Sobolev Spaces

We plan to give a brief introduction to the classical Sobolev spaces $H^s(\mathbb{R}^n)$. Sobolev spaces measure the differentiability (or regularity) of functions in $L^2(\mathbb{R}^n)$ and they are a fundamental tool in the study of partial differential equations.

Basics

We begin by defining Sobolev spaces.

Definition 1. Let $s \in \mathbb{R}$. We define the Sobolev space of order s, denoted by $H^s(\mathbb{R}^n)$, as

$$H^{s}(\mathbb{R}^{n}) = \left\{ f \in \mathcal{S}'(\mathbb{R}^{n}) : \Lambda^{s} f(x) = ((1 + |\xi|^{2})^{s/2} \widehat{f}(\xi))^{\vee}(x) \in L^{2}(\mathbb{R}^{n}) \right\},$$

with norm $\|\cdot\|_{s,2}$ defined as

 $||f||_{s,2} = ||\Lambda^s f||_2.$

Example 1. Let n = 1 and $f(x) = \chi_{[-1,1]}(x)$. We have that $\widehat{f}(\xi) = \sin(2\pi\xi)/(\pi\xi)$.

$$\|f\|_{s,2}^{2} = \|\Lambda^{s} f\|_{2}^{2} = \int_{\mathbb{R}} (1+\xi^{2})^{s} |\widehat{f}(\xi)|^{2} dx$$
$$= \int_{\mathbb{R}} (1+\xi^{2})^{s} \left|\frac{\sin(2\pi\xi)}{\pi\xi}\right|^{2} d\xi$$
$$\lesssim \int_{\mathbb{R}} (1+\xi^{2})^{s-1} d\xi.$$

Thus $f \in H^s(\mathbb{R})$ if s < 1/2.

Example 2. Let n = 1 and $g(x) = \chi_{[-1,1]} * \chi_{[-1,1]}(x)$. We saw that

$$\widehat{g}(\xi) = \frac{\sin^2(2\pi\,\xi)}{(\pi\,\xi)^2}$$

$$\begin{split} \|g\|_{s,2}^2 &= \|\Lambda^s g\|_2^2 = \int_{\mathbb{R}} (1+\xi^2)^s |\widehat{g}(\xi)|^2 \, dx \\ &= \int_{\mathbb{R}} (1+\xi^2)^s \Big| \frac{\sin(2\pi\xi)}{\pi\xi} \Big|^4 \, d\xi \\ &\lesssim \int_{\mathbb{R}} (1+\xi^2)^{s-2} \, d\xi. \end{split}$$

Thus $g \in H^s(\mathbb{R})$ whenever s < 3/2.

Example 3. Let $n \ge 1$ and $h(x) = e^{-2\pi |x|}$. In a previous example we saw that

$$\widehat{h}(\xi) = \frac{\Gamma[(n+1)/2]}{\pi^{(n+1)/2}} \frac{1}{(1+|\xi|^2)^{(n+1)/2}}.$$
(0.1)

$$\begin{split} \|h\|_{s,2}^2 &= \|\Lambda^s h\|_2^2 = \int_{\mathbb{R}^n} (1+|\xi|^2)^s |\widehat{h}(\xi)|^2 \, dx \\ &= c_n \int_{\mathbb{R}^n} (1+|\xi|^2)^s \frac{1}{(1+|\xi|^2)^{n+1}} \, d\xi \\ &= c_n \int_{\mathbb{R}^n} (1+|\xi|^2)^{s-n-1} \, d\xi. \quad (r^{2s-2n-2}r^{n-1}) \end{split}$$

Using polar coordinates we see that $h \in H^s(\mathbb{R}^n)$ if s < n/2 + 1. Notice that in this case *s* depends on the dimension. **Example 4.** Let $n \ge 1$ and $f(x) = \delta_0(x)$. We already know $\widehat{\delta}_0(\xi) = 1$. Then

$$\|\delta\|_{s,2}^{2} = \int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{s} |\widehat{\delta}(\xi)|^{2} dx = \int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{s} d\xi \quad (r^{2s}r^{n-1})$$

Thus $\delta_{0} \in H^{s}(\mathbb{R}^{n})$ if $s < -n/2$.

From the definition of Sobolev spaces we deduce the following properties.

Proposition 1.

- 1. If s < s', then $H^{s'}(\mathbb{R}^n) \subsetneq H^s(\mathbb{R}^n)$.
- 2. $H^{s}(\mathbb{R}^{n})$ is a Hilbert space with respect to the inner product $\langle \cdot, \cdot \rangle_{s}$ defined as follows:

If
$$f,g \in H^s(\mathbb{R}^n)$$
, then $\langle f,g \rangle_s = \int_{\mathbb{R}^n} \Lambda^s f(\xi) \overline{\Lambda^s g(\xi)} d\xi$.

