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Teoria Espectral

Introduction

Spectral Theory is the branch of analysis concentrated in the study
of properties of linear operators in infinite dimension.
We will start by introducing some definitions and notations.

Definition 1. Let X, Y be Banach spaces (real or complex). A linear
operator is an application A : D(A) ⊂ X → Y such that

(i) D(A) is a vector subspace of X .

(ii) A(αx + βy) = αAx + βAy, for all x, y ∈ D(A) and for all α, β ∈
R(or C).
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Notation

• The domain of the operator A is denoted by D(A).

• The image or range of the operator A, is defined by

R(A) = {Ax : x ∈ D(A)}.

• The kernel of the operator A, is defined by

Ker(A) = N(A) = A−1({0}) = {x ∈ D(A) : Ax = 0}.

• The graph of of the operator A is defined by

G(A) = Graph(A) = {(x,Ax) : x ∈ D(A)}.
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Remark 1. Notice that R(A) is a subspace of Y , N(a) is a subspace
of X and G(A) is a subspace of X × Y .

Definition 2. Let A be a linear operator. A : D(A) ⊂ X → Y is
called bounded if and only if there exists c > 0 such that

‖Ax‖Y ≤ c ‖x‖X, for all x ∈ D(A). (0.1)

The norm of the operator A is defined as

‖A‖ = ‖A‖X,Y = inf{c > 0 : (0.1) holds}.

The set of all bounded operators from X to Y is given by

B(X, Y ) = {A : D(A) ⊂ X → Y : A is bounded}.

In the case X = Y , we use the notation B(X) = B(X,X).
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Exercise 1. Show that the following statements are equivalent.

(i) A is bounded.

(ii) A is continuous.

(iii) A is continuous at the origin.

Exercise 2. Show that ‖ · ‖ defines a norm on B(X, Y ).

Exercise 3. Prove that

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
x 6=0

‖Ax‖
‖x‖

.

Exercise 4. Show that

‖A ·B‖ ≤ ‖A‖‖B‖, for all A,B ∈ B(X, Y ).
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Example 1. Let A be the multiplication operator defined as

A : L2([0, 1])→ L2([0, 1])

f 7→ Af : [0, 1]→ C
x→ xf (x).

A ∈ B(L2([0, 1])).
In fact,

‖Af‖2
L2 =

∫ 1

0

|xf (x)|2 dx ≤ sup
x∈[0,1]

|x|2
∫ 1

0

|f (x)|2 dx = ‖f‖2
L2.
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Example 2. Let M be the operator defined as

M : L2(R)→ L2(R)

f 7→Mf : R→ C
x→ xf (x).

Let

g(x) =


0, x ∈ (−∞, 1),

1

x
, x ∈ (1,∞),

then ∫
R
|g(x)|2 dx =

∫ ∞
1

dx

x2
= −1

x

∣∣∞
1

= 1.

Thus g ∈ L2(R).
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On the other hand,

Mg(x) =


0, x ∈ (−∞, 1),

1, x ∈ (1,∞),

/∈ L2(R).

We see that the operator M is not well defined on the space L2(R).
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We shall define the domain of M as follows

D(M) = {f ∈ L2(R) : xf (x) ∈ L2(R)} ( L2(R).

In addition, M is not bounded in L2(R). Indeed,
Let

ψm(x) =


0, x ≤ n,
1

x
, n < x < n + 1,

0, x ≥ n + 1.

Then

‖ψn‖2
L2 =

∫ n+1

n

1

x2
dx = −1

x

∣∣n+1

n
=

1

n
− 1

n + 1
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Thus

‖ψn‖L2 =
( 1

n(n + 1)

)1/2

and

‖Mψn‖2
L2 =

∫ n+1

n

dx = 1.

Therefore ψn ∈ D(M).
If M ∈ B(L2(R)), then there would exist c > 0 such that

‖Mf‖L2 ≤ c ‖f‖L2, for all f ∈ L2(R).

