\left(\mathbb{R}^{n} ;\left(1+|\xi|^{2}\right)^{s} d \xi\right)
$$

3. For any $s \in \mathbb{R}$, the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $H^{s}\left(\mathbb{R}^{n}\right)$.
4. If $s_{1} \leq s \leq s_{2}$, with $s=\theta s_{1}+(1-\theta) s_{2}, 0 \leq \theta \leq 1$, then

$$
\|f\|_{s, 2} \leq\|f\|_{s_{1}, 2}^{\theta}\|f\|_{s_{2}, 2}^{1-\theta}
$$

Proof. 1. Let $f \in H^{s^{\prime}}\left(\mathbb{R}^{n}\right)$, we show that $f \in H^{s}\left(\mathbb{R}^{n}\right), s^{\prime} \geq s$. Then

$$
\begin{aligned}
\|f\|_{s, 2}^{2} & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s-s^{\prime}}\left(1+|\xi|^{2}\right)^{s^{\prime}}|\widehat{f}(\xi)|^{2} d \xi \\
& \leq \sup _{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s-s^{\prime}} \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s^{\prime}}|\widehat{f}(\xi)|^{2} d \xi \leq\|f\|_{s^{\prime}, 2}^{2}
\end{aligned}
$$

4. Let $s=\theta s_{1}+(1-\theta) s_{2}$, with $0 \leq \theta \leq 1$. The result follows by applying the Hölder inequality with $p=1 / \theta$ and $q=1 /(1-\theta)$. Indeed,

$$
\begin{aligned}
\|f\|_{s, 2}^{2} & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{\theta s_{1}+(1-\theta) s_{2}}|\widehat{f}(\xi)|^{2 \theta}|\widehat{f}(\xi)|^{2(1-\theta)} d \xi \\
& \leq\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s_{1}}|\widehat{f}(\xi)|^{2} d \xi\right)^{\theta}\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s_{2}}|\widehat{f}(\xi)|^{2} d \xi\right)^{(1-\theta)} \\
& =\|f\|_{s_{1}, 2}^{2 \theta}\|f\|_{s_{2}, 2}^{2(1-\theta)} .
\end{aligned}
$$

Proposition 2. The topological dual of $H^{s}\left(\mathbb{R}^{n}\right)$, denoted by $\left(H^{s}\left(\mathbb{R}^{n}\right)\right)^{\prime}$, is isometrically isomorphic to $H^{-s}\left(\mathbb{R}^{n}\right)$ by the map

$$
\begin{aligned}
\alpha: H^{-s}\left(\mathbb{R}^{n}\right) & \rightarrow\left(H^{s}\left(\mathbb{R}^{n}\right)\right)^{\prime} \\
f & \mapsto: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C} \\
& g \mapsto\langle f, g\rangle_{-s, s}=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \widehat{g}(\xi) d \xi
\end{aligned}
$$

$\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $H^{s}\left(\mathbb{R}^{n}\right)$. Given $g \in H^{s}\left(\mathbb{R}^{n}\right)$, let g_{n} be defined by

$$
\widehat{g}_{n}(\xi)=\left\{\begin{array}{l}
\widehat{g}(\xi), \quad \text { if }|\xi| \leq n \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Then $g_{n} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{aligned}
\left\|g-g_{n}\right\|_{s, 2}^{2} & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}\left|\widehat{g}(\xi)-\widehat{g_{n}}(\xi)\right|^{2} \\
& =\int_{|\xi|>n}\left(1+|\xi|^{2}\right)^{s}|\widehat{g}(\xi)|^{2} d \xi \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ since $g \in H^{s}\left(\mathbb{R}^{n}\right)$.

To understand the relationship between the spaces $H^{s}\left(\mathbb{R}^{n}\right)$ and the differentiability of functions in $L^{2}\left(\mathbb{R}^{n}\right)$, we recall the definition of L^{p} derivative in the case $p=2$.

Definition 2. A function f is differentiable in $L^{2}\left(\mathbb{R}^{n}\right)$ with respect to the k-th variable if there exists $g \in L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\int_{\mathbb{R}^{n}}\left|\frac{f\left(x+h e_{k}\right)-f(x)}{h}-g(x)\right|^{2} d x \rightarrow 0 \quad \text { when } \quad h \rightarrow 0,
$$

where e_{k} has k-th coordinate equal to 1 and zero in the others. Equivalently (Exercise) $\xi_{k} \widehat{f}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)$, or

$$
\int_{\mathbb{R}^{n}} f(x) \partial_{x_{k}} \phi(x) d x=-\int_{\mathbb{R}^{n}} g(x) \phi(x) d x
$$

for every $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \quad\left(C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right.$ being the space of functions infinitely differentiable with compact support).