We can see, via the Fourier transform, that $H^{s}(\mathbb{R}^{n})$ is equal to

$$L^{2}(\mathbb{R}^{n};(1+|\xi|^{2})^{s}\,d\xi).$$

3. For any $s \in \mathbb{R}$, the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$. 4. If $s_1 \leq s \leq s_2$, with $s = \theta s_1 + (1 - \theta) s_2$, $0 \leq \theta \leq 1$, then $\|f\|_{s,2} \leq \|f\|_{s_1,2}^{\theta} \|f\|_{s_2,2}^{1-\theta}$.

Proof. 1. Let $f \in H^{s'}(\mathbb{R}^n)$, we show that $f \in H^s(\mathbb{R}^n)$, $s' \ge s$. Then

$$\begin{split} \|f\|_{s,2}^2 &= \int_{\mathbb{R}^n} (1+|\xi|^2)^{s-s'} (1+|\xi|^2)^{s'} |\widehat{f}(\xi)|^2 \, d\xi \\ &\leq \sup_{\mathbb{R}^n} (1+|\xi|^2)^{s-s'} \int_{\mathbb{R}^n} (1+|\xi|^2)^{s'} |\widehat{f}(\xi)|^2 \, d\xi \leq \|f\|_{s',2}^2. \end{split}$$

4. Let $s = \theta s_1 + (1 - \theta)s_2$, with $0 \le \theta \le 1$. The result follows by applying the Hölder inequality with $p = 1/\theta$ and $q = 1/(1 - \theta)$. Indeed,

$$\begin{split} \|f\|_{s,2}^{2} &= \int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{\theta s_{1}+(1-\theta)s_{2}} |\widehat{f}(\xi)|^{2\theta} |\widehat{f}(\xi)|^{2(1-\theta)} d\xi \\ &\leq \left(\int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{s_{1}} |\widehat{f}(\xi)|^{2} d\xi \right)^{\theta} \left(\int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{s_{2}} |\widehat{f}(\xi)|^{2} d\xi \right)^{(1-\theta)} \\ &= \|f\|_{s_{1},2}^{2\theta} \|f\|_{s_{2},2}^{2(1-\theta)}. \end{split}$$

Proposition 2. The topological dual of $H^{s}(\mathbb{R}^{n})$, denoted by $(H^{s}(\mathbb{R}^{n}))'$, is isometrically isomorphic to $H^{-s}(\mathbb{R}^{n})$ by the map

$$\begin{aligned} \alpha : H^{-s}(\mathbb{R}^n) &\to (H^s(\mathbb{R}^n))' \\ f &\mapsto : H^s(\mathbb{R}^n) \to \mathbb{C} \\ g &\mapsto \langle f, g \rangle_{-s,s} = \int_{\mathbb{R}^n} \widehat{f}(\xi) \, \widehat{g}(\xi) \, d\xi. \end{aligned}$$

 $\mathcal{S}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$. Given $g \in H^s(\mathbb{R}^n)$, let g_n be defined by

$$\widehat{g}_n(\xi) = \begin{cases} \widehat{g}(\xi), & \text{if } |\xi| \le n \\ 0, & \text{otherwise.} \end{cases}$$

Then $g_n \in \mathcal{S}(\mathbb{R}^n)$ and

$$||g - g_n||_{s,2}^2 = \int_{\mathbb{R}^n} (1 + |\xi|^2)^s |\widehat{g}(\xi) - \widehat{g}_n(\xi)|^2$$
$$= \int_{|\xi| > n} (1 + |\xi|^2)^s |\widehat{g}(\xi)|^2 d\xi \to 0$$

as $n \to \infty$ since $g \in H^s(\mathbb{R}^n)$.

To understand the relationship between the spaces $H^s(\mathbb{R}^n)$ and the differentiability of functions in $L^2(\mathbb{R}^n)$, we recall the definition of L^p derivative in the case p = 2.

Definition 2. A function f is differentiable in $L^2(\mathbb{R}^n)$ with respect to the k-th variable if there exists $g \in L^2(\mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} \left| \frac{f(x+h e_k) - f(x)}{h} - g(x) \right|^2 dx \to 0 \quad \text{when} \quad h \to 0,$$

where e_k has k-th coordinate equal to 1 and zero in the others. Equivalently (Exercise) $\xi_k \widehat{f}(\xi) \in L^2(\mathbb{R}^n)$, or

$$\int_{\mathbb{R}^n} f(x) \partial_{x_k} \phi(x) \, dx = -\int_{\mathbb{R}^n} g(x) \phi(x) \, dx$$

for every $\phi \in C_0^{\infty}(\mathbb{R}^n)$ ($C_0^{\infty}(\mathbb{R}^n)$ being the space of functions infinitely differentiable with compact support).