But then

‖Mψn‖L2 = 1 ≤ c ‖ψn‖L2 = c
( 1

n(n + 1)

)1/2

→ 0 as n→∞.

Which is a contradiction!
Thus M /∈ B(L2(R)).
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Remark 2. What we observe in the previous examples that difficulties
come from problems with the domain.

Example 3. Consider two linear operators

A : D(A) ⊂ X → Y

B : D(B) ⊂ X → Y.

How can we define the operator A + B?
We can try the natural definition

A + B : D(A) ∩D(B) ⊂ X → Y

x −−−−→ Ax + Bx.

However there exist dense subspaces with intersection {0} in L2(R)
for instance. (add example)
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Definition 3. Let A : D(A) ⊂ X → Y and B : D(B) ⊂ X → Y be
two linear operators. We said that the linear operator B extends the
linear operator A denoted by A ⊆ B, if

D(A) ⊂ D(B) and Bx = Ax, for x ∈ D(A).

We call B an extension of A.
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Theorem 5. Let A : D(A) ⊂ X → Y be a bounded linear operator.
Then there exists a unique extension Ā of A, Ā : D(A) ⊂ X → Y
such that ‖Ā‖ = ‖A‖.
In particular, if D(A) = X then A extends over all X .

Proof. Let x ∈ D(A) there exists a sequence {xn} ⊂ D(A) suc that
xn → x and

‖Axn−Axm‖ = ‖A(xn−xm)‖ ≤ ‖A‖‖xn−xm‖ → 0 as n,m→∞.

Then {Axn} is a Cauchy sequence in the Banach space Y . Hence
there exists y ∈ Y such that Axn → y as n→∞.
We define Āx = y.
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Observe that y does not depend on the sequence {xn} such that
xn → x. Indeed, if we have another sequence {x̃n} such that x̃n → x
and Ax̃n → ỹ, then

‖y − ỹ‖ ≤ ‖y − Axn‖ + ‖A‖‖xn − x̃n‖ + ‖Ax̃n − ỹ‖ → 0

as n→∞. Thus y = ỹ.
Hence Ā

∣∣
D(A)

= A, Ā is linear onD(A) and if x ∈ D(A), with xn → x,
then

‖Āx‖ = lim
n→∞
‖Axn‖ ≤ ‖A‖ lim

n→∞
‖xn‖ = ‖A‖‖x‖,

which implies that Ā ∈ B(X, Y ) and ‖Ā‖ ≤ ‖A‖.
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On the other hand, since Ā
∣∣
D(A)

= A for any x ∈ D(A), it follows that

‖Ax‖ = ‖Āx‖ ≤ ‖Ā‖‖x‖.

This inequality implies that ‖A‖ ≤ ‖Ā‖. Therefore ‖A‖ = ‖Ā‖.
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Example 4. The Fourier transform in L1(Rn).

Definition 4. Let f ∈ L1(Rn), the Fourier transform of f is defined by

f̂ (ξ) =

∫
Rn

f (x)e−2πix·ξ dx, for any ξ ∈ Rn,

where x · ξ = x1ξ1 + · · · + xnξn.

We use the notation Ff = f̂ : ξ ∈ Rn → f̂ (ξ) to denote the Fourier
transform of f . This map is clearly linear.

Another notation.

f̂ (ξ) =
1

(2π)n/2

∫
Rn

f (x)e−ix·ξ dx, for any ξ ∈ Rn.
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Proposition 1. If f ∈ L1(Rn), then f̂ ∈ C0
∞(Rn) ⊂ L∞(Rn) and F ∈

B(L1(Rn), L∞(Rn)).

Here C0
∞(Rn) denotes the space of continuous functions which vanish

as |x| → ∞.

Proof. For any ξ ∈ Rn

|f̂ (ξ)| ≤
∫
Rn

|f (x)| dx = ‖f‖L1.

which implies
‖f̂ ‖L∞ ≤ ‖f‖L1.

