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Sobolev Spaces

We plan to give a brief introduction to the classical Sobolev spaces
Hs(Rn). Sobolev spaces measure the differentiability (or regularity) of
functions in L2(Rn) and they are a fundamental tool in the study of
partial differential equations.
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Basics

We begin by defining Sobolev spaces.

Definition 1. Let s ∈ R . We define the Sobolev space of order s,
denoted by Hs(Rn), as

Hs(Rn)=
{
f ∈ S ′(Rn) : Λsf (x)=((1+|ξ|2)s/2f̂ (ξ))∨(x) ∈ L2(Rn)

}
,

with norm ‖ · ‖s,2 defined as

‖f‖s,2 = ‖Λsf‖2.
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Example 1. Let n = 1 and f (x) = χ[−1,1](x). We have that f̂ (ξ) =
sin(2πξ)/(πξ).

‖f‖2
s,2 = ‖Λsf‖2

2 =

∫
R
(1 + ξ2)s|f̂ (ξ)|2 dx

=

∫
R
(1 + ξ2)s

∣∣∣sin(2πξ)

πξ

∣∣∣2 dξ
.

∫
R
(1 + ξ2)s−1 dξ.

Thus f ∈ Hs(R) if s < 1/2 .
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Example 2. Let n = 1 and g(x) = χ[−1,1] ∗ χ[−1,1](x). We saw that

ĝ(ξ) =
sin2(2π ξ)

(π ξ)2
.

‖g‖2
s,2 = ‖Λsg‖2

2 =

∫
R
(1 + ξ2)s|ĝ(ξ)|2 dx

=

∫
R
(1 + ξ2)s

∣∣∣sin(2πξ)

πξ

∣∣∣4 dξ
.

∫
R
(1 + ξ2)s−2 dξ.

Thus g ∈ Hs(R) whenever s < 3/2.
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Example 3. Let n ≥ 1 and h(x) = e−2π|x|. In a previous example
we saw that

ĥ(ξ) =
Γ[(n + 1)/2]

π(n+1)/2

1

(1 + |ξ|2)(n+1)/2
. (0.1)

‖h‖2
s,2 = ‖Λsh‖2

2 =

∫
Rn

(1 + |ξ|2)s|ĥ(ξ)|2 dx

= cn

∫
Rn

(1 + |ξ|2)s 1

(1 + |ξ|2)n+1
dξ

= cn

∫
Rn

(1 + |ξ|2)s−n−1 dξ. (r2s−2n−2rn−1)

Using polar coordinates we see that h ∈ Hs(Rn) if s < n/2 + 1.
Notice that in this case s depends on the dimension.
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Example 4. Let n ≥ 1 and f (x) = δ0(x). We already know
δ̂0(ξ) = 1. Then

‖δ‖2
s,2 =

∫
Rn

(1 + |ξ|2)s|δ̂(ξ)|2 dx =

∫
Rn

(1 + |ξ|2)s dξ (r2srn−1)

Thus δ0 ∈ Hs(Rn) if s < −n/2.
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From the definition of Sobolev spaces we deduce the following prop-
erties.

Proposition 1.

1. If s < s′, then Hs′(Rn) /⊆ Hs(Rn).

2. Hs(Rn) is a Hilbert space with respect to the inner product 〈·, ·〉s
defined as follows:

If f, g ∈ Hs(Rn), then 〈f , g〉s =

∫
Rn

Λsf (ξ) Λsg(ξ) dξ.

We can see, via the Fourier transform, that Hs(Rn) is equal to

L2(Rn; (1 + |ξ|2)s dξ).
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3. For any s ∈ R, the Schwartz space S(Rn) is dense in Hs(Rn).

4. If s1 ≤ s ≤ s2, with s = θs1 + (1− θ)s2, 0 ≤ θ ≤ 1, then

‖f‖s,2 ≤ ‖f‖θs1,2‖f‖
1−θ
s2,2
.