Example 5. Let n = 1 and $f(x) = \chi_{(-1,1)}(x)$, then $f' = \delta_{-1} - \delta_1$, where δ_x represents the measure of mass 1 concentrated in x, therefore $f' \notin L^2(\mathbb{R})$.

Example 6. Let n = 1 and g be as in Example 2. Then

$$rac{dg}{dx}(x) = \chi_{_{(-2,0)}} - \chi_{_{(0,2)}}, \hspace{0.2cm} ext{and so} \hspace{0.2cm} rac{dg}{dx} \in L^2(\mathbb{R}).$$

With this definition, for $k \in \mathbb{Z}^+$ we can give a description of the space $H^k(\mathbb{R}^n)$ without using the Fourier transform.

Theorem 1. If k is a positive integer, then $H^k(\mathbb{R}^n)$ coincides with the space of functions $f \in L^2(\mathbb{R}^n)$ whose derivatives (in the distribution sense) $\partial_x^{\alpha} f$ belong to $L^2(\mathbb{R}^n)$ for every $\alpha \in (\mathbb{Z}^+)^n$ with $|\alpha| = \alpha_1 + \cdots + \alpha_n \leq k$.

In this case the norms $||f||_{k,2}$ and $\left(\sum_{|\alpha|\leq k} ||\partial_x^{\alpha}f||_2\right)^{1/2}$ are equivalent.

Proof. The proof follows by combining the formula

$$\widehat{\partial_x^{\alpha} f}(\xi) = (2\pi i\xi)^{\alpha} \widehat{f}(\xi) \tag{0.2}$$

and the inequalities

$$|\xi^{\beta}| \leq (1+|\xi|^2)^{k/2} \leq \sum_{|\alpha| \leq k} |\xi^{\alpha}|, \quad \beta \in (\mathbb{Z}^+)^n, \quad |\beta| \leq k.$$
 (0.3)

In fact, let $f \in H^k(\mathbb{R}^n)$, then using (0.3) we obtain

 $|(i\xi)^{\beta}\widehat{f}(\xi)| = |\xi^{\beta}||\widehat{f}(\xi)| \le (1+|\xi|^2)^{k/2}|\widehat{f}(\xi)| \quad \beta \in (\mathbb{Z}^+)^n, \ |\beta| \le k,$

which implies that $\partial_x^\beta f \in L^2(\mathbb{R}^n)$ for any $\beta \in (\mathbb{Z}^+)^n$ with $|\beta| \leq k$. Thus

$$\sum_{|\alpha| \le k} \|\partial_x^{\alpha} f\|_2 \le c_k \|f\|_{k,2}^2.$$

If $\partial_x^{\alpha} f \in L^2(\mathbb{R}^n)$ for any $\alpha \in (\mathbb{Z}^+)^n$ with $|\alpha| \leq k$ we have from (0.2) that $(2\pi i\xi)^{\alpha} \widehat{f}(\xi) \in L^2(\mathbb{R}^n)$ for any $\alpha \in (\mathbb{Z}^+)^n$ with $|\alpha| \leq k$. Then

$$f\|_{k,2}^{2} = \int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{k} |\widehat{f}(\xi)|^{2} d\xi$$
$$\leq \int_{\mathbb{R}^{n}} \left(\sum_{|\alpha| \leq k} |\xi^{\alpha}|^{2} |\widehat{f}(\xi)|^{2} \\\leq \sum_{|\alpha| \leq k} c_{k} \int_{\mathbb{R}^{n}} \left(|(i\xi)^{\alpha} \widehat{f}(\xi)|^{2} \\\leq C \sum_{|\alpha| \leq k} ||\partial_{x}^{\alpha} f||_{2}.$$

Theorem 1 allows us to define in a natural manner $H^k(\Omega)$, the Sobolev space of order $k \in \mathbb{Z}^+$ in any subset Ω (open) of \mathbb{R}^n . Given $f \in L^2(\Omega)$ we say that $\partial_x^{\alpha} f$, $\alpha \in (\mathbb{Z}^+)^n$ is the α th-partial derivative (in the distribution sense) of f if for every $\phi \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} f \partial_x^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \partial_x^{\alpha} f \, \phi \, dx$$

Then

 $H^k(\Omega) = \{ f \in L^2(\Omega) : \partial_x^{\alpha} f \text{ (in the distribution sense)} \in L^2(\Omega), \ |\alpha| \le k \}$ with the norm

$$\|f\|_{H^k(\Omega)} \equiv \left(\sum_{|\alpha| \le k} \int_{\Omega} |\partial_x^{\alpha} f(x)|^2 \, dx\right)^{1/2}.$$

Example 7. For n = 1, b > 0 and f(x) = |x| one has that $f \in H^1((-b,b))$ and $f \notin H^2((-b,b))$.

