Sobolev Spaces

We plan to give a brief introduction to the classical Sobolev spaces
H*(R"™). Sobolev spaces measure the differentiability (or regularity) of
functions in L*(R") and they are a fundamental tool in the study of
partial differential equations.
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Basics
We begin by defining Sobolev spaces.

Definition 1. Let s € R . We define the Sobolev space of order s,
denoted by H*(R"), as

H R ={f € S(R") : 'f(z) = ((1+[¢[)"*f(9))" () € LAR")}
with norm || - |2 defined as

[ flls2 = A f]|2-
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Example 1. Let n =1 and f(z) = x_1y(z). We have that f(¢) =
sin(27€) /(7€).

712 = 14718 = [ 1+ )17 do

- [a+er|=

sA@mrwm

Thus f € H*R) if s <1/2.

sin 27r§ ‘ i
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Example 2. Let n =1 and g(z) = x_11) * X[-11)(z). We saw that

sin®(27 €)

§(£> - (7‘(’ §->2

lgllZ, = 1A%l = [ (1+ €2 [(6) da

- [a+gy
5/R<1+§>5—2d§.

Thus g € H*(R) whenever s < 3/2.

sin 27r§

e
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Example 3. Let n > 1 and h(z) = e ¥, In a previous example

we saw that

(€)= I[(n+1)/2] 1
A2 (1 4 |€2)nrDr

=)

(0.1)

I, = IAhIE = [ (1+ 1P IR P de

1
= o | (0 1) g

c, /n(l i |£|2>s—n—1 df (T25—2n—2rn—1)

Using polar coordinates we see that h € H*(R") if s < n/2+ 1.
Notice that in this case s depends on the dimension.
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Example 4. Let n > 1 and f(z) = dy(z). We already know
50(6) = 1. Then

612, = [ (L +IePrIB©ORda = [ (1+lefydg ()

Thus 6, € H*(R") if s < —n/2.
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From the definition of Sobolev spaces we deduce the following prop-
erties.

Proposition 1.
1. Ifs < s, then H*(R")C H*R").

2. H*(R") is a Hilbert space with respect to the inner product (-, -),
defined as follows:

i f.g€ HR), then (f,g) = [Af(€)NglE)de

We can see, via the Fourier transform, that H*(R") is equal to

LA(R™; (1 + [¢])" d€).
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3. For any s € R, the Schwartz space S(R") is dense in H*(R").
4.1f 51 <5< 59, With s =051+ (1 —0)sy, 0 <0 <1, then

I£lle < NIl AIEE
Proof. 1. Let f € H*¥(R"), we show that f € H*(R"), s’ > s. Then
7122 = [ (@ 16Py 1+ I€R) ) dg
Rn
<sup(1+ ¢~ [ 1+ gy IfleRde < IS
R~ NG

2
s'2:
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4. Let s = fs; + (1 — 0)sq, with 0 < 6 < 1. The result follows by
applying the Holder inequality with p = 1/6 and ¢ = 1/(1—6). Indeed,

712, = [ (L Jeei-m= fig) ) fle) - de

<(fo+ \SIQ)“!f(f)Pdg) ([ osiriiora)
= 1
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Proposition 2. The topological dual of H*(R"), denoted by (H*(R"))’,
is isometrically isomorphic to H*(R") by the map

a: HPR") — (H(R"))
f— H(R")—C

g <f7 g>—s,s - ]/C\(g) /g\(f) df

Rn

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



S(R") is dense in H*(R™). Given g € H*(R"), let g, be defined by

5.(6) = {ﬁ(&), it ¢l <n

0, otherwise.

Then g, € S(R") and

lg = gallta = | (1+1€ERVI5(6) - Gue)
S RGIE ST

as n — oo since g € H*(R").
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To understand the relationship between the spaces H*(R") and the
differentiability of functions in L?(R™), we recall the definition of L?
derivative in the case p = 2.

Definition 2. A function f is differentiable in L*(R") with respect to
the k-th variable if there exists g € L*(R") such that

/’f(w+h6k) — f()
J) h

2
—g(a:)’dx—>0 when h — 0,

where e, has k-th coordinate equal to 1 and zero in the others.

A~

Equivalently (Exercise) &.f(€) € L*(R"), or

[ F@o()de = = [ gla)ola) do

Rn

for every ¢ € C°(R") (C°(R") being the space of functions in-
finitely differentiable with compact support).



Example 5. Let n =1 and f(z) = x(11)(z), then f' =041 =0y,
where ¢, represents the measure of mass 1 concentrated in z,
therefore f' ¢ L*(R).

Example 6. Let n =1 and g be as in Example 2. Then

dg 2
(Il?) = X200 ~ X2 and so @ €L (R>

dg
dx

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



With this definition, for & € Z* we can give a description of the space
H*(R") without using the Fourier transform.