Example 5. Let $n=1$ and $f(x)=\chi_{(-1,1)}(x)$, then $f^{\prime}=\delta_{-1}-\delta_{1}$, where δ_{x} represents the measure of mass 1 concentrated in x, therefore $f^{\prime} \notin L^{2}(\mathbb{R})$.

Example 6. Let $n=1$ and g be as in Example 2. Then

$$
\frac{d g}{d x}(x)=\chi_{(-2,0)}-\chi_{(0,2)}, \quad \text { and so } \quad \frac{d g}{d x} \in L^{2}(\mathbb{R})
$$

With this definition, for $k \in \mathbb{Z}^{+}$we can give a description of the space $H^{k}\left(\mathbb{R}^{n}\right)$ without using the Fourier transform.
Theorem 1. If k is a positive integer, then $H^{k}\left(\mathbb{R}^{n}\right)$ coincides with the space of functions $f \in L^{2}\left(\mathbb{R}^{n}\right)$ whose derivatives (in the distribution sense) $\partial_{x}^{\alpha} f$ belong to $L^{2}\left(\mathbb{R}^{n}\right)$ for every $\alpha \in\left(\mathbb{Z}^{+}\right)^{n}$ with $|\alpha|=\alpha_{1}+\cdots+\alpha_{n} \leq k$.
In this case the norms $\|f\|_{k, 2}$ and $\left(\sum_{|\alpha| \leq k}\left\|\partial_{x}^{\alpha} f\right\|_{2}\right)^{1 / 2}$ are equivalent.

Proof. The proof follows by combining the formula

$$
\begin{equation*}
\widehat{\partial_{x}^{\alpha} f}(\xi)=(2 \pi i \xi)^{\alpha} \widehat{f}(\xi) \tag{0.2}
\end{equation*}
$$

and the inequalities

$$
\begin{equation*}
\left|\xi^{\beta}\right| \leq\left(1+|\xi|^{2}\right)^{k / 2} \leq \sum_{|\alpha| \leq k}\left|\xi^{\alpha}\right|, \quad \beta \in\left(\mathbb{Z}^{+}\right)^{n}, \quad|\beta| \leq k \tag{0.3}
\end{equation*}
$$

In fact, let $f \in H^{k}\left(\mathbb{R}^{n}\right)$, then using (0.3) we obtain

$$
\left|(i \xi)^{\beta} \widehat{f}(\xi)\right|=\left|\xi^{\beta}\right||\widehat{f}(\xi)| \leq\left(1+|\xi|^{2}\right)^{k / 2}|\widehat{f}(\xi)| \quad \beta \in\left(\mathbb{Z}^{+}\right)^{n}, \quad|\beta| \leq k
$$

which implies that $\partial_{x}^{\beta} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for any $\beta \in\left(\mathbb{Z}^{+}\right)^{n}$ with $|\beta| \leq k$. Thus

$$
\sum_{|\alpha| \leq k}\left\|\partial_{x}^{\alpha} f\right\|_{2} \leq c_{k}\|f\|_{k, 2}^{2}
$$

If $\partial_{x}^{\alpha} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for any $\alpha \in\left(\mathbb{Z}^{+}\right)^{n}$ with $|\alpha| \leq k$ we have from (0.2) that $(2 \pi i \xi)^{\alpha} \widehat{f}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)$ for any $\alpha \in\left(\mathbb{Z}^{+}\right)^{n}$ with $|\alpha| \leq k$. Then

$$
\begin{aligned}
\|f\|_{k, 2}^{2} & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{k}|\widehat{f}(\xi)|^{2} d \xi \\
& \leq \int_{\mathbb{R}^{n}}\left(\sum_{|\alpha| \leq k}\left|\xi^{\alpha}\right|\right)^{2}|\widehat{f}(\xi)|^{2} \\
& \leq \sum_{|\alpha| \leq k} c_{k} \int_{\mathbb{R}^{n}}\left(\left|(i \xi)^{\alpha} \widehat{f}(\xi)\right|^{2}\right. \\
& \leq C \sum_{|\alpha| \leq k}\left\|\partial_{x}^{\alpha} f\right\|_{2} .
\end{aligned}
$$

Theorem 1 allows us to define in a natural manner $H^{k}(\Omega)$, the Sobolev space of order $k \in \mathbb{Z}^{+}$in any subset Ω (open) of \mathbb{R}^{n}. Given $f \in$ $L^{2}(\Omega)$ we say that $\partial_{x}^{\alpha} f, \alpha \in\left(\mathbb{Z}^{+}\right)^{n}$ is the α th-partial derivative (in the distribution sense) of f if for every $\phi \in C_{0}^{\infty}(\Omega)$

$$
\int_{\Omega} f \partial_{x}^{\alpha} \phi d x=(-1)^{|\alpha|} \int_{\Omega} \partial_{x}^{\alpha} f \phi d x
$$