Proof. 1. Let f ∈ Hs′(Rn), we show that f ∈ Hs(Rn), s′ ≥ s. Then

‖f‖2
s,2 =

∫
Rn

(1 + |ξ|2)s−s′(1 + |ξ|2)s′|f̂ (ξ)|2 dξ

≤ sup
Rn

(1 + |ξ|2)s−s′
∫
Rn

(1 + |ξ|2)s′|f̂ (ξ)|2 dξ ≤ ‖f‖2
s′,2.
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4. Let s = θs1 + (1 − θ)s2, with 0 ≤ θ ≤ 1. The result follows by
applying the Hölder inequality with p = 1/θ and q = 1/(1−θ). Indeed,

‖f‖2
s,2 =

∫
Rn

(1 + |ξ|2)θs1+(1−θ)s2|f̂ (ξ)|2θ|f̂ (ξ)|2(1−θ) dξ

≤
( ∫

Rn

(1 + |ξ|2)s1|f̂ (ξ)|2 dξ
)θ( ∫

Rn

(1 + |ξ|2)s2|f̂ (ξ)|2 dξ
)(1−θ)

= ‖f‖2θ
s1,2
‖f‖2(1−θ)

s2,2 .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Proposition 2. The topological dual of Hs(Rn), denoted by (Hs(Rn))′,
is isometrically isomorphic to H−s(Rn) by the map

α : H−s(Rn)→ (Hs(Rn))′

f 7→ : Hs(Rn)→ C

g 7→ 〈f, g〉−s,s =

∫
Rn

f̂ (ξ) ĝ(ξ) dξ.
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S(Rn) is dense in Hs(Rn). Given g ∈ Hs(Rn), let gn be defined by

ĝn(ξ) =

{
ĝ(ξ), if |ξ| ≤ n

0, otherwise.

Then gn ∈ S(Rn) and

‖g − gn‖2
s,2 =

∫
Rn

(1 + |ξ|2)s|ĝ(ξ)− ĝn(ξ)|2

=

∫
|ξ|>n

(1 + |ξ|2)s|ĝ(ξ)|2 dξ → 0

as n→∞ since g ∈ Hs(Rn).
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To understand the relationship between the spaces Hs(Rn) and the
differentiability of functions in L2(Rn), we recall the definition of Lp

derivative in the case p = 2.

Definition 2. A function f is differentiable in L2(Rn) with respect to
the k-th variable if there exists g ∈ L2(Rn) such that∫

Rn

∣∣∣f (x + h ek)− f (x)

h
− g(x)

∣∣∣2dx→ 0 when h→ 0,

where ek has k-th coordinate equal to 1 and zero in the others.
Equivalently (Exercise) ξkf̂ (ξ) ∈ L2(Rn), or∫

Rn

f (x)∂xkφ(x) dx = −
∫
Rn

g(x)φ(x) dx

for every φ ∈ C∞0 (Rn) (C∞0 (Rn) being the space of functions in-
finitely differentiable with compact support).
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Example 5. Let n = 1 and f (x) = χ(−1,1)(x), then f ′ = δ−1 − δ1,
where δx represents the measure of mass 1 concentrated in x,
therefore f ′ /∈ L2(R).

Example 6. Let n = 1 and g be as in Example 2. Then

dg

dx
(x) = χ

(−2,0) − χ(0,2)
, and so

dg

dx
∈ L2(R).
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With this definition, for k ∈ Z+ we can give a description of the space
Hk(Rn) without using the Fourier transform.

Theorem 1. If k is a positive integer, then Hk(Rn) coincides with
the space of functions f ∈ L2(Rn) whose derivatives (in the dis-
tribution sense) ∂αxf belong to L2(Rn) for every α ∈ (Z+)n with
|α| = α1 + · · · + αn ≤ k.

