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Distributions. A brief introduction

Distributions

The distribution theory arises in several contexts. One is the treat-
ment of impulsive forces. Newton’s second law affirms that the rate

of change of momentum is equal to the force applied,
dp

dt
= F . Con-

sider an intense force which acts over a very short interval of time
t0 < t < t0 + ∆t. An example is the force applied by the strike of a
hammer. The impulse, I , is defined as I :=

∫
F (t) dt thus

p(t0 + ∆t) = p(t0) + I.

In the limit, as ∆t tends to zero, one arrives to an idealized force which
acts instantaneously to produce a jump I in the momentum p.
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Formally, the force law satisfies

F = 0 for t 6= 0 and
∫
F (t) dt = I. (0.1)

This idealized force is denoted Iδt0, and δt0 is called Dirac’s delta func-
tion though no function can satisfy (0.1). The idealized equation of

motion is
dp

dt
= δt0. The solution satisfies p(t+) − p(t−) = I . Such

idealizations have shown to be useful in a variety of problems of me-
chanics and electricity.
The mathematical framework was developed by Lawrence Schwartz
in the 1940’s.
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We introduce some notation next.
Let Ω ⊂ Rn an open subset.

• The set of all infinitely differentiable functions with compact sup-
port C∞0 (Ω) will be denoted by D(Ω).

• We use the notation E(Ω) to denote C∞(Ω) the set of all infinitely
differentiable functions on Ω.

These sets of functions are referred as test functions.
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Definition 1. A distribution on an open Ω ⊂ Rn is a linear map
l : D(Ω) → C, which is continuous in the sense that {ϕn} ⊂ D(Ω)
satisfies

(i) there is a compact K ⊂ Ω such that for all n, supp(ϕn) ⊂ K
and

(ii) there is a ϕ ∈ D(Ω) such that for all α ∈ Nn, ∂αϕn converges
uniformly to ∂αϕ,

then l(ϕn) → l(ϕ). The set of all distributions on Ω is denoted by
D′(Ω). When ϕn, ϕ satisfy (i) and (ii) we say that ϕn converges to ϕ in
D(Ω).
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The action of a distribution l ∈ D′(Ω) on a test function ϕ ∈ D(ω) is
usually denoted 〈f, ϕ〉. The set D′(Ω) is a complex vector space.

Example 1. If f ∈ L1
loc(Ω), then there is a natural distribution lf de-

fined by

〈l, ϕ〉 =

∫
f (x)ϕ(x) dx.

In this sense, the distributions are generalizations of functions and
are sometimes called generalized functions. Two locally integrable
functions define the same distribution if and only if the functions are
equal almost everywhere. We say that a distribution l is a locally
integrable function and write l ∈ L1

loc(Ω) if l = lf for a f ∈ L1
loc(Ω).

Similarly, we say that l is continuous (resp. C∞(Ω)) if l = lf , for a
f ∈ C(Ω) (resp. C∞(Ω)).
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Example 2. If x0 ∈ Ω, then 〈l, ϕ〉 ≡ ϕ(x0) is a distribution denoted
δx0 and called the Dirac delta at x0. When x0 is not mentioned it is
assumed to be the origin. More generally, 〈l, ϕ〉 ≡ ∂αϕ(x0) is a distri-
bution.
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The following proposition characterizes the distributions.

Proposition 1. A linear map l : D(Ω) → C belongs to D′(Ω) if and
only if for every compact subset K ⊂ Ω there is an integer N(K, l)
and a constant c ∈ R such that for all ϕ ∈ D(Ω) with support in K

|〈l, ϕ〉| ≤ c‖ϕ‖CN , (0.2)

where
‖ϕ‖CN =

∑
|α|≤N

max |∂αϕ|.
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Proof.
If l ∈ D′(Ω) then is clear that (0.2) holds.

Suppose now that (0.2) does not hold for a compact K. For each
integer n, choose ϕn ∈ D(Ω) with support in K such that

|〈l, ϕn〉| > 1 and, ‖ϕn‖CN <
1

n
. (0.3)

Then ϕn satisfy (i) and (ii) with ϕ = 0, but 〈l, ϕ〉 does not converge to
zero thus l is not a distribution.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Definition 2. A sequence of distributions ln ∈ D′(Ω) converges to
l ∈ D′(Ω) if and only if for every test function ϕ ∈ D(Ω), ln(ϕ)→ l(ϕ).