Thus F ∈ B(L1(Rn), L∞(Rn)).
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Afirmmation f̂ (ξ) ∈ C0(Rn).

For any ξ, ξ′ ∈ Rn,

f̂ (ξ)− f̂ (ξ′) =

∫
Rn

f (x)
(
e−2πix·ξ − e−2πix·ξ′

)
dx.

Then
|f̂ (ξ)− f̂ (ξ′)| ≤

∫
Rn

|f (x)||e−2πix·ξ − e−2πix·ξ′|︸ ︷︷ ︸
g(x,ξ)

dx (0.2)

We observe that 0 ≤ g(x, ξ) ≤ 2|f (x)| ∈ L1(Rn) independently of x
and g(x, ξ)→ 0 as ξ → ξ′. Then Lebesgue’s dominated convergence
theorem implies that the right hand side of (0.2) tends to zero as ξ →
ξ′. This gives us that f̂ (ξ) ∈ C0(Rn).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

To complete the proof of Proposition 1 we use the following result
known as the Riemann-Lebesgue lemma. More precisely,

Lemma 1 (Riemann-Lebesgue). If f ∈ L1(Rn), then f̂ (ξ) → 0, as
|ξ| → ∞.

Proof. Case n = 1.
Let g(x) =

m∑
j=1
αjχ(aj ,bj)(x) be a step function. Then

ĝ(ξ) =
m∑
j=1

αj

∫ bj

aj

e−2πixξ dx

=
m∑
j=1

αj
1

−2πiξ

(
e−2πibjξ − e−2πiajξ

)
whenever ξ 6= 0.

Then

|ĝ(ξ)| ≤
( m∑
j=1

|αj|
) 1

2π|ξ|
→ 0 as |ξ| → ∞.
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Since the step functions are dense in L1(R), given f ∈ L1(R) and
ε > 0, there exists g a step function such that ‖f − g‖L1 < ε.
Hence

|f̂ (ξ)| ≤ |(f̂ − ĝ)(ξ)| + |ĝ(ξ)|
≤ ε + |ĝ(ξ)|.

Letting |ξ| → ∞ in the inequality above yields

lim sup
|ξ|→∞

|f̂ (ξ)| ≤ ε, ε > 0.

We conclude that
|f̂ (ξ)| → 0 as |ξ| → ∞.

Case n > 1. Exercise.
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Basically, there are three types of linear operators defined on func-
tions spaces.

(i) Integral operators

Tκf (x) =

∫
Ω

κ(x, y) f (y) dy.

Tκ : Lp(Ω)→ Lp(Ω)

κ : Ω× Ω→ C, Ω ⊆ Rn.

κ is called the kernel of the operator.
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(ii) Multiplication operators.

F : Ω ⊆ Rn → C
TFf (x) = F (x)f (x),

TF : Lp(Ω)→ Lp(Ω).
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(iii) Differential operators.

For example:

Tf = −∆f = −(∂2
x1

+ ∂2
x2

+ · · · + ∂2
xn

)f.

These operators are typically unbounded operators.
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0.1. Examples of Integral Operators

Example 5 (Hilbert-Schmidt Operators).
Let κ ∈ L2(Ω× Ω) where Ω ⊆ Rn is a open set.
Define

Tκ : L2(Ω)→ L2(Ω)

f 7→ Tκf : x ∈ Ω 7→
∫

Ω

κ(x, y)f (y) dy.

We can see that Tκ ∈ B(L2(Ω)).
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In fact, using the definition of Tκ and the Cauchy-Schwarz inequality
we obtain

|Tκf (x)| =
∣∣∣ ∫

Ω

κ(x, y)f (y) dy
∣∣∣ ≤ ∫

Ω

|κ(x, y)||f (y)| dy

≤
( ∫

Ω

|κ(x, y)|2 dy
)1/2( ∫

Ω

|f (y)|2 dy
)1/2

.