Then
$H^{k}(\Omega)=\left\{f \in L^{2}(\Omega): \partial_{x}^{\alpha} f\right.$ (in the distribution sense) $\left.\in L^{2}(\Omega),|\alpha| \leq k\right\}$
with the norm

$$
\|f\|_{H^{k}(\Omega)} \equiv\left(\sum_{|\alpha| \leq k} \int_{\Omega}\left|\partial_{x}^{\alpha} f(x)\right|^{2} d x\right)^{1 / 2}
$$

Example 7. For $n=1, b>0$ and $f(x)=|x|$ one has that $f \in$ $H^{1}((-b, b))$ and $f \notin H^{2}((-b, b))$.

The next result allows us to relate "weak derivatives" with derivatives in the classical sense.

Theorem 2 (Embedding). If $s>n / 2+k$, then $H^{s}\left(\mathbb{R}^{n}\right)$ is continuously embedded in $C_{\infty}^{k}\left(\mathbb{R}^{n}\right)$, the space of functions with k continuous derivatives vanishing at infinity. In other words, if $f \in H^{s}\left(\mathbb{R}^{n}\right)$, $s>n / 2+k$, then (after a possible modification of f in a set of measure zero) $f \in C_{\infty}^{k}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\|f\|_{C^{k}} \leq c_{s}\|f\|_{s, 2} \tag{0.4}
\end{equation*}
$$

Proof. Case $k=0$: we first show that if $f \in H^{s}\left(\mathbb{R}^{n}\right)$ then $\widehat{f} \in$ $L^{1}\left(\mathbb{R}^{n}\right)$ with

$$
\begin{equation*}
\|\widehat{f}\|_{1} \leq c_{s}\|f\|_{s, 2} \quad \text { if } \quad s>n / 2 \tag{0.5}
\end{equation*}
$$

Using the Cauchy-Schwarz inequality we deduce

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|\widehat{f}(\xi)| d \xi & =\int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|\left(1+|\xi|^{2}\right)^{s / 2} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{s / 2}} \\
& \leq\left\|\Lambda^{s} f\right\|_{2}\left(\int_{\mathbb{R}^{n}} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{s}}\right)^{1 / 2} \leq c_{s}\|f\|_{s, 2}
\end{aligned}
$$

if $s>n / 2$. Combining (0.5), Proposition 1.2, and Theorem 1.1 we conclude that

$$
\|f\|_{\infty}=\left\|(\widehat{f})^{\vee}\right\|_{\infty} \leq\|\widehat{f}\|_{1} \leq c_{s}\|f\|_{s, 2}
$$

Case $k \geq 1$: Using the same argument we have that if $f \in H^{s}\left(\mathbb{R}^{n}\right)$ with $s>n / 2+k$, then for $\alpha \in\left(\mathbb{Z}^{+}\right)^{n},|\alpha| \leq k$, it follows that $\widehat{\partial_{x}^{\alpha} f} \in L^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|\partial_{x}^{\alpha} f\right\|_{\infty} \leq\left\|\widehat{\partial_{x}^{\alpha} f}\right\|_{1}=\left\|(2 \pi i \xi)^{\alpha} \widehat{f}\right\|_{1} \leq c_{s}\|f\|_{s, 2}
$$

Corollary 1. If $s=n / 2+k+\theta$, with $\theta \in(0,1)$, then $H^{s}\left(\mathbb{R}^{n}\right)$ is continuously embedded in $C^{k+\theta}\left(\mathbb{R}^{n}\right)$, the space of C^{k} functions with partial derivatives of order k Hölder continuous with index θ.
Proof. We only prove the case $k=0$ since the proof of the general case follows the same argument. From the formula of inversion of the Fourier transform and the Cauchy-Schwarz inequality we have

$$
\begin{aligned}
&|f(x+y)-f(x)|=\left|\int_{\mathbb{R}^{n}} e^{2 \pi i(x \cdot \xi)} \widehat{f}(\xi)\left(e^{2 \pi i(y \cdot \xi)}-1\right) d \xi\right| \\
& \leq\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{n / 2+\theta}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}\left(\int_{\mathbb{R}^{n}} \frac{\left|e^{2 \pi i(y \cdot \xi)}-1\right|^{2}}{\left(1+|\xi|^{2}\right)^{n / 2+\theta}} d \xi\right)^{1 / 2}
\end{aligned}
$$