Theorem 1. If k is a positive integer, then H"(R") coincides with
the space of functions [ € L*(R") whose derivatives (in the dis-
tribution sense) 0% f belong to L*(R™) for every « € (Z")" with
|Oé| :Oél‘l‘"'+&n§]€.

In this case the norms || f||;.» and ( S 102 f|l2)V? are equivalent.
la|<k
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Proof. The proof follows by combining the formula

A~

0o f(€) = (2mi€) F(€) (0.2)

and the inequalities

€9 <L+ € < > I, Bez), Bl <k (0.3)

al<k

In fact, let f € H*(R"), then using (0.3) we obtain

6€)°F () = €71 F O] < X+ [EP2FE) Be(z), |8 <k,

which implies that 9’ f € L*(R") for any 8 € (Z")" with |3| < k. Thus
D 00 flle < el £117s
|| <k
[]



If 9°f € L*(R") for any o € (Z")" with |a] < k we have from (0.2)

P

that (2mi&)* f(§) € L*(R") for any o € (Z")" with |a| < k. Then
170 = [ (4 IR IFEP de
Rn

< [ (X lenrifer

|a|<k
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Theorem 1 allows us to define in a natural manner H*((2), the Sobolev
space of order k € Z* in any subset ) (open) of R". Given f €
L*(2) we say that 0% f, a € (Z")" is the ath-partial derivative (in the
distribution sense) of f if for every ¢ € C°(12)

[ serode =1y [ azfodn
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Then
H*Q) = {f € L*(Q) : 0°f (in the distribution sense) € L*(Q), |a| < k}

with the norm

1|y = (Z /Q|8§f(93)|2dx>1/2.

|| <k

Example 7. Forn = 1, b > 0 and f(x) = |x| one has that f €
H'((=b,b)) and f ¢ H*((—b,b)).
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The next result allows us to relate “weak derivatives" with derivatives
in the classical sense.

Theorem 2 (Embedding). If s > n/2 + k, then H*(R"™) is contin-
uously embedded in C* (R"), the space of functions with k contin-
uous derivatives vanishing at infinity. In other words, if f € H*(R"),
s > n/2 + k, then (after a possible modification of f in a set of
measure zero) f € C* (R") and

Ifller < e [l flls2- (0.4)
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Proof. Case k = 0: we first show thatif f € H*(R") then f S
LY(R™) with ~
IF 0 <cllfllse i s>mn/2. (0.5)

Using the Cauchy—Schwarz inequality we deduce

[171de = [ 17010+

1/2
; dg
< ||A fH2 (m/ (1‘|‘€2)8> < CstHS,Z

n

[]
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if s > n/2. Combining (0.5), Proposition 1.2, and Theorem 1.1 we
conclude that

1 oo = 1) oo < 1F 1 < el fllsoe

Case k > 1: Using the same argument we have that if f € H*(R")
with s > n/2+k, thenfor a € (Z*)" , |a| < k, it follows that
oo f € LY(R") and

102 Flloe < 102 F 1 = 1273€)° F [y < sl ]2
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Corollary 1. If s =n/2+k+ 6, with 6 € (0,1), then H*(R") is
continuously embedded in C**%(R"™), the space of C* functions with
partial derivatives of order k Hdlder continuous with index 6.

Proof. We only prove the case k = 0 since the proof of the general
case follows the same argument. From the formula of inversion of the
Fourier transform and the Cauchy—Schwarz inequality we have

‘ (33—|-y ‘_‘/ 271'@:1;5 27rzy§ df’

< ([asieprenfera)”( [ )™

1+ n/2+0
J J T em

[]



But

2mi(y-&) 1 2
[leooir

1+ 2\n/2+6
J T em

d§ d§
<cf e +4
£1<]yl-1 (14 [&[2)n/2t0 elzfy-t (14 [§[2)m/2 T

ly[ s

2 rt ! 20
< c|y| / < dr+4/ ( dr < cly|”.
0

1_|_ r)n+29 1+ T>n+29

ly|~!

If |y| <1 we conclude that |f(z +y) — f(x)| < cly|’. This finishes
the proof. ]
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Theorem 3. If s € (0,n/2), then H*(R") is continuously embedded
in LP(R") with p = 2n/(n — 2s), i.e., s =n(1/2 —1/p). Moreover, for
fe H(R"),s e (0,n/2),

”f”p < Cns ”Dsf||2 < CHst,2> (0.6)
where

D'f = (=A)7f = ((2r]€)) F).
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Proof. The last inequality in (0.6) is immediate so we just need to show
the first one. We define

s 1\ Cn.s
Df=g or f=D g=cu(0) = i5r e 07)

where we have used the result of Exercise 1.14. Thus by the Hardy—
Littlewood—Sobolev estimate (0.20) it follows that

—3 Cn,s s
LAl = 11D gll, = || « gl < cosllglls =Dl (0.8)

]

[]
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We notice from Theorems 2 and 3, and Corollary 1 that local regularity
in H°, s > 0, increases with the parameter s.