In this case the norms ‖f‖k,2 and
( ∑
|α|≤k
‖∂αxf‖2)

1/2 are equivalent.
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Proof. The proof follows by combining the formula

∂̂αxf (ξ) = (2πiξ)αf̂ (ξ) (0.2)

and the inequalities

|ξβ| ≤ (1 + |ξ|2)k/2 ≤
∑
|α|≤k

|ξα|, β ∈ (Z+)n, |β| ≤ k. (0.3)

In fact, let f ∈ Hk(Rn), then using (0.3) we obtain

|(iξ)βf̂ (ξ)| = |ξβ||f̂ (ξ)| ≤ (1 + |ξ|2)k/2|f̂ (ξ)| β ∈ (Z+)n, |β| ≤ k,

which implies that ∂βxf ∈ L2(Rn) for any β ∈ (Z+)n with |β| ≤ k. Thus∑
|α|≤k

‖∂αxf‖2 ≤ ck‖f‖2
k,2.
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If ∂αxf ∈ L2(Rn) for any α ∈ (Z+)n with |α| ≤ k we have from (0.2)
that (2πiξ)αf̂ (ξ) ∈ L2(Rn) for any α ∈ (Z+)n with |α| ≤ k. Then

‖f‖2
k,2 =

∫
Rn

(1 + |ξ|2)k |f̂ (ξ)|2 dξ

≤
∫
Rn

( ∑
|α|≤k

|ξα|)2 |f̂ (ξ)|2

≤
∑
|α|≤k

ck

∫
Rn

(
|(iξ)αf̂ (ξ)|2

≤ C
∑
|α|≤k

‖∂αxf‖2.
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Theorem 1 allows us to define in a natural mannerHk(Ω), the Sobolev
space of order k ∈ Z+ in any subset Ω (open) of Rn. Given f ∈
L2(Ω) we say that ∂αxf , α ∈ (Z+)n is the αth-partial derivative (in the
distribution sense) of f if for every φ ∈ C∞0 (Ω)∫

Ω

f∂αxφ dx = (−1)|α|
∫

Ω

∂αxf φ dx.
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Then

Hk(Ω) = {f ∈ L2(Ω) : ∂αxf (in the distribution sense) ∈ L2(Ω), |α| ≤ k}

with the norm

‖f‖Hk(Ω) ≡
(∑
|α|≤k

∫
Ω

|∂αxf (x)|2 dx
)1/2

.

Example 7. For n = 1, b > 0 and f (x) = |x| one has that f ∈
H1((−b, b)) and f /∈ H2((−b, b)).
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The next result allows us to relate “weak derivatives" with derivatives
in the classical sense.

Theorem 2 (Embedding). If s > n/2 + k, then Hs(Rn) is contin-
uously embedded in Ck

∞(Rn), the space of functions with k contin-
uous derivatives vanishing at infinity. In other words, if f ∈ Hs(Rn),
s > n/2 + k, then (after a possible modification of f in a set of
measure zero) f ∈ Ck

∞(Rn) and

‖f‖Ck ≤ cs ‖f‖s,2. (0.4)
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Proof. Case k = 0: we first show that if f ∈ Hs(Rn) then f̂ ∈
L1(Rn) with

‖f̂ ‖1 ≤ cs‖f‖s,2 if s > n/2. (0.5)

Using the Cauchy–Schwarz inequality we deduce∫
Rn

|f̂ (ξ)|dξ =

∫
Rn

|f̂ (ξ)|(1 + |ξ|2)s/2 dξ

(1 + |ξ|2)s/2

≤ ‖Λsf‖2

∫
Rn

dξ

(1 + |ξ|2)s

1/2

≤ cs‖f‖s,2
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if s > n/2. Combining (0.5), Proposition 1.2, and Theorem 1.1 we
conclude that

‖f‖∞ = ‖(f̂ )∨‖∞ ≤ ‖f̂ ‖1 ≤ cs‖f‖s,2.

Case k ≥ 1: Using the same argument we have that if f ∈ Hs(Rn)
with s > n/2 + k, then for α ∈ (Z+)n , |α| ≤ k, it follows that
∂̂αxf ∈ L1(Rn) and

‖∂αxf‖∞ ≤ ‖∂̂αxf‖1 = ‖(2πiξ)αf̂ ‖1 ≤ cs‖f‖s,2.
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Corollary 1. If s = n/2 + k + θ, with θ ∈ (0, 1), then Hs(Rn) is
continuously embedded in Ck+θ(Rn), the space of Ck functions with
partial derivatives of order k Hölder continuous with index θ.