But

$\int_{\mathbb{R}^{n}} \frac{\left|e^{2 \pi i(y \cdot \xi)}-1\right|^{2}}{\left(1+|\xi|^{2}\right)^{n / 2+\theta}} d \xi$

$$
\begin{aligned}
& \leq c \int_{|\xi| \leq|y|^{-1}}|y|^{2}|\xi|^{2} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{n / 2+\theta}}+4 \int_{|\xi| \geq|y|^{-1}} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{n / 2+\theta}} \\
& \leq c|y|^{2} \int_{0}^{|y|^{-1}} \frac{r^{n+1}}{(1+r)^{n+2 \theta}} d r+4 \int_{|y|^{-1}}^{\infty} \frac{r^{n-1}}{(1+r)^{n+2 \theta}} d r \leq c|y|^{2 \theta} .
\end{aligned}
$$

If $|y|<1$ we conclude that $|f(x+y)-f(x)| \leq c|y|^{\theta}$. This finishes the proof.

Theorem 3. If $s \in(0, n / 2)$, then $H^{s}\left(\mathbb{R}^{n}\right)$ is continuously embedded in $L^{p}\left(\mathbb{R}^{n}\right)$ with $p=2 n /(n-2 s)$, i.e., $s=n(1 / 2-1 / p)$. Moreover, for $f \in H^{s}\left(\mathbb{R}^{n}\right), s \in(0, n / 2)$,

$$
\begin{equation*}
\|f\|_{p} \leq c_{n, s}\left\|D^{s} f\right\|_{2} \leq c\|f\|_{s, 2} \tag{0.6}
\end{equation*}
$$

where

$$
D^{l} f=(-\Delta)^{l / 2} f=\left((2 \pi|\xi|)^{l} \widehat{f}\right)^{\vee}
$$

Proof. The last inequality in (0.6) is immediate so we just need to show the first one. We define

$$
\begin{equation*}
D^{s} f=g \quad \text { or } \quad f=D^{-s} g=c_{n, s}\left(\frac{1}{|\xi|^{s}} \widehat{g}\right)^{\vee}=\frac{c_{n, s}}{|x|^{n-s}} * g \tag{0.7}
\end{equation*}
$$

where we have used the result of Exercise 1.14. Thus by the Hardy-Littlewood-Sobolev estimate (0.20) it follows that

$$
\begin{equation*}
\|f\|_{p}=\left\|D^{-s} g\right\|_{p}=\left\|\frac{c_{n, s}}{|x|^{n-s}} * g\right\|_{p} \leq c_{n, s}\|g\|_{2}=c\left\|D^{s} f\right\|_{2} . \tag{0.8}
\end{equation*}
$$

We notice from Theorems 2 and 3, and Corollary 1 that local regularity in $H^{s}, s>0$, increases with the parameter s.

Examples 1 and 3 show that the functions in $H^{s}\left(\mathbb{R}^{n}\right)$ with $s<n / 2$ or $s<n / 2+1$ respectively are not necessarily continuous nor C^{1}. Moreover, let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with

$$
\widehat{f}(\xi)=\frac{1}{(1+|\xi|)^{n} \log (2+|\xi|)}
$$

(which is radial, decreasing and positive). A simple computation shows that $f \in H^{\frac{n}{2}}\left(\mathbb{R}^{n}\right)$, but $\widehat{f} \notin L^{1}\left(\mathbb{R}^{n}\right)$ and so $f \notin L^{\infty}\left(\mathbb{R}^{n}\right)$ since $f(0)=\int \widehat{f}(\xi) d \xi=\infty$ (see also Exercise 3.11 (iii)).

To complete the embedding results of the spaces $H^{s}\left(\mathbb{R}^{n}\right), s>0$, it remains to consider the case $s=n / 2$ (since for $s=k+n / 2, k \in \mathbb{Z}^{+}$, the result follows from this one). So we define the space of functions of bounded mean oscillation or BMO.

Definition 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ with $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ we say that $f \in$ $\mathrm{BMO}\left(\mathbb{R}^{n}\right)$ (f has bounded mean oscillation) if

$$
\begin{equation*}
\|f\|_{\mathrm{BMO}}=\sup _{\substack{x \in \mathbb{R}^{n} \mid \\ r>0}} \frac{1}{B_{r}(x) \mid} \int_{B_{r}(x)}\left|f(y)-f_{B_{r}(x)}\right| d y<\infty \tag{0.9}
\end{equation*}
$$

where

$$
f_{B_{r}(x)}=\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f(y) d y
$$

Notice that $\|\cdot\|_{\text {вмо }}$ is a semi-norm since it vanishes for constant functions.
$\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ is a vector space with $L^{\infty}\left(\mathbb{R}^{n}\right) \subsetneq \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, since $\|f\|_{\text {вмо }} \leq 2\|f\|_{\infty}$ and $\log |x| \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$.