This convergence is denoted ln ⇀ l or ln
D′
→ l.

Example 3. If ρ ∈ D(Ω) with
∫
ρ(x) dx = 1, let ρε(x) = ε−nρ(x/ε).

Then ρε → δ0. In fact,

〈lρε, ϕ〉 =

∫
ε−nρ(x/ε)ϕ(x) dx, ∀ϕ ∈ D(Ω),

=

∫
ρ(y)ϕ(εy) dy.

Thus

lim
ε→0
〈lρε, ϕ〉 = lim

ε→0

∫
ρ(y)ϕ(εy) dy = ϕ(0)

∫
ρ(y) dy = 〈δ, ϕ〉.
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Operations with distributions

The great utility of distributions lies on the fact that the standard oper-
ations of calculus extend to D′(Ω). For instance, one can differentiate
distributions. This is quite important in the study of differential equa-
tions.

The recipe for defining operations on distributions is basically the
same: pass the operator onto the test function.
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Example 4. We recall the translation operator τyf = f (x−y), y ∈ Rn.
Let l ∈ D′(Rn), the translate of l by the vector y, τyl, is defined as
follows. If l were equal to the function f , then for any ϕ ∈ D(Rn), we
have

〈τyl, ϕ〉 =

∫
f (x− y)ϕ(x) dx

=

∫
f (z)ϕ(z + y) dz = 〈l, τ−yϕ〉.

This motivates the definition,

〈τhl, ϕ〉 = 〈l, τ−hϕ〉, ϕ ∈ D(Rn).

It is easy to check that τhl defined as above is a distribution and that
definition agrees with τhf when l = lf .
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Example 5. To differentiate a distribution l on Rn, we form the differ-

ence quotients which could converge to
∂l

∂xj
. Let ej be the vector with

jth coordinate equals 1 and 0 in the others. The difference quotients
are given by〈τ−hejl − l

h
, ϕ
〉
≡
〈
l,
τhejϕ− ϕ

h

〉
, ϕ ∈ D(Rn). (0.4)

The test functions on the right converge to − ∂ϕ
∂xj

, so the continuity of

l implies that the right hand side of (0.4) converges to 〈l,− ∂ϕ
∂xj
〉. This

suggests that 〈 ∂l
∂xj

, ϕ
〉
≡ 〈l,− ∂ϕ

∂xj
〉. (0.5)
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This defines a distribution and if f ∈ C1(Ω) and l = lf , the derivatives
of l are equal to the distributions l ∂f

∂xj

. Thus the operator ∂
∂xj

on D′ is

an extension of ∂
∂xj

on D.

Let us apply the above procedure to find the derivative in distributions
sense of the Heaviside function H(x) = χ[0,∞)(x) defined on R. The
difference quotient

τ−hH −H
h

= h−1χ[0,h]

converges to δ in the sense of distributions. Indeed,〈τ−hH −H
h

,ϕ
〉

=

∫
χ[0,h]

h
ϕ(x) dx =

1

h

∫ h

0

ϕ(x) dx, ϕ ∈ D(Rn).

Letting h tends to 0 we get dH
dx

= δ.
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Observe that the difference quotient converge to zero almost every-
where. SinceH is not constant, zero should not be the desired deriva-
tive. The pointwise limit gives the wrong answer and the distribution
derivative is the right answer.
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The operations on distributions discussed so far are particular cases
of a general algorithm.

Proposition 2 (P.D. Lax). Suppose that L is a linear map from D(Ω1)
to D(Ω2), which is sequentially continuous in the sense that ϕn → ϕ
implies L(ϕn) → L(ϕ). Suppose, in addition, that there is an op-
erator L′, sequentially continuous from D(Ω2) to D(Ω1), which is the
transpose of L in the sense that

〈L(ϕ), ψ〉 = 〈ϕ,L′(ψ)〉 for all ϕ ∈ D(Ω1), ψ ∈ D(Ω2).

Then the operator L extends to a sequentially continuous map of
D′(Ω2) to D′(Ω1) given by

〈L(l), ψ〉 = 〈l, L′(ψ)〉 for all l ∈ D′(Ω1), and ψ ∈ D(Ω2). (0.6)
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Proof. The sequential continuity of L′ shows that L(l) defined in (0.6)
is a distribution. If l = lϕ for some ϕ ∈ D(Ω1), then

〈L(l), ψ〉 ≡ 〈l, L′(ψ)〉 =

∫
Ω1

ϕ(x)L′(ψ)(x) dx

=

∫
Ω2

L(ϕ)(x)ψ(x) dx,
(0.7)

the last equality from the hypothesis that L′ is the transpose of L.
Thus L(l) is the distribution associated to L(ϕ) which proves that L
defined by (0.6) extends L

∣∣
D′.