Proof. We only prove the case k = 0 since the proof of the general
case follows the same argument. From the formula of inversion of the
Fourier transform and the Cauchy–Schwarz inequality we have

|f (x + y)−f (x)| =
∣∣ ∫
Rn

e2πi(x·ξ)f̂ (ξ)(e2πi(y·ξ) − 1) dξ
∣∣

≤
( ∫
Rn

(1 + |ξ|2)n/2+θ|f̂ (ξ)|2 dξ
)1/2( ∫

Rn

|e2πi(y·ξ) − 1|2

(1 + |ξ|2)n/2+θ
dξ
)1/2

.
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But∫
Rn

|e2πi(y·ξ) − 1|2

(1 + |ξ|2)n/2+θ
dξ

≤ c

∫
|ξ|≤|y|−1

|y|2|ξ|2 dξ

(1 + |ξ|2)n/2+θ
+ 4

∫
|ξ|≥|y|−1

dξ

(1 + |ξ|2)n/2+θ

≤ c|y|2
|y|−1∫
0

rn+1

(1 + r)n+2θ
dr + 4

∞∫
|y|−1

rn−1

(1 + r)n+2θ
dr ≤ c |y|2θ.

If |y| < 1 we conclude that |f (x + y)− f (x)| ≤ c |y|θ. This finishes
the proof.
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Theorem 3. If s ∈ (0, n/2), then Hs(Rn) is continuously embedded
in Lp(Rn) with p = 2n/(n− 2s), i.e., s = n(1/2− 1/p). Moreover, for
f ∈ Hs(Rn), s ∈ (0, n/2),

‖f‖p ≤ cn,s ‖Dsf‖2 ≤ c‖f‖s,2, (0.6)

where
Dlf = (−∆)l/2f = ((2π|ξ|)l f̂ )∨.
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Proof. The last inequality in (0.6) is immediate so we just need to show
the first one. We define

Dsf = g or f = D−s g = cn,s
( 1

|ξ|s
ĝ
)∨

=
cn,s
|x|n−s

∗ g, (0.7)

where we have used the result of Exercise 1.14. Thus by the Hardy–
Littlewood–Sobolev estimate (0.20) it follows that

‖f‖p = ‖D−s g‖p =
∥∥ cn,s
|x|n−s

∗ g
∥∥
p
≤ cn,s ‖g‖2 = c‖Dsf‖2. (0.8)
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We notice from Theorems 2 and 3, and Corollary 1 that local regularity
in Hs, s > 0, increases with the parameter s.

Examples 1 and 3 show that the functions in Hs(Rn) with s < n/2
or s < n/2 + 1 respectively are not necessarily continuous nor C1.
Moreover, let f ∈ L2(Rn) with

f̂ (ξ) =
1

(1 + |ξ|)n log(2 + |ξ|)

(which is radial, decreasing and positive). A simple computation
shows that f ∈ H

n
2 (Rn), but f̂ /∈ L1(Rn) and so f /∈ L∞(Rn)

since f (0) =
∫
f̂ (ξ)dξ =∞ (see also Exercise 3.11 (iii)).
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To complete the embedding results of the spaces Hs(Rn), s > 0, it
remains to consider the case s = n/2 (since for s = k + n/2, k ∈ Z+,
the result follows from this one). So we define the space of functions
of bounded mean oscillation or BMO.

Definition 3. Let f : Rn → C with f ∈ L1
loc(Rn) we say that f ∈

BMO(Rn) (f has bounded mean oscillation) if

‖f‖BMO = sup
x∈Rn

r>0

1

|Br(x)|

∫
Br(x)

|f (y)− fBr(x)| dy <∞ (0.9)

where
fBr(x) =

1

|Br(x)|

∫
Br(x)

f (y) dy.
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Notice that ‖ ·‖BMO is a semi-norm since it vanishes for constant func-
tions.