The next result allows us to relate "weak derivatives" with derivatives in the classical sense.

Theorem 2 (Embedding). If s > n/2 + k, then $H^s(\mathbb{R}^n)$ is continuously embedded in $C^k_{\infty}(\mathbb{R}^n)$, the space of functions with k continuous derivatives vanishing at infinity. In other words, if $f \in H^s(\mathbb{R}^n)$, s > n/2 + k, then (after a possible modification of f in a set of measure zero) $f \in C^k_{\infty}(\mathbb{R}^n)$ and

$$\|f\|_{C^k} \leq c_s \|f\|_{s,2}. \tag{0.4}$$

Proof. Case k = 0: we first show that if $f \in H^s(\mathbb{R}^n)$ then $\widehat{f} \in L^1(\mathbb{R}^n)$ with

$$\|\widehat{f}\|_{1} \leq c_{s} \|f\|_{s,2} \quad \text{if} \quad s > n/2.$$
 (0.5)

Using the Cauchy–Schwarz inequality we deduce

$$\int_{\mathbb{R}^n} |\widehat{f}(\xi)| d\xi = \int_{\mathbb{R}^n} |\widehat{f}(\xi)| (1+|\xi|^2)^{s/2} \frac{d\xi}{(1+|\xi|^2)^{s/2}}$$

$$\leq \|\Lambda^{s} f\|_{2} \left(\int_{\mathbb{R}^{n}} \frac{d\xi}{(1+|\xi|^{2})^{s}} \right)^{1/2} \leq c_{s} \|f\|_{s,2}$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

if s > n/2. Combining (0.5), Proposition 1.2, and Theorem 1.1 we conclude that

$$||f||_{\infty} = ||(\widehat{f})^{\vee}||_{\infty} \le ||\widehat{f}||_{1} \le c_{s}||f||_{s,2}.$$

Case $k \geq 1$: Using the same argument we have that if $f \in H^s(\mathbb{R}^n)$ with s > n/2 + k, then for $\alpha \in (\mathbb{Z}^+)^n$, $|\alpha| \leq k$, it follows that $\widehat{\partial_x^{\alpha} f} \in L^1(\mathbb{R}^n)$ and

$$\|\partial_x^{\alpha} f\|_{\infty} \le \|\widehat{\partial_x^{\alpha} f}\|_1 = \|(2\pi i\xi)^{\alpha} \widehat{f}\|_1 \le c_s \|f\|_{s,2}.$$

Corollary 1. If $s = n/2 + k + \theta$, with $\theta \in (0, 1)$, then $H^s(\mathbb{R}^n)$ is continuously embedded in $C^{k+\theta}(\mathbb{R}^n)$, the space of C^k functions with partial derivatives of order k Hölder continuous with index θ .

Proof. We only prove the case k = 0 since the proof of the general case follows the same argument. From the formula of inversion of the Fourier transform and the Cauchy–Schwarz inequality we have

$$|f(x+y)-f(x)| = |\int_{\mathbb{R}^n} e^{2\pi i (x\cdot\xi)} \widehat{f}(\xi) (e^{2\pi i (y\cdot\xi)} - 1) d\xi|$$

$$\leq \Big(\int_{\mathbb{R}^n} (1+|\xi|^2)^{n/2+\theta} |\widehat{f}(\xi)|^2 \, d\xi\Big)^{1/2} \Big(\int_{\mathbb{R}^n} \frac{|e^{2\pi i(y\cdot\xi)} - 1|^2}{(1+|\xi|^2)^{n/2+\theta}} \, d\xi\Big)^{1/2} d\xi = \int_{\mathbb{R}^n} |\widehat{f}(\xi)|^2 \, d\xi = \int_{\mathbb{R}^n} |\widehat{f}(\xi)|^$$

But

$$\int_{\mathbb{R}^n} \frac{|e^{2\pi i(y\cdot\xi)} - 1|^2}{(1+|\xi|^2)^{n/2+\theta}} d\xi$$

$$\leq c \int_{|\xi| \leq |y|^{-1}} |y|^2 |\xi|^2 \frac{d\xi}{(1+|\xi|^2)^{n/2+\theta}} + 4 \int_{|\xi| \geq |y|^{-1}} \frac{d\xi}{(1+|\xi|^2)^{n/2+\theta}}$$

$$\leq c|y|^2 \int_{0}^{|y|^{-1}} \frac{r^{n+1}}{(1+r)^{n+2\theta}} dr + 4 \int_{|y|^{-1}}^{\infty} \frac{r^{n-1}}{(1+r)^{n+2\theta}} dr \leq c |y|^{2\theta}.$$

If |y| < 1 we conclude that $|f(x+y) - f(x)| \le c |y|^{\theta}$. This finishes the proof.