Theorem 4. $H^{n / 2}\left(\mathbb{R}^{n}\right)$ is continuously embedded in $\mathbf{B M O}\left(\mathbb{R}^{n}\right)$. More precisely, there exists $c=c(n)>0$ such that

$$
\|f\|_{\text {Вмо }} \leq c\left\|D^{n / 2} f\right\|_{2} .
$$

Proof. Without loss of generality we assume f real valued. Consider $x \in \mathbb{R}^{n}$ and $r>0$.
Let $\phi_{r} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{supp} \phi_{r} \subseteq\left\{x| | x \left\lvert\, \leq \frac{2}{r}\right.\right\}$ with $0 \leq \phi_{r}(x) \leq 1$ and $\phi_{r}(x) \equiv 1$ if $|x|<1 / r$, and define

$$
f(x)=f_{l}+f_{h}=\left(\widehat{f} \phi_{r}\right)^{\vee}+\left(\widehat{f}\left(1-\phi_{r}\right)\right)^{\vee} .
$$

We observe that

$$
\|f\|_{\mathrm{BMO}} \leq\left\|f_{l}\right\|_{\mathrm{BMO}}+\left\|f_{h}\right\|_{\mathrm{BMO}}
$$

and $f_{l} \in H^{s}\left(\mathbb{R}^{n}\right)$ for any $s>0$, therefore

$$
f_{l, B_{r}(x)}=\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f_{l}(y) d y=f_{l}\left(x_{0}\right)
$$

for some $x_{0} \in B_{r}(x)$, and so for any $y \in B_{r}(x)$

$$
\left|f_{l}(y)-f_{l, B_{r}(x)}\right| \leq 2 r\left\|\nabla f_{l}\right\|_{\infty}
$$

Using this estimate we get

$$
\begin{aligned}
\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} & \left|f_{l}(y)-f_{l, B_{r}(x)}\right| d y \\
& \leq \frac{1}{\left|B_{r}(x)\right|^{1 / 2}}\left(\int_{B_{r}(x)}\left|f_{l}(y)-f_{l, B_{r}(x)}\right|^{2} d y\right)^{1 / 2} \\
& \leq 2 r\left\|\nabla f_{l}\right\|_{\infty} \leq 2 r\left\|\widehat{\nabla f}_{l}\right\|_{1} \\
& \leq 2 r \int_{|\xi| \leq 1 / 2 r}|\xi|^{1-n / 2}|\xi|^{n / 2}|\widehat{f}(\xi)| d \xi \\
& \leq 2 r\left(\int_{|\xi| \leq 1 / 2 r}|\xi|^{2-n} d \xi\right)^{1 / 2}\left\|D^{n / 2} f\right\|_{2} \leq c\left\|D^{n / 2} f\right\|_{2}
\end{aligned}
$$

Also

$$
\begin{aligned}
\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} & \left|f_{h}(y)-f_{h, B_{r}(x)}\right| d y \\
& \leq \frac{2}{\left|B_{r}(x)\right|^{1 / 2}}\left\|f_{h}\right\|_{2} \\
& \leq \frac{2}{\left|B_{r}(x)\right|^{1 / 2}}\left(\int_{|\xi| \geq 1 / 2 r}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2} \\
& =\frac{c_{n}}{r^{n / 2}}\left(\int_{|\xi| \geq 1 / 2 r} r^{n}|\xi|^{n}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2} \leq\left\|D^{n / 2} f\right\|_{2},
\end{aligned}
$$

which yields the desired result.

We have shown that $H^{s}\left(\mathbb{R}^{n}\right)$ with $s>n / 2$ is a Hilbert space whose elements are continuous functions. From the point of view of nonlinear analysis the next property is essential.
Theorem 5. If $s>n / 2$, then $H^{s}\left(\mathbb{R}^{n}\right)$ is an algebra with respect to the product of functions. That is, if $f, g \in H^{s}\left(\mathbb{R}^{n}\right)$, then $f g \in$ $H^{s}\left(\mathbb{R}^{n}\right)$ with

$$
\begin{equation*}
\|f g\|_{s, 2} \leq c_{s}\|f\|_{s, 2}\|g\|_{s, 2} \tag{0.10}
\end{equation*}
$$

Proof. From the triangle inequality we have that for every $\xi, \eta \in \mathbb{R}^{n}$

$$
\begin{equation*}
\left(1+|\xi|^{2}\right)^{s / 2} \leq 2^{s}\left[\left(1+|\xi-\eta|^{2}\right)^{s / 2}+\left(1+|\eta|^{2}\right)^{s / 2}\right] . \tag{0.11}
\end{equation*}
$$