BMO(Rn) is a vector space with L∞(Rn) ( BMO(Rn), since
‖f‖BMO ≤ 2‖f‖∞ and log |x| ∈ BMO(Rn).
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Theorem 4. Hn/2(Rn) is continuously embedded in BMO(Rn). More
precisely, there exists c = c(n) > 0 such that

‖f‖BMO ≤ c ‖Dn/2f‖2.

Proof. Without loss of generality we assume f real valued. Consider
x ∈ Rn and r > 0.
Let φr ∈ C∞0 (Rn) such that suppφr ⊆ {x | |x| ≤ 2

r
} with 0 ≤ φr(x) ≤ 1

and φr(x) ≡ 1 if |x| < 1/r, and define

f (x) = fl + fh =
(
f̂φr

)∨
+
(
f̂ (1− φr)

)∨
.

We observe that

‖f‖BMO ≤ ‖fl‖BMO + ‖fh‖BMO
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and fl ∈ Hs(Rn) for any s > 0, therefore

fl,Br(x) =
1

|Br(x)|

∫
Br(x)

fl(y) dy = fl(x0)

for some x0 ∈ Br(x), and so for any y ∈ Br(x)

|fl(y)− fl,Br(x)| ≤ 2r ‖∇fl‖∞.
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Using this estimate we get

1

|Br(x)|

∫
Br(x)

|fl(y)− fl,Br(x)| dy

≤ 1

|Br(x)|1/2
( ∫

Br(x)

|fl(y)− fl,Br(x)|2 dy
)1/2

≤ 2r ‖∇fl‖∞ ≤ 2r ‖∇̂fl‖1

≤ 2r

∫
|ξ|≤1/2r

|ξ|1−n/2|ξ|n/2|f̂ (ξ)| dξ

≤ 2r
( ∫
|ξ|≤1/2r

|ξ|2−n dξ
)1/2

‖Dn/2f‖2 ≤ c‖Dn/2f‖2.
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Also

1

|Br(x)|

∫
Br(x)

|fh(y)− fh,Br(x)| dy

≤ 2

|Br(x)|1/2
‖fh‖2

≤ 2

|Br(x)|1/2
( ∫
|ξ|≥1/2r

|f̂ (ξ)|2 dξ
)1/2

=
cn
rn/2

( ∫
|ξ|≥1/2r

rn|ξ|n|f̂ (ξ)|2 dξ
)1/2

≤ ‖Dn/2f‖2,

which yields the desired result.
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We have shown that Hs(Rn) with s > n/2 is a Hilbert space
whose elements are continuous functions. From the point of view of
nonlinear analysis the next property is essential.

Theorem 5. If s > n/2, then Hs(Rn) is an algebra with respect
to the product of functions. That is, if f, g ∈ Hs(Rn), then fg ∈
Hs(Rn) with

‖fg‖s,2 ≤ cs‖f‖s,2‖g‖s,2. (0.10)
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Proof. From the triangle inequality we have that for every ξ, η ∈ Rn

(1 + |ξ|2)s/2 ≤ 2s[(1 + |ξ − η|2)s/2 + (1 + |η|2)s/2]. (0.11)

Using this we deduce that

|Λs(fg)| = |(1 + |ξ|2)s/2(̂fg)(ξ)|

= (1 + |ξ|2)s/2
∣∣ ∫
Rn

f̂ (ξ − η)ĝ(η) dη
∣∣

≤ 2s
∫
Rn

[
(1 + |ξ − η|2)s/2 |f̂ (ξ−η)ĝ(η)|

+ (1 + |η|2)s/2 |f̂ (ξ − η)ĝ(η)|
]
dη

≤ 2s(|Λ̂sf | ∗ |ĝ| + |f̂ | ∗ |Λ̂sg|).
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Thus, taking the L2-norm and using Young’s inequality it follows that

‖fg‖s,2 = ‖Λs(fg)‖2 ≤ c(‖Λsf‖2‖ ĝ ‖1 + ‖f̂ ‖1‖Λsg‖2). (0.12)

Finally, (0.5) assures one that if r > n/2, then

‖fg‖s,2 ≤ cs(‖f‖s,2‖ ĝ ‖1 + ‖f̂ ‖1‖g‖s,2)
≤ cs(‖f‖s,2‖g‖r,2 + ‖f‖r,2‖g‖s,2).