Theorem 3. If $s \in (0, n/2)$, then $H^s(\mathbb{R}^n)$ is continuously embedded in $L^p(\mathbb{R}^n)$ with p = 2n/(n-2s), i.e., s = n(1/2 - 1/p). Moreover, for $f \in H^s(\mathbb{R}^n)$, $s \in (0, n/2)$,

$$||f||_{p} \le c_{n,s} ||D^{s}f||_{2} \le c||f||_{s,2},$$
(0.6)

where

$$D^{l}f = (-\Delta)^{l/2}f = ((2\pi|\xi|)^{l}\,\hat{f}\,)^{\vee}.$$

Proof. The last inequality in (0.6) is immediate so we just need to show the first one. We define

$$D^{s}f = g \quad \text{or} \quad f = D^{-s} g = c_{n,s} \left(\frac{1}{|\xi|^{s}} \widehat{g}\right)^{\vee} = \frac{c_{n,s}}{|x|^{n-s}} * g,$$
 (0.7)

where we have used the result of Exercise 1.14. Thus by the Hardy– Littlewood–Sobolev estimate (0.20) it follows that

$$\|f\|_{p} = \|D^{-s}g\|_{p} = \left\|\frac{c_{n,s}}{|x|^{n-s}} * g\right\|_{p} \le c_{n,s} \|g\|_{2} = c\|D^{s}f\|_{2}.$$
 (0.8)

We notice from Theorems 2 and 3, and Corollary 1 that local regularity in H^s , s > 0, increases with the parameter s.

Examples 1 and 3 show that the functions in $H^s(\mathbb{R}^n)$ with s < n/2or s < n/2 + 1 respectively are not necessarily continuous nor C^1 . Moreover, let $f \in L^2(\mathbb{R}^n)$ with

$$\widehat{f}(\xi) = \frac{1}{(1+|\xi|)^n \log(2+|\xi|)}$$

(which is radial, decreasing and positive). A simple computation shows that $f \in H^{\frac{n}{2}}(\mathbb{R}^n)$, but $\widehat{f} \notin L^1(\mathbb{R}^n)$ and so $f \notin L^{\infty}(\mathbb{R}^n)$ since $f(0) = \int \widehat{f}(\xi) d\xi = \infty$ (see also Exercise 3.11 (iii)).

To complete the embedding results of the spaces $H^s(\mathbb{R}^n)$, s > 0, it remains to consider the case s = n/2 (since for s = k + n/2, $k \in \mathbb{Z}^+$, the result follows from this one). So we define the space of functions of bounded mean oscillation or BMO.

Definition 3. Let $f : \mathbb{R}^n \to \mathbb{C}$ with $f \in L^1_{loc}(\mathbb{R}^n)$ we say that $f \in BMO(\mathbb{R}^n)$ (*f* has bounded mean oscillation) if

$$||f||_{\text{BMO}} = \sup_{\substack{x \in \mathbb{R}^n \\ r > 0}} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f_{B_r(x)}| \, dy < \infty \tag{0.9}$$

where

$$f_{B_r(x)} = rac{1}{|B_r(x)|} \int_{B_r(x)} f(y) \, dy.$$

Notice that $\|\cdot\|_{\rm BMO}$ is a semi-norm since it vanishes for constant functions.

 $\mathbf{BMO}(\mathbb{R}^n)$ is a vector space with $L^{\infty}(\mathbb{R}^n) \subseteq \mathbf{BMO}(\mathbb{R}^n)$, since $\|f\|_{\mathbf{BMO}} \leq 2\|f\|_{\infty}$ and $\log |x| \in \mathbf{BMO}(\mathbb{R}^n)$.

Theorem 4. $H^{n/2}(\mathbb{R}^n)$ is continuously embedded in **BMO**(\mathbb{R}^n). More precisely, there exists c = c(n) > 0 such that

 $||f||_{\text{BMO}} \le c ||D^{n/2}f||_2.$

Proof. Without loss of generality we assume f real valued. Consider $x \in \mathbb{R}^n$ and r > 0. Let $\phi_r \in C_0^{\infty}(\mathbb{R}^n)$ such that $\operatorname{supp} \phi_r \subseteq \{x \mid |x| \leq \frac{2}{r}\}$ with $0 \leq \phi_r(x) \leq 1$ and $\phi_r(x) \equiv 1$ if |x| < 1/r, and define

$$f(x) = f_l + f_h = \left(\widehat{f}\phi_r\right)^{\vee} + \left(\widehat{f}(1-\phi_r)\right)^{\vee}.$$