Finally, if ln ⇀ l in D′(Ω1), it follows immediately from (0.6) that
L(ln) ⇀ L(l) proving the sequentially continuity of L.

Remark 1. The proof of the uniqueness of this extension can be seen
in [1] Appendix Proposition 8.
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Example 6. If a(x) ∈ C∞(Ω), (≡ E(Ω)), then the map L(ϕ) ≡ aϕ is
equal to its own transpose. That is,

〈L(ϕ), ψ〉 =

∫
(a(x)ϕ(x))(ψ) dx =

∫
(ϕ(x))(a(x)ψ) dx = 〈ϕ,L(ψ)〉.

Thus for l ∈ D′(Ω), al is a well-defined distribution given by

〈al, ϕ〉 ≡ 〈l, aϕ〉.
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Example 7. If Ω2 = y + Ω1 and Lτ is translation by y, then L′ = τ−y
is sequentially continuous. Therefore for l ∈ D′(Ω1) the translates of l
are well defined by

〈τyl, ϕ〉 ≡ 〈l, τ−yϕ〉.

The reflection operator ϕ̃(x) = ϕ(−x) is its own transpose. Indeed,

〈L(ϕ), ψ〉 =

∫
ϕ̃(x)ψ(x) =

∫
ϕ(−x)ψ(x) dx

=

∫
ϕ(x)ψ(−x) dx = 〈ϕ,L(ψ)〉.

Thus l̃ is a well-defined distribution on the reflection of Ω.
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Example 8. If L = ∂α (∂α ≡ ∂α1
x1
. . . ∂αnxn , α ∈ Zn and |α| = α1 + · · · +

αn). Integration by parts gives L′ = (−1)|α|∂α which is sequentially
continuous on D.

〈L(ϕ), ψ〉 =

∫
∂αϕ(x)ψ(x) = (−1)|α|

∫
ϕ(x)∂αψ(x) dx

=

∫
ϕ(x)(−1)|α|∂αψ dx = 〈ϕ,L′(ψ)〉.

Thus the derivatives of distributions are defined by

〈∂αl, ϕ〉 ≡ 〈l, (−1)|α|∂αϕ〉.
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Once we have defined multiplication and derivatives we can compute
a product rule as being

〈∂(al), ψ〉 ≡ 〈l,−a∂ψ〉 = 〈l,−∂(aψ)〉+〈l, (∂a)ψ〉 = 〈a∂l+(∂a)l, ψ〉.

Following this procedure inductively we can define the usual Leibniz
for ∂α(al).

If P (x,D) =
∑
aα(x)∂α is a linear partial differential operator with co-

efficients in E(Ω), then P maps D′(Ω) to itself with 〈Pl, ϕ〉 ≡ 〈l, P ′ϕ〉
where the transpose of P is given by

P ′ψ =
∑

(−1)|α|∂α(aαψ).
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Convolution

Suppose that Ω = Rn and ϕ ∈ D′(Rn). Let L be the operator L(ψ) =
ϕ∗ψ. The Leibniz rule for differentiating under the integral implies that
LmapsD′(Rn) continuously to itself. The Fubinni theorem shows that
the transpose of L is convolution with ϕ̃. Thus ϕ ∗ l makes sense for
any l ∈ D′(Rn) and it is given by

〈ϕ ∗ l, ψ〉 ≡ 〈l, ϕ̃ ∗ ψ〉.

〈L(lf), ψ〉 =

∫
lf ∗ ϕ(x)ψ(x) dx =

∫ ( ∫
f (y)ϕ(x− y) dy

)
ψ(x) dx

=

∫ ( ∫
ϕ(x− y)ψ(x) dx

)
f (y) dy

=

∫
f (y)ϕ̃ ∗ ψ(y) dy = 〈lf , ϕ ∗ ψ〉 = 〈lf , L′(ψ)〉
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Example 9. We compute ϕ ∗ δ

〈ϕ ∗ δ, ψ〉 ≡ 〈δ, ϕ̃ψ〉 = (ϕ̃ ∗ ψ)(0) =

∫
ϕ(y)ψ(y) dy = 〈ϕ, ψ〉.