Using this we deduce that

$$
\begin{aligned}
\left|\Lambda^{s}(f g)\right|= & \left|\left(1+|\xi|^{2}\right)^{s / 2} \widehat{(f g)}(\xi)\right| \\
= & \left(1+|\xi|^{2}\right)^{s / 2}\left|\int_{\mathbb{R}^{n}} \widehat{f}(\xi-\eta) \widehat{g}(\eta) d \eta\right| \\
\leq & 2^{s} \int_{\mathbb{R}^{n}}\left[\left(1+|\xi-\eta|^{2}\right)^{s / 2}|\widehat{f}(\xi-\eta) \widehat{g}(\eta)|\right. \\
& \left.+\left(1+|\eta|^{2}\right)^{s / 2}|\widehat{f}(\xi-\eta) \widehat{g}(\eta)|\right] d \eta \\
\leq & 2^{s}\left(\left|\widehat{\Lambda^{s} f}\right| *|\widehat{g}|+|\widehat{f}| *\left|\widehat{\Lambda^{s} g}\right|\right)
\end{aligned}
$$

Thus, taking the L^{2}-norm and using Young's inequality it follows that

$$
\begin{equation*}
\|f g\|_{s, 2}=\left\|\Lambda^{s}(f g)\right\|_{2} \leq c\left(\left\|\Lambda^{s} f\right\|_{2}\|\widehat{g}\|_{1}+\|\widehat{f}\|_{1}\left\|\Lambda^{s} g\right\|_{2}\right) \tag{0.12}
\end{equation*}
$$

Finally, (0.5) assures one that if $r>n / 2$, then

$$
\begin{align*}
\|f g\|_{s, 2} & \leq c_{s}\left(\|f\|_{s, 2}\|\widehat{g}\|_{1}+\|\widehat{f}\|_{1}\|g\|_{s, 2}\right) \tag{0.13}\\
& \leq c_{s}\left(\|f\|_{s, 2}\|g\|_{r, 2}+\|f\|_{r, 2}\|g\|_{s, 2}\right) .
\end{align*}
$$

Choosing $r=s$ we obtain (0.10).

The inequality (0.13) is not sharp as the following scaling argument shows. Let $\lambda>0$ and

$$
f(x)=f_{1}(\lambda x), \quad g(x)=g_{1}(\lambda x), \quad f_{1}, g_{1} \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Then as $\lambda \uparrow \infty$ the right hand side of (0.13) grows as λ^{s+r}, meanwhile the left hand side grows as λ^{s}. This will not be the case if we replace $\|\cdot\|_{r, 2}$ in (0.13) with the $\|\cdot\|_{\infty}$-norm to get that

$$
\begin{equation*}
\|f g\|_{s, 2} \leq c_{s}\left(\|f\|_{s, 2}\|g\|_{\infty}+\|f\|_{\infty}\|g\|_{s, 2}\right) \tag{0.14}
\end{equation*}
$$

which in particular shows that for any $s>0, H^{s}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ is an algebra under the pointwise product.

For $s \in \mathbb{Z}^{+}$, the inequality (0.14) follows by combining the Leibniz rule for the product of functions and the Gagliardo-Nirenberg inequality:

$$
\begin{equation*}
\left\|\partial_{x}^{\alpha} f\right\|_{p} \leq c \sum_{|\beta|=m}\left\|\partial_{x}^{\beta} f\right\|_{q}^{\theta}\|f\|_{r}^{1-\theta} \tag{0.15}
\end{equation*}
$$

with $|\alpha|=j, \quad c=c(j, m, p, q, r), 1 / p-j / n=\theta(1 / q-m / n)+(1-$ $\theta) 1 / r, \theta \in[j / m, 1]$. For the proof of this inequality we refer the reader to the reference [3].

Easy example, take $f \in C_{0}^{1}(\mathbb{R})$,

$$
f^{2}(x)=\int_{a}^{x} \frac{d}{d y} f^{2}(y) d y=2 \int_{a}^{x} f(y) \frac{d}{d y} f(y) d y
$$

Using Cauchy-Schwarz inequality we find that

$$
|f(x)|^{2} \leq 2\|f\|_{L^{2}}\left\|f^{\prime}\right\|_{L^{2}}
$$

Thus

$$
\|f\|_{L^{\infty}} \leq \sqrt{2}\|f\|_{L^{2}}^{\frac{1}{2}}\left\|f^{\prime}\right\|_{L^{2}}^{\frac{1}{2}} .
$$