We observe that

$$||f||_{BMO} \le ||f_l||_{BMO} + ||f_h||_{BMO}$$

and $f_l \in H^s(\mathbb{R}^n)$ for any s > 0, therefore

$$f_{l,B_r(x)} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f_l(y) \, dy = f_l(x_0)$$

for some $x_0 \in B_r(x)$, and so for any $y \in B_r(x)$

$$|f_l(y) - f_{l,B_r(x)}| \le 2r \, \|\nabla f_l\|_{\infty}.$$

Using this estimate we get

$$\begin{aligned} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f_l(y) - f_{l,B_r(x)}| \, dy \\ &\leq \frac{1}{|B_r(x)|^{1/2}} \Big(\int_{B_r(x)} |f_l(y) - f_{l,B_r(x)}|^2 \, dy \Big)^{1/2} \\ &\leq 2r \, \|\nabla f_l\|_{\infty} \leq 2r \, \|\widehat{\nabla f_l}\|_1 \\ &\leq 2r \, \int_{|\xi| \leq 1/2r} |\xi|^{1-n/2} |\xi|^{n/2} |\widehat{f}(\xi)| \, d\xi \\ &\leq 2r \, \Big(\int_{|\xi| \leq 1/2r} |\xi|^{2-n} \, d\xi \Big)^{1/2} \|D^{n/2}f\|_2 \leq c \|D^{n/2}f\|_2. \end{aligned}$$

Also

$$\begin{aligned} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f_h(y) - f_{h,B_r(x)}| \, dy \\ &\leq \frac{2}{|B_r(x)|^{1/2}} ||f_h||_2 \\ &\leq \frac{2}{|B_r(x)|^{1/2}} \left(\int_{|\xi| \ge 1/2r} |\widehat{f}(\xi)|^2 \, d\xi \right)^{1/2} \\ &= \frac{c_n}{r^{n/2}} \left(\int_{|\xi| \ge 1/2r} r^n |\xi|^n |\widehat{f}(\xi)|^2 \, d\xi \right)^{1/2} \le ||D^{n/2}f||_2, \end{aligned}$$

which yields the desired result.

We have shown that $H^s(\mathbb{R}^n)$ with s > n/2 is a Hilbert space whose elements are continuous functions. From the point of view of nonlinear analysis the next property is essential.

Theorem 5. If s > n/2, then $H^s(\mathbb{R}^n)$ is an algebra with respect to the product of functions. That is, if $f, g \in H^s(\mathbb{R}^n)$, then $fg \in H^s(\mathbb{R}^n)$ with

$$||fg||_{s,2} \le c_s ||f||_{s,2} ||g||_{s,2}.$$
 (0.10)

Proof. From the triangle inequality we have that for every $\xi, \eta \in \mathbb{R}^n$

$$(1+|\xi|^2)^{s/2} \le 2^s [(1+|\xi-\eta|^2)^{s/2} + (1+|\eta|^2)^{s/2}].$$
(0.11)

Using this we deduce that

$$\Lambda^{s}(fg)| = |(1+|\xi|^2)^{s/2} \widehat{(fg)}(\xi)|$$

Thus, taking the L^2 -norm and using Young's inequality it follows that

 $\|fg\|_{s,2} = \|\Lambda^s(fg)\|_2 \le c(\|\Lambda^s f\|_2 \|\widehat{g}\|_1 + \|\widehat{f}\|_1 \|\Lambda^s g\|_2).$ (0.12)

Finally, (0.5) assures one that if r > n/2, then

$$\begin{split} \|fg\|_{s,2} &\leq c_s(\|f\|_{s,2}\|\widehat{g}\|_1 + \|\widehat{f}\|_1 \|g\|_{s,2}) \\ &\leq c_s(\|f\|_{s,2} \|g\|_{r,2} + \|f\|_{r,2} \|g\|_{s,2}). \end{split}$$
(0.13)

Choosing r = s we obtain (0.10).

The inequality (0.13) is not sharp as the following scaling argument shows. Let $\lambda > 0$ and

$$f(x) = f_1(\lambda x), \ g(x) = g_1(\lambda x), \ f_1, g_1 \in \mathcal{S}(\mathbb{R}^n).$$

Then as $\lambda \uparrow \infty$ the right hand side of (0.13) grows as λ^{s+r} , meanwhile the left hand side grows as λ^s . This will not be the case if we replace $\|\cdot\|_{r,2}$ in (0.13) with the $\|\cdot\|_{\infty}$ -norm to get that

$$\|fg\|_{s,2} \le c_s(\|f\|_{s,2} \, \|g\|_{\infty} + \|f\|_{\infty} \, \|g\|_{s,2}) \tag{0.14}$$

which in particular shows that for any s > 0, $H^s(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ is an algebra under the pointwise product.