Examples 1 and 3 show that the functions in H*(R") with s < n/2
or s <n/2+1 respectively are not necessarily continuous nor C'.
Moreover, let f € L*(R") with

~ 1
MO = T ey sz 116D

(which is radial, decreasing and positive). A simple computation
shows that f € H*(R"), but f ¢ L'(R") andso f ¢ L*(R")
since f(0) = [ f(£)d¢ = oo (see also Exercise 3.11 (iii)).




To complete the embedding results of the spaces H*(R"), s > 0, it
remains to consider the case s = n/2 (since for s = k +n/2, k € Z",

the result follows from this one). So we define the space of functions
of bounded mean oscillation or BMO.

Definition 3. Let f : R — C with f € L, (R") we say that | €

loc

BMO(R") (f has bounded mean oscillation) if

1
B, (z)] /l37~(x) |f(y) = fB.@)|dy < oo (0.9)

| f|lemo = sup
TR
r>0

where

o = Ty Jo o, P00
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Notice that || - ||smo is @ semi-norm since it vanishes for constant func-
tions.

BMO(R") is a vector space with L>*(R") ¢ BMO(R"), since
| fllBMo < 2| f|| and log |z| € BMO(R").

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



Theorem 4. H"/*(R") is continuously embedded in BMO(R"). More
precisely, there exists ¢ = c¢(n) > 0 such that

1 fllsvo < ¢ || D2 f]].

Proof. Without loss of generality we assume f real valued. Consider
x € R"andr > 0.

Let ¢, € C;°(R") such that supp ¢, C {z | |z| < 2} with 0 < ¢,(z) < 1
and ¢.(x) = 1if |x| < 1/r, and define

fl@)=fi+fu=(fo) + (F1—0))"
We observe that
| fllemo < || fillemo + || fullBmo
[]
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and f, € H*(R") for any s > 0, therefore

1
JiB @) = B.(2)] /Br(x) filty) dy = fi(zo)

for some x, € B,.(z), and so for any y € B,(x)

1fiy) = fiB.)] <20 |V fill oo

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



Using this estimate we get

1
B ()] /5,

)Ifz(y) — fiB,() dy

1 1/2
< g, i)~ Sl )

<2 [V ill < 20 IV il
<o [ Jegrfe) e
[€1<1/2r

1/2
<or ([ jeprae) 1Dl < D
€|<1/2r
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Also

1
_ ald
\Br(x)] B,(@'fh(y) fh,Br()| Yy
2
SWHfh”2
2 ~ 1/2
< — 2d
< gape (L, e i)
En ry 2 1/2 n/2
= el ¢ <||D ,
([ iR ) < 1D,
which yields the desired result. O
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We have shown that H*(R") with s > n/2 is a Hilbert space
whose elements are continuous functions. From the point of view of
nonlinear analysis the next property is essential.

Theorem 5. If s > n/2, then H*(R") is an algebra with respect
to the product of functions. That is, if f,g € H*(R"), then fg €
H*(R") with

Hfg”s,Q S Cs||f”s,2||gHs,2- (010)
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Proof. From the triangle inequality we have that for every £, € R”
(L2 < 2°[(1+ 1€ = 0" + (1 + [nf*)). (0.11)

Using this we deduce that

N (fg) = (1 + [€1)2(Fg) ()

—(1+[¢P) S“!/fs n)3(n) dn

< 2 [ [(1+ 16 = nP)" | fig-natn)

Rn
+ (14 2 1 f(€ = n)dn)] dn
< 2°(|Asf| = [g| + | f] * [Asgl).
u



Thus, taking the L?-norm and using Young’s inequality it follows that

1£9lls2 = IA°CF)ll2 < A Fl Gl + 17 IhlIAg])- (0.12)

Finally, (0.5) assures one that if r > n/2, then

1fgllse < el fllsall g1l + 1f ll1llglls2)
< e[ fllsallgllra + 1712l 2)-

Choosing r = s we obtain (0.10). O]

(0.13)
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The inequality (0.13) is not sharp as the following scaling argument
shows. Let A > 0 and

f(@) = fi(Ax), g(z) = gi(A\z), fi, g1 € S(R").