Then

‖Tκf‖L2(Ω) ≤
( ∫

Ω

( ∫
Ω

|κ(x, y)|2 dy
)
‖f‖2

L2(Ω) dx
)1/2

= ‖κ‖L2(Ω×Ω)‖f‖L2(Ω).

Exercise 6.

(i) Prove that for any f ∈ L2(Ω), Tκf is a measurable function.

(ii) Show that Tκf is a compact operator.
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Example 6 (Convolution).
Let f, g : Rn → C be mensurable functions, the convolution product
of f and g is defined by

f ∗ g(x) =

∫
Rn

f (x− y)g(y) dy =

∫
Rn

f (y)g(x− y) dy,

whenever the integral makes sense.

Theorem 7 (Young).
If f ∈ L1(Rn), g ∈ Lp(Rn), 1 ≤ p ≤ ∞, then f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp.

If f ∈ Lp′(Rn), g ∈ Lp(Rn) with 1
p

+ 1
p′

= 1, then

‖f ∗ g‖L∞ ≤ ‖f‖Lp′‖g‖Lp.

Proof. Exercise.
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Remark 3. Using Theorem 7 and interpolation theory one can prove
a generalized version of Young’s inequality. More precisely, for 1 ≤
p, q ≤ ∞ satisfying 1

p
+ 1

q
≥ 1, then f ∗ g ∈ Lr(Rn) with

1

p
+

1

q
= 1 +

1

r

and
‖f ∗ g‖Lr ≤ c(n, p, q)‖f‖Lp‖g‖Lq.
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Example 7 (Fourier Transform). We already defined the Fourier trans-
form for f ∈ L1(Rn), i.e.

Ff (ξ) = f̂ (ξ) =

∫
Rn

f (x)e−2πixξ̇ dx, ξ ∈ Rn.

We proved that F ∈ B(L1(Rn), L∞(Rn)) and that if f ∈ L1(Rn), then
f ∈ C0

∞(Rn) (Riemann-Lebesgue lemma).

We will see next examples of integrable functions such that f̂ /∈
L1(Rn).
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Consider f (x) = χ[−1,1](x) ∈ L1(Rn). The Fourier transform of f is

f̂ (ξ) =

∫ 1

−1

e−2πix·ξ dx =


e2πixξ − e−2πixξ

−2πiξ
=

sin(2πξ)

πξ
, if ξ 6= 0,

2, if ξ = 0.

Thus f̂ (ξ) =
sin(2πξ)

πξ
.

Now we show that f̂ (ξ) /∈ L1(R). For this we observe that for n ≥ 1
we have that∫ (n+1)π

nπ

|f̂ (ξ)| dξ =

∫ (n+1)π

nπ

| sin(2πξ)|
π|ξ|

dξ

≥ 1

(n + 1)π

∫ (n+1)π

nπ

| sin(2πξ)| dξ =
2

(n + 1)π
.
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Adding we obtain

In =

∫ (n+1)π

0

|f̂ (ξ)| dξ =
n∑
k=0

∫ (k+1)π

kπ

|f̂ (ξ)| dξ

≥ 2

π

n∑
k=0

1

(k + 1)
=

2

π

n∑
k=1

1

k
→∞ as n→∞.
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Exercise 8. Show that ∫ ∞
−∞

sinx

x
dx

exists in the sense of a generalised Riemann integral, i.e.∫ ∞
−∞

sinx

x
dx = lim

x̃→∞
y→−∞

∫ x̃

y

sinx

x
dx = π.

Hint: Use the residue theorem.
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Remark 4. The Fourier transform spoils the support. We have seen
that for f (x) = χ[−1,1](x) which a compact support function its Fourier

transform f̂ (ξ) =
sin(2πξ)

πξ
is not a compact support function. We will

prove the following general fact,

Theorem 9 (Paley-Wiener). If f ∈ D(Rn) = C∞c (Rn), then f̂ is an
analytic function.
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