For $s \in \mathbb{Z}^+$, the inequality (0.14) follows by combining the Leibniz rule for the product of functions and the Gagliardo–Nirenberg inequality:

$$\|\partial_x^{\alpha} f\|_p \leq c \sum_{|\beta|=m} \|\partial_x^{\beta} f\|_q^{\theta} \|f\|_r^{1-\theta}$$
 (0.15)

with $|\alpha| = j$, c = c(j, m, p, q, r), $1/p - j/n = \theta(1/q - m/n) + (1 - \theta)1/r$, $\theta \in [j/m, 1]$. For the proof of this inequality we refer the reader to the reference [3].

Easy example, take $f \in C_0^1(\mathbb{R})$,

$$f^2(x) = \int_a^x \frac{d}{dy} f^2(y) \, dy = 2 \int_a^x f(y) \frac{d}{dy} f(y) \, dy.$$

Using Cauchy-Schwarz inequality we find that

 $|f(x)|^2 \le 2||f||_{L^2}||f'||_{L^2}.$

Thus

$$||f||_{L^{\infty}} \leq \sqrt{2} ||f||_{L^{2}}^{\frac{1}{2}} ||f'||_{L^{2}}^{\frac{1}{2}}.$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

For the general case s > 0 where the usual pointwise Leibniz rule is not available, the inequality (0.14) still holds (see [5]). The inequality (0.14) has several extensions, for instance: Let $s \in (0, 1)$, $r \in [1, \infty)$, $1 < p_j, q_j \le \infty, 1/r = 1/p_j + 1/q_j, j = 1, 2$. Then

 $\|\Phi^{s}(fg)\|_{r} \leq c(\|\Phi^{s}(f)\|_{p_{1}}\|g\|_{q_{1}} + \|f\|_{p_{2}}\|\Phi^{s}(g)\|_{q_{2}}),$

with $\Phi^s = \Lambda^s$ or D^s , (for the proof of this estimate and further generalizations [7], [9] and [4]). The extension to the case $r = p_j = q_j = \infty$, j = 1, 2 was given in [2]. **Proposition 3.** If $\varphi \in S(\mathbb{R}^n)$ and $s \in \mathbb{R}$, then the map $u \mapsto \varphi u$ is a bounded linear map of $H^s(\mathbb{R}^n)$ to itself. Moreover,

$$\|\varphi u\|_{s,2} \le c_{s,n} \|(1+|\cdot|^2)^{|s|} \widehat{\varphi}(\cdot)\|_{L^1} \|u\|_{s,2}.$$
 (0.16)

Proof. We will use the following elementary inequality

$$(1+|\xi|^2)^{\sigma/2} \le 2^{|\sigma|/2} (1+|\xi-\eta|^2)^{s/2} (1+|\eta|^2)^{s/2}.$$
 (0.17)

Let $s \ge 0$. Fourier transform properties and inequality (0.17) yield

$$\begin{aligned} (1+|\xi|^2)^{s/2}\widehat{\varphi u}(\xi) &= \int_{\mathbb{R}^n} (1+|\xi|^2)^{s/2} \widehat{\varphi}(\xi-\eta) \widehat{u}(\eta) \, d\eta \\ &\leq \int_{\mathbb{R}^n} \frac{(1+|\xi|^2)^{s/2}}{(1+|\eta|^2)^{s/2}} \widehat{\varphi}(\xi-\eta) (1+|\eta|^2)^{s/2} \widehat{u}(\eta) \, d\eta \\ &\leq c \int_{\mathbb{R}^n} (1+|\xi-\eta|^2)^{s/2} \widehat{\varphi}(\xi-\eta) (1+|\eta|^2)^{s/2} \widehat{u}(\eta) \, d\eta \end{aligned}$$

Young's inequality yields the result.

For the case s < 0, we observe that

$$\frac{(1+|\xi|^2)^{s/2}}{(1+|\eta|^2)^{s/2}} = \frac{(1+|\eta|^2)^{|s|/2}}{(1+|\xi|^2)^{|s|/2}} \le c(1+|\xi-\eta|^2)^{|s|/2}$$

by employing inequality (0.17). Then

$$|(1+|\xi|^2)^{s/2}\widehat{\varphi u}(\xi)| \le c \int_{\mathbb{R}^n} |(1+|\xi-\eta|^2)^{s/2}\widehat{\varphi}(\xi-\eta)| |(1+|\eta|^2)^{s/2}\widehat{u}(\eta)| \, d\eta$$

Young's inequality implies

$$\|\varphi u\|_{s,2} \le c_{s,n} \|(1+|\cdot|^2)^{|s|} \widehat{\varphi}(\cdot)\|_{L^1} \|u\|_{s,2}.$$

In many applications the following commutator estimate is often used

$$\sum_{|\alpha|=s} \| [\partial_x^{\alpha}; g] f \|_2 \equiv \sum_{|\alpha|=s} \| \partial_x^{\alpha}(gf) - g \partial_x^{\alpha} f \|_2$$

$$\leq c_{n,s} \left(\| \nabla g \|_{\infty} \sum_{|\beta|=s-1} \| \partial_x^{\beta} f \|_2 + \| f \|_{\infty} \sum_{|\beta|=s} \| \partial_x^{\beta} g \|_2 \right)$$

(see [6]). Similarly, for $s \ge 1$ one has

$$\|[\Lambda^{s};g]f\|_{2} \leq c (\|\nabla g\|_{\infty}\|\Lambda^{s-1}f\|_{2} + \|f\|_{\infty}\|\Lambda^{s}g\|_{2}),$$

(see [5]).