For the general case $s>0$ where the usual pointwise Leibniz rule is not available, the inequality (0.14) still holds (see [5]). The inequality (0.14) has several extensions, for instance: Let $s \in(0,1), r \in[1, \infty)$, $1<p_{j}, q_{j} \leq \infty, 1 / r=1 / p_{j}+1 / q_{j}, j=1,2$. Then

$$
\left\|\Phi^{s}(f g)\right\|_{r} \leq c\left(\left\|\Phi^{s}(f)\right\|_{p_{1}}\|g\|_{q_{1}}+\|f\|_{p_{2}}\left\|\Phi^{s}(g)\right\|_{q_{2}}\right)
$$

with $\Phi^{s}=\Lambda^{s}$ or D^{s}, (for the proof of this estimate and further generalizations [7], [9] and [4]). The extension to the case $r=p_{j}=q_{j}=\infty$, $j=1,2$ was given in [2].

Proposition 3. If $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $s \in \mathbb{R}$, then the map $u \mapsto \varphi u$ is a bounded linear map of $H^{s}\left(\mathbb{R}^{n}\right)$ to itself. Moreover,

$$
\begin{equation*}
\|\varphi u\|_{s, 2} \leq c_{s, n}\left\|\left(1+|\cdot|^{2}\right)^{|s|} \widehat{\varphi}(\cdot)\right\|_{L^{1}}\|u\|_{s, 2} \tag{0.16}
\end{equation*}
$$

Proof. We will use the following elementary inequality

$$
\begin{equation*}
\left(1+|\xi|^{2}\right)^{\sigma / 2} \leq 2^{|\sigma| / 2}\left(1+|\xi-\eta|^{2}\right)^{s / 2}\left(1+|\eta|^{2}\right)^{s / 2} \tag{0.17}
\end{equation*}
$$

Let $s \geq 0$. Fourier transform properties and inequality (0.17) yield

$$
\begin{aligned}
\left(1+|\xi|^{2}\right)^{s / 2} \widehat{\varphi u}(\xi) & =\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s / 2} \widehat{\varphi}(\xi-\eta) \widehat{u}(\eta) d \eta \\
& \leq \int_{\mathbb{R}^{n}} \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{\left(1+|\eta|^{2}\right)^{s / 2}} \widehat{\varphi}(\xi-\eta)\left(1+|\eta|^{2}\right)^{s / 2} \widehat{u}(\eta) d \eta \\
& \leq c \int_{\mathbb{R}^{n}}\left(1+|\xi-\eta|^{2}\right)^{s / 2} \widehat{\varphi}(\xi-\eta)\left(1+|\eta|^{2}\right)^{s / 2} \widehat{u}(\eta) d \eta
\end{aligned}
$$

Young's inequality yields the result.

For the case $s<0$, we observe that

$$
\frac{\left(1+|\xi|^{2}\right)^{s / 2}}{\left(1+|\eta|^{2}\right)^{s / 2}}=\frac{\left(1+|\eta|^{2}\right)^{|s| / 2}}{\left(1+|\xi|^{2}\right)^{|s| / 2}} \leq c\left(1+|\xi-\eta|^{2}\right)^{|s| / 2}
$$

by employing inequality (0.17).
Then

$$
\left|\left(1+|\xi|^{2}\right)^{s / 2} \widehat{\varphi u}(\xi)\right| \leq c \int_{\mathbb{R}^{n}}\left|\left(1+|\xi-\eta|^{2}\right)^{s / 2} \widehat{\varphi}(\xi-\eta)\right|\left|\left(1+|\eta|^{2}\right)^{s / 2} \widehat{u}(\eta)\right| d \eta
$$

Young's inequality implies

$$
\|\varphi u\|_{s, 2} \leq c_{s, n}\left\|\left(1+|\cdot|^{2}\right)^{|s|} \widehat{\varphi}(\cdot)\right\|_{L^{1}}\|u\|_{s, 2}
$$

In many applications the following commutator estimate is often used

$$
\begin{aligned}
\sum_{|\alpha|=s}\left\|\left[\partial_{x}^{\alpha} ; g\right] f\right\|_{2} & \equiv \sum_{|\alpha|=s}\left\|\partial_{x}^{\alpha}(g f)-g \partial_{x}^{\alpha} f\right\|_{2} \\
& \leq c_{n, s}\left(\|\nabla g\|_{\infty} \sum_{|\beta|=s-1}\left\|\partial_{x}^{\beta} f\right\|_{2}+\|f\|_{\infty} \sum_{|\beta|=s}\left\|\partial_{x}^{\beta} g\right\|_{2}\right)
\end{aligned}
$$

(see [6]). Similarly, for $s \geq 1$ one has

$$
\left\|\left[\Lambda^{s} ; g\right] f\right\|_{2} \leq c\left(\|\nabla g\|_{\infty}\left\|\Lambda^{s-1} f\right\|_{2}+\|f\|_{\infty}\left\|\Lambda^{s} g\right\|_{2}\right),
$$

(see [5]).
Here $\left[\partial_{x}^{\alpha} ; g\right] f=\partial_{x}^{\alpha}(g f)-g \partial_{x}^{\alpha} f$.
In general, for two linear operators T, S the commutator of T and S is defined by $[T, S]=T S-S T$.