(0.13)

Choosing r = s we obtain (0.10).
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The inequality (0.13) is not sharp as the following scaling argument
shows. Let λ > 0 and

f (x) = f1(λx), g(x) = g1(λx), f1, g1 ∈ S(Rn).

Then as λ ↑ ∞ the right hand side of (0.13) grows as λs+r, meanwhile
the left hand side grows as λs. This will not be the case if we replace
‖ · ‖r,2 in (0.13) with the ‖ · ‖∞-norm to get that

‖fg‖s,2 ≤ cs(‖f‖s,2 ‖g‖∞ + ‖f‖∞ ‖g‖s,2) (0.14)

which in particular shows that for any s > 0, Hs(Rn) ∩ L∞(Rn) is an
algebra under the pointwise product.
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For s ∈ Z+, the inequality (0.14) follows by combining the Leibniz rule
for the product of functions and the Gagliardo–Nirenberg inequality:

‖∂αxf‖p ≤ c
∑
|β|=m

‖∂βxf‖θq ‖f‖1−θ
r (0.15)

with |α| = j, c = c(j,m, p, q, r), 1/p− j/n = θ(1/q −m/n) + (1−
θ)1/r, θ ∈ [j/m, 1]. For the proof of this inequality we refer the reader
to the reference [3].
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Easy example, take f ∈ C1
0(R),

f 2(x) =

∫ x

a

d

dy
f 2(y) dy = 2

∫ x

a

f (y)
d

dy
f (y) dy.

Using Cauchy-Schwarz inequality we find that

|f (x)|2 ≤ 2‖f‖L2‖f ′‖L2.

Thus

‖f‖L∞ ≤
√

2‖f‖
1
2

L2‖f ′‖
1
2

L2.
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For the general case s > 0 where the usual pointwise Leibniz rule is
not available, the inequality (0.14) still holds (see [5]). The inequality
(0.14) has several extensions, for instance: Let s ∈ (0, 1), r ∈ [1,∞),
1 < pj, qj ≤ ∞, 1/r = 1/pj + 1/qj, j = 1, 2. Then

‖Φs(fg)‖r ≤ c
(
‖Φs(f )‖p1‖g‖q1 + ‖f‖p2‖Φs(g)‖q2

)
,

with Φs = Λs or Ds, (for the proof of this estimate and further general-
izations [7], [9] and [4]). The extension to the case r = pj = qj =∞,
j = 1, 2 was given in [2].
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Proposition 3. If ϕ ∈ S(Rn) and s ∈ R, then the map u 7→ ϕu is a
bounded linear map of Hs(Rn) to itself. Moreover,

‖ϕu‖s,2 ≤ cs,n‖(1 + | · |2)|s|ϕ̂(·)‖L1‖u‖s,2. (0.16)

Proof. We will use the following elementary inequality

(1 + |ξ|2)σ/2 ≤ 2|σ|/2(1 + |ξ − η|2)s/2(1 + |η|2)s/2. (0.17)

Let s ≥ 0. Fourier transform properties and inequality (0.17) yield

(1 + |ξ|2)s/2ϕ̂u(ξ) =

∫
Rn

(1 + |ξ|2)s/2ϕ̂(ξ − η)û(η) dη

≤
∫
Rn

(1 + |ξ|2)s/2

(1 + |η|2)s/2
ϕ̂(ξ − η)(1 + |η|2)s/2û(η) dη

≤ c

∫
Rn

(1 + |ξ − η|2)s/2ϕ̂(ξ − η)(1 + |η|2)s/2û(η) dη

Young’s inequality yields the result.
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For the case s < 0, we observe that