Here $[\partial_x^{\alpha};g]f = \partial_x^{\alpha}(gf) - g\partial_x^{\alpha}f.$

In general, for two linear operators T, S the commutator of T and S is defined by [T, S] = TS - ST.

There are "equivalent" manners to define fractional derivatives without relying on the Fourier transform. For instance:

Definition 4 (Stein [10]). For $b \in (0, 1)$ and an appropriate f define

$$\mathcal{D}^{b}f(x) = \left(\int \frac{|f(x) - f(y)|^{2}}{|x - y|^{n + 2b}} \, dy\right)^{1/2}.$$
(0.18)

Theorem 6 (Stein [10]). Let $b \in (0,1)$ and $\frac{2n}{(n+2b)} \leq p < \infty$. Then $f, D^b f \in L^p(\mathbb{R}^n)$ if and only if $f, \mathcal{D}^b f \in L^p(\mathbb{R}^n)$. Moreover,

$$||f||_p + ||D^b f||_p \sim ||f||_p + ||\mathcal{D}^b f||_p.$$

The case p = 2 was previously considered in [1]. For other "equivalent" definitions of fractional derivatives see [11]. Finally, to complete our study of Sobolev spaces we introduce the localized Sobolev spaces.

Definition 5. Given $f : \mathbb{R}^n \to \mathbb{R}$ we say that $f \in H^s_{loc}(\mathbb{R}^n)$ if for every $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ we have $\varphi f \in H^s(\mathbb{R}^n)$. In other words, for any $\Omega \subseteq \mathbb{R}^n$ open bounded $f|_{\Omega}$ coincides with an element of $H^s(\mathbb{R}^n)$.

This means that f has the sufficient regularity but may not have enough decay to be in $H^{s}(\mathbb{R}^{n})$.

Example 8. Let n = 1, f(x) = x, and g(x) = |x|, then $f \in H^s_{loc}(\mathbb{R})$ for every $s \ge 0$ and $g \in H^s_{loc}(\mathbb{R})$ for every s < 3/2.

Hardy-Littlewood-Sobolev Theorem

Definition 6. Let $0 < \alpha < n$. The Riesz potential of order α , denoted by I_{α} , is defined as

$$I_{\alpha}f(x) = c_{\alpha,n} \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}} \, dy = k_{\alpha} * f(x), \tag{0.19}$$

where $c_{\alpha,n} = \pi^{-n/2} 2^{-\alpha} \Gamma(n/2 - \alpha/2) / \Gamma(\alpha/2).$

Since the Riesz potentials are defined as integral operators it is natural to study their continuity properties in $L^p(\mathbb{R}^n)$.

Theorem 7 (Hardy–Littlewood–Sobolev). Let $0 < \alpha < n$, $1 \le p < q < \infty$, with $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$.

1. If $f \in L^p(\mathbb{R}^n)$, then the integral (0.19) is absolutely convergent almost every $x \in \mathbb{R}^n$.

2. If p > 1, then I_{α} is of type (p,q), i.e.,

$$||I_{\alpha}(f)||_{q} \le c_{p,\alpha,n} ||f||_{p}.$$
(0.20)

For a proof of this theorem see [8].

References

- [1] N. Aronszajn and K. T. Smith. Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475.
- [2] J. Bourgain and D. Li. On an endpoint Kato-Ponce inequality, Diff. and Int. Eqs. 27 (2014), no. 11-12, 1037–1072.
- [3] A. Friedman. Partial Differential Equations, Holt, Rinehart and Winston, New York, 1976.
- [4] L. Grafakos and S. Oh. Kato-Ponce inequality, Comm. PDE. 39 (2014), no. 6, 1128–1157.
- [5] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891–907.
- [6] S. Klainerman. Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43–101.
- [7] C.E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620.
- [8] F. Linares and G. Ponce. *Introduction to Nonlinear Dispersive Equations*, Second edition. Universitext. Springer, New York, 2015. xiv+301.
- [9] C. Muscalu, J.Pipher, T. Tao, and C. Thiele, *Bi-parameter paraproducts*. Acta Math. **193** (2004), no. 2, 269–296.
- [10] E.M. Stein. The characterization of functions arising as potentials, Bull. A.M.S. 67, (1961), 102–104.
- [11] R.S. Strichartz. Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060.