Therefore ϕ ∗ δ = ϕ.

It is not difficult to show that for l ∈ D′(Rn),

∂α(ϕ ∗ l) = ϕ ∗ ∂αl = (∂αϕ) ∗ l.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

We can also think as follows

f ∗ ϕ(x) =

∫
f (x− y)ϕ(y) dy =

∫
f (y)ϕ(x− y) dy

=

∫
f (y)τxϕ̃(y) dy = 〈f, τx(ϕ̃)〉.

We end this section with the following results

Proposition 3. If l ∈ D′(Rn) and ϕ ∈ D(Rn), then l ∗ϕ is equal to the
C∞ function whose value at x is 〈l, τx(ϕ̃)〉.
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Proposition 4. Suppose the χ, ρ ∈ D(Rn),
∫
ρ(x) dx = 1, χ(0) = 1,

ρε(x) ≡ ε−nρ(x/ε), and χε(x) = χ(εx).
Then for any l ∈ D′(Rn),

χεl, ρε ∗ l and χε(ρε ∗ l)

converge to l as ε tends to zero. In particular, any such l is the limit in
D′(Rn) of elements of D(Rn).

For the proofs of these propositions see the appendix of [1].
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Definition 3. The support of l ∈ D′(Ω) is the complement of

{x ∈ Ω : l is equal to zero in a neighborhood of x}.

The support is denoted supp (l). The set of all l ∈ D′(Ω) such that
supp (l) is compact in Ω is denoted by E ′(Ω).

Proposition 5. l ∈ D′(Ω) has compact support if and only if l extends
uniquely to a continuous linear functional on E(Ω).
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Tempered distributions

Recall that S(Rn) denotes the Schwartz space, the space of the C∞

functions decaying at infinity, that is,

S(Rn) = {ϕ ∈ C∞ : |||ϕ|||α,β ≡ ‖xα∂βϕ‖L∞(Rn) <∞, for any α, β ∈ (Z+)n}.

Definition 4. A tempered distribution is a continuous linear func-
tional on S(Rn). The set of all tempered distribution is denoted by
S ′(Rn).
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Proposition 6. A linear map T : S(Rn)→ C is continuous if and only
if there exist N ∈ N and c ∈ R such that for all ϕ ∈ S(Rn)

|〈T, ϕ〉| ≤ c
∑

|α|≤N, |β|≤N

‖xβ∂αϕ‖L∞(Rn). (0.8)

Corollary 1. A distribution T ∈ S ′(Rn) extends uniquely to an element
of S ′(Rn) if and only if there exist N ∈ N and c ∈ R such that (0.8)
holds for all ϕ ∈ D(Rd).
In particular, we have

D(Rn) ⊂ E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn).
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Example 10. If f is a Lebesgue measurable function on Rn such that
for some M , (1 + |x|2)−Mf ∈ L1(Rn), then the distribution defined by
f is tempered since

〈f, ϕ〉 = 〈(1 + |x|2)−Mf, (1 + |x|2)Mϕ〉
≤ ‖(1 + |x|2)−Mf‖L1‖(1 + |x|2)Mϕ‖L∞ ≤ cf,M |||ϕ|||2M,0.

Example 11. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then f ∈ S ′ since these
functions satisfy the condition of Example 10, if one chooses M so
large that (1 + |x|2)−M ∈ Lq(Rn) and then uses Hölder’s inequality.
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Definition 5. A sequence Tn ∈ S ′(|rn) converges to S ′(Rn) if and only
if for all ϕ ∈ S(Rn)

〈Tn, ϕ〉 → 〈T, ϕ〉 as n→∞.

We write Tn
S ′→ T .

In the next we mainly interested in extending to S ′ the basic linear
operators of analysis, for instance ∂α and F .
Given a continuous linear operator L : S → S, the transpose L′ maps
S ′ → S ′. For T ∈ S ′(Rn), L′T ∈ S ′ is defined by

〈L′T, ϕ〉 ≡ 〈T, Lϕ〉 for all ϕ ∈ S. (0.9)
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The next proposition shows that the identity can sometimes be used
to extend L.