(1 + |ξ|2)s/2

(1 + |η|2)s/2
=

(1 + |η|2)|s|/2

(1 + |ξ|2)|s|/2
≤ c(1 + |ξ − η|2)|s|/2

by employing inequality (0.17).
Then

|(1 + |ξ|2)s/2ϕ̂u(ξ)| ≤ c

∫
Rn

|(1 + |ξ − η|2)s/2ϕ̂(ξ − η)||(1 + |η|2)s/2û(η)| dη

Young’s inequality implies

‖ϕu‖s,2 ≤ cs,n‖(1 + | · |2)|s|ϕ̂(·)‖L1‖u‖s,2.
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In many applications the following commutator estimate is often used∑
|α|=s

‖[∂αx ; g] f‖2 ≡
∑
|α|=s

‖∂αx (gf )− g∂αx f‖2

≤ cn,s
(
‖∇g‖∞

∑
|β|=s−1

‖∂βx f‖2 + ‖f‖∞
∑
|β|=s

‖∂βx g‖2

)
(see [6]). Similarly, for s ≥ 1 one has

‖[Λs; g] f‖2 ≤ c (‖∇g‖∞‖Λs−1f‖2 + ‖f‖∞ ‖Λsg‖2),

(see [5]).

Here [∂αx ; g] f = ∂αx (gf )− g∂αxf .

In general, for two linear operators T, S the commutator of T and S is
defined by [T, S] = TS − ST .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

There are “equivalent" manners to define fractional derivatives without
relying on the Fourier transform. For instance:

Definition 4 (Stein [10]). For b ∈ (0, 1) and an appropriate f define

Dbf (x) =
( ∫ |f (x)− f (y)|2

|x− y|n+2b
dy
)1/2

. (0.18)

Theorem 6 (Stein [10]). Let b ∈ (0, 1) and 2n
(n+2b)

≤ p < ∞. Then
f, Dbf ∈ Lp(Rn) if and only if f, Dbf ∈ Lp(Rn).
Moreover,

‖f‖p + ‖Dbf‖p ∼ ‖f‖p + ‖Dbf‖p.
The case p = 2 was previously considered in [1].
For other “equivalent" definitions of fractional derivatives see [11].



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Finally, to complete our study of Sobolev spaces we introduce the
localized Sobolev spaces.

Definition 5. Given f : Rn → R we say that f ∈ Hs
loc(Rn) if for every

ϕ ∈ C∞0 (Rn) we have ϕf ∈ Hs(Rn). In other words, for any Ω ⊆ Rn

open bounded f |Ω coincides with an element of Hs(Rn).

This means that f has the sufficient regularity but may not have
enough decay to be in Hs(Rn).

Example 8. Let n = 1, f (x) = x, and g(x) = |x|, then f ∈ Hs
loc(R)

for every s ≥ 0 and g ∈ Hs
loc(R) for every s < 3/2.
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Hardy-Littlewood-Sobolev Theorem

Definition 6. Let 0 < α < n. The Riesz potential of order α, denoted
by Iα, is defined as

Iαf (x) = cα,n

∫
Rn

f (y)

|x− y|n−α
dy = kα ∗ f (x), (0.19)

where cα,n = π−n/22−α Γ(n/2− α/2)/Γ(α/2).

Since the Riesz potentials are defined as integral operators it is natu-
ral to study their continuity properties in Lp(Rn).
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Theorem 7 (Hardy–Littlewood–Sobolev). Let 0 < α < n, 1 ≤ p <

q <∞, with
1

q
=

1

p
− α

n
.

1. If f ∈ Lp(Rn), then the integral (0.19) is absolutely convergent
almost every x ∈ Rn.

2. If p > 1, then Iα is of type (p,q), i.e.,

‖Iα(f )‖q ≤ cp,α,n‖f‖p. (0.20)

For a proof of this theorem see [8].
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