There are "equivalent" manners to define fractional derivatives without relying on the Fourier transform. For instance:

Definition 4 (Stein [10]). For $b \in(0,1)$ and an appropriate f define

$$
\begin{equation*}
\mathcal{D}^{b} f(x)=\left(\int \frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2 b}} d y\right)^{1 / 2} \tag{0.18}
\end{equation*}
$$

Theorem 6 (Stein [10]). Let $b \in(0,1)$ and $\frac{2 n}{(n+2 b)} \leq p<\infty$. Then $f, D^{b} f \in L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $f, \mathcal{D}^{b} f \in L^{p}\left(\mathbb{R}^{n}\right)$.
Moreover,

$$
\|f\|_{p}+\left\|D^{b} f\right\|_{p} \sim\|f\|_{p}+\left\|\mathcal{D}^{b} f\right\|_{p} .
$$

The case $p=2$ was previously considered in [1].
For other "equivalent" definitions of fractional derivatives see [11].

Finally, to complete our study of Sobolev spaces we introduce the localized Sobolev spaces.

Definition 5. Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we say that $f \in H_{l o c}^{s}\left(\mathbb{R}^{n}\right)$ if for every $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ we have $\varphi f \in H^{s}\left(\mathbb{R}^{n}\right)$. In other words, for any $\Omega \subseteq \mathbb{R}^{n}$ open bounded $\left.f\right|_{\Omega}$ coincides with an element of $H^{s}\left(\mathbb{R}^{n}\right)$.

This means that f has the sufficient regularity but may not have enough decay to be in $H^{s}\left(\mathbb{R}^{n}\right)$.

Example 8. Let $n=1, \quad f(x)=x$, and $g(x)=|x|$, then $f \in H_{\mathrm{loc}}^{s}(\mathbb{R})$ for every $s \geq 0$ and $g \in H_{\mathrm{loc}}^{s}(\mathbb{R})$ for every $s<3 / 2$.

Hardy-Littlewood-Sobolev Theorem

Definition 6. Let $0<\alpha<n$. The Riesz potential of order α, denoted by I_{α}, is defined as

$$
\begin{equation*}
I_{\alpha} f(x)=c_{\alpha, n} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y=k_{\alpha} * f(x), \tag{0.19}
\end{equation*}
$$

where $c_{\alpha, n}=\pi^{-n / 2} 2^{-\alpha} \Gamma(n / 2-\alpha / 2) / \Gamma(\alpha / 2)$.
Since the Riesz potentials are defined as integral operators it is natural to study their continuity properties in $L^{p}\left(\mathbb{R}^{n}\right)$.

Theorem 7 (Hardy-Littlewood-Sobolev). Let $0<\alpha<n, 1 \leq p<$ $q<\infty$, with $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}$.

1. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then the integral (0.19) is absolutely convergent almost every $x \in \mathbb{R}^{n}$.
2. If $p>1$, then I_{α} is of type (p, q), i.e.,

$$
\begin{equation*}
\left\|I_{\alpha}(f)\right\|_{q} \leq c_{p, \alpha, n}\|f\|_{p} \tag{0.20}
\end{equation*}
$$

For a proof of this theorem see [8].

References

[1] N. Aronszajn and K. T. Smith. Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475.
[2] J. Bourgain and D. Li. On an endpoint Kato-Ponce inequality, Diff. and Int. Eqs. 27 (2014), no. 11-12, 1037-1072.
[3] A. Friedman. Partial Differential Equations, Holt, Rinehart and Winston, New York, 1976.
[4] L. Grafakos and S. Oh. Kato-Ponce inequality, Comm. PDE. 39 (2014), no. 6, 1128-1157.
[5] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907.
[6] S. Klainerman. Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43-101.
[7] C.E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620.
[8] F. Linares and G. Ponce. Introduction to Nonlinear Dispersive Equations, Second edition. Universitext. Springer, New York, 2015. xiv+301.
[9] C. Muscalu, J.Pipher, T. Tao, and C. Thiele, Bi-parameter paraproducts. Acta Math. 193 (2004), no. 2, 269-296.
[10] E.M. Stein. The characterization of functions arising as potentials, Bull. A.M.S. 67, (1961), 102-104.
[11] R.S. Strichartz. Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.