Proposition 7. Suppose that L : S(Rn) → S(Rn) is a continuous lin-
ear map and that the restriction of the transpose operator to S, L′

∣∣
S,

is a continuous map of S to itself. Then L has a unique sequentially
continuous extension to a linear map L : S ′(Rn)→ S ′(Rn) defined by

〈LT, ϕ〉 ≡ 〈T, L′ϕ〉, for all T ∈ S ′, ϕ ∈ S.

Proof. See Proposition 4 page 77 in [1].
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Remark 2. This proposition identifies when passing the operator to
the test function yields a good extension.

For a general L, one will not even have L′ϕ ∈ S for ϕ ∈ S. The
hypothesis on L′ is very restrictive. However, the translation, the dila-
tion, multiplication by a convenient functionM (see Exercise 2 below),
differentiation ∂α and Fourier transform F are operators which are in-
cluded in this proposition.
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For T ∈ S ′ and ϕ ∈ S, we have

〈(∂α)′T, ϕ〉 ≡ 〈T, (∂α)ϕ〉.

If T ∈ S, the right-hand side is equal to∫
T (x)∂αxϕ(x) dx =

∫
(−∂x)αT (x)ϕ(x) dx = 〈(−∂x)αT, ϕ〉.

Thus, for such T , (∂α)′T = (−∂)αT .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Similarly, for T ∈ S ′ and ϕ ∈ S,

〈FT, ϕ〉 ≡ 〈T,Fϕ〉.

For T ∈ S, the duality identity

〈Fϕ, ψ〉 = 〈ϕ,Fψ〉, for all ϕ, ψ ∈ S,

shows that this is equal to 〈FT, ϕ〉, whence F ′
∣∣
S = F .
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Applications

First consider the solvability of the equation

(1−∆)u = f (0.10)

For u, f in S ′ this is equivalent to

(1 + |ξ|2)û = Ff,

hence
û = (1 + |ξ|2)−1Ff. (0.11)

Proposition 8. For any f ∈ S ′(Rn) there exists exactly one solution
u ∈ S ′(Rn) to (0.10). The solution is given by formula (0.11). In
particular, if f ∈ S, then u ∈ S. If f ∈ L2, then for all |α| ≤ 2,
Dαu ∈ L2(Rn).
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The second application is to a Liouville-type theorem. More precisely.

Theorem 1 (Generalized Liouville Theorem). Suppose that P (D) is a
constant coefficient partial differential operator such that P (ξ) 6= 0 for
ξ 6= 0. If u ∈ S ′(Rn) satisfies Pu = 0, then u is a polynomial in x.

Proof. Taking Fourier transform of the equation we obtain

F(P (D))u = P (ξ)û = 0.

Since P (ξ) 6= 0 if ξ 6= 0 it follows that supp û ⊂ {0}.
Thus Fu has to be a finite linear combination of derivatives of the
delta function

û =
∑

cαD
αδ.
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Applying the inverse Fourier transform we get

u =
∑

cαFDαδ =
∑

cα(−x)αFδ =
∑

cα(−x)α(2π)−n/2,

a polynomial in x.

Corollary 2. The only bounded harmonic (resp. holomorphic) func-
tions on Rn (resp. C) are the constants.
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Next we consider the wave equation,

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t). (0.12)

Both sides of the equation make sense if u is a distribution. If the
equality holds we say that u is weak solution. Recall that u is said a
classical solution if u ∈ C2(R2) and the identity is satisfied.

Consider a traveling wave u(x, t) = f (x − t), f ∈ L1
loc(R). It is clear

that u ∈ L1
loc(R2) and so it defines a distribution. Is it a weak solution?
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Using the differentiation operator definition we find that〈 ∂2

∂t2
u, ϕ

〉
=
〈
u,
∂2

∂t2
ϕ
〉

=

∫∫
f (x− t) ∂

2

∂t2
ϕ(x, t) dxdt〈 ∂2

∂x2
u, ϕ

〉
=
〈
u,

∂2

∂x2
ϕ
〉

=

∫∫
f (x− t) ∂

2

∂x2
ϕ(x, t) dxdt.
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Hence〈 ∂2

∂t2
u− ∂2

∂x2
u, ϕ

〉
=

∫∫
f (x− t)

( ∂2

∂t2
ϕ− ∂2

∂x2
ϕ
)

(x, t) dxdt.

We would to like to show that this is zero. To do so, we make the
change of variables y = x− t, z = x + t, dxdt = 1

2
dydz. and

∂2

∂t2
− ∂2

∂x2
= −4

∂

∂y

∂

∂z
.
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Thus,∫∫
f (x− t)

( ∂2

∂t2
− ∂2

∂x2

)
ϕ(x, t) dxdt = −2

∫∫
f (y)

∂2ϕ

∂y∂z
(y, z) dzdy

We claim that integration in z yields zero. Indeed, we observe that∫ b

a

∂2ϕ

∂y∂z
(y, z) dz =

∂ϕ

∂y
(y, b)− ∂ϕ

∂y
(y, a).
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Thus ∫ b

a

∂2ϕ

∂y∂z
(y, z) dz = 0

since ϕ and ∂ϕ
∂y

vanish in a bounded set. Therefore u(x, t) = f (x− t)
is a weak solution of (0.12).

Next we investigate whether log(x2 + y2) is a weak solution of the
Laplace equation

∆u(x, y) =
( ∂2

∂x2
+
∂2

∂y2

)
u(x, y) = 0. (0.13)

We have to check that〈( ∂2

∂x2
+
∂2

∂y2

)
u, ϕ

〉
=
〈
u,
( ∂2

∂x2
+
∂2

∂y2

)
ϕ
〉

= 0 for all ϕ ∈ D(R2).
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Employing polar coordinates (r, θ) we have that

∂2

∂x2
+
∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
and dxdy = r drdθ.

Then for u(x, y) = log(x2 + y2) we would like to know whether∫ 2π

0

∫ ∞
0

log r2
( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
ϕ(r, θ) rdrdθ = 0

is true. To avoid the singularity of u at the origin we will integrate in r
in (ε,∞) and then we make ε tends to 0.
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We first note∫ 2π

0

log r2 1

r2

∂2

∂θ2
ϕ(r, θ) rθ =

1

r
log r2 ∂ϕ

∂θ
(r, θ)

∣∣∣2π
0

= 0 (0.14)

since
∂ϕ

∂θ
is periodic. Therefore this term is always 0.

On the other hand we have∫ ∞
ε

log r2 ∂

∂r
ϕ(r, θ) dr = −

∫ ∞
ε

∂

∂r
(log r2)ϕ(r, θ) dr − log(ε2)ϕ(ε, θ).

(0.15)
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and∫ ∞
ε

r log r2 ∂
2

∂r2
ϕ(r, θ) dr = −

∫ ∞
ε

∂

∂r
(r log r2)

∂

∂r
ϕ(r, θ) dr

− ε log(ε2)
∂

∂r
ϕ(ε, θ)

=

∫ ∞
ε

∂2

∂r2
(r log r2)ϕ(r, θ) dr

− ε log(ε2)
∂

∂r
ϕ(ε, θ)

+
∂

∂r
(r log r2)

∣∣∣
ε
ϕ(ε, θ).

(0.16)
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Now
∂

∂r
(r log r2) = log r2 + 2,

∂2

∂r2
(r log r2) =

2

r
and

∂

∂r
(log r2) =

2

r
Gathering together the information in (0.14), (0.15) and (0.16) we ob-
tain ∫ 2π

0

∫ ∞
ε

log r2
( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
ϕ(r, θ) rdrdθ

=

∫ 2π

0

∫ ∞
ε

(
− 2

r
+

2

r

)
ϕ(r, θ) drdθ

+

∫ 2π

0

(− log ε2 + log ε2 + 2)ϕ(ε, θ) dθ

+

∫ 2π

0

(−ε log ε2)
∂ϕ

∂r
(ε, θ) dθ.
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Thus

〈∆u, ϕ〉 = lim
ε→0

2

∫ 2π

0

ϕ(ε, θ) dθ −
∫ 2π

0

ε log ε2∂ϕ

∂r
(ε, θ) dθ. (0.17)

Since ϕ is continuous ϕ(ε, θ)→ ϕ(0, θ) as ε→ 0 and so the first term
in (0.17) approaches to 4π〈δ, ϕ〉.
In the second term in (0.17),

∂ϕ

∂r
(ε, θ) remains bounded while

ε log ε2 → 0 as ε→ 0. Hence

∆ log(x2 + y2) = 4πδ.

Therefore log(x2 + y2) is not a weak solution of ∆u = 0.

The previous computations allow us to solve the Poisson equation

∆u = f for any f. (0.18)
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A final remark.

Remark 3. It is clear that S ′(Rn) ⊂ D′(Rn). What is not true is that
any distribution in D′(Rn) is a