Then as \ 1 oo the right hand side of (0.13) grows as A\**", meanwhile
the left hand side grows as \®. This will not be the case if we replace
| - |I+.2 in (0.13) with the || - ||-norm to get that

1fglls2 < cslllflls2 19l + [ fllso [lglls2) (0.14)

which in particular shows that for any s > 0, H*(R") N L>(R") is an
algebra under the pointwise product.
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For s € Z*, the inequality (0.14) follows by combining the Leibniz rule
for the product of functions and the Gagliardo—Nirenberg inequality:

102 f 1l < e D oz fIg A1 (0.15)

|Bl=m

with |a| =4, c=c(j,m,p,q,7), 1/p—j/n=0(1/¢g—m/n)+ (1 —
0)1/r, 0 € [j/m,1]. For the proof of this inequality we refer the reader
to the reference [3].
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Easy example, take f € Cj(R),

0= [ Sy =2 [ fw)5 sy

Using Cauchy-Schwarz inequality we find that

[f(@)]* < 20 f 12l f ] ze-
Thus

| Fllee < V2UFI5ILF 1

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



For the general case s > ( where the usual pointwise Leibniz rule is
not available, the inequality (0.14) still holds (see [5]). The inequality
(0.14) has several extensions, for instance: Let s € (0,1), r € [1, 00),
1 <pj,q; <oo,1/r=1/p;+1/q;, 7 =1,2. Then

12°(f )l < c(l1D* () pilIgllar + 11F 1 19°(9) )

with @ = A® or D?, (for the proof of this estimate and further general-
izations [/], [9] and [4]). The extension to the case r = p; = g; = o0,
j = 1,2 was given in [2].
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Proposition 3. If p € S(R") and s € R, then the map u — pu is a
bounded linear map of H*(R") to itself. Moreover,

lpullsz < conll(X 41 B0 o lullss. (0.16)
Proof. We will use the following elementary inequality
(L4 1€ < 27V2(1+ 1€ —nP) (1 + ). (0.17)

Let s > 0. Fourier transform properties and inequality (0.17) yield
1+ Py gu(e) = | (1+ ¢l — mato) dn

(1+ €))7 2\5/2
< [ G meEetE — i+ bl ()

e [ (1€ = nPYRE — )1+ )t dn

Young’s inequality yields the result. ]




For the case s < 0, we observe that

(L4172 A+ "> _
(L4 [nl) (14 (€2l —

by employing inequality (0.17).
Then

(14 ER)PEON < ¢ [ 11416 = )R — n)lI1 -+ nP) 5o

< (1 + € —nf*)”

Young's inequality implies

lpulle < conll X+ 1+ )R 1l fullse.
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In many applications the following commutator estimate is often used

SN gl flla= D 102(af) — 902 fll2

|al=s |al=s

< cus (IValle D 1107 o+ 1flls ) 107 gll2)

|Bl=s—1 |B]=s

(see [6]). Similarly, for s > 1 one has

1A% 9] fll2 < c(IValll A Fll2 + [1F [l 1A g]l2),
(see [5]).
Here [07: g] f = 07(9f) — 90, f-

In general, for two linear operators 7', S the commutator of 7" and S’ is
defined by [T, S] =TS — ST.
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There are “equivalent” manners to define fractional derivatives without
relying on the Fourier transform. For instance:

Definition 4 (Stein [10]). Forb € (O, 1) and an appropriate | define

flz 1/2
/ | |“+% y) . (0.18)
Theorem 6 (Stein [10]). Letb € (0,1) and (nféb) < p < . Then
f, D'f € LP(R") ifand only if f, D°f € LF(R").

Moreover,
1Nl + UD° fllp ~ 11|l + 1I1D° £l

The case p = 2 was previously considered in [1].
For other “equivalent” definitions of fractional derivatives see [11].



Finally, to complete our study of Sobolev spaces we introduce the
localized Sobolev spaces.

Definition 5. Given f : R" — R we say that f € H} (R") if for every
© € C°(R") we have ¢ f € H*(R"). In other words, for any ) C R"
open bounded f|q coincides with an element of H*(R").

This means that f has the sufficient regularity but may not have
enough decay to be in H*(R").

Example8. Let n =1, f(z)=x, andg(x) = |z|, then f € H} (R)
forevery s > (0andg € H} (R) forevery s < 3/2.

loc




Hardy-Littlewood-Sobolev Theorem

Definition 6. Let 0 < o« < n. The Riesz potential of order «, denoted
by [,, is defined as

Lf0) = | # dy =k, + f(z),  (0.19)
where c,, =7 "?27°T(n/2 — a/2)/T(a/2).

Since the Riesz potentials are defined as integral operators it is natu-
ral to study their continuity properties in L?(R").
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Theorem 7 (Hardy—Littlewood—Sobolev). Let 0 < a < n, 1 < p <

11 «
qg<oo,with—=—-——.
qg p n

1. If f € LP(R"), then the integral (0.19) is absolutely convergent
almost every x € R".

2.If p>1,then I, isoftype (p,q), i.e.,
[ Za(F)llg < Cpanll Sl (0.20)

For a proof of this theorem see [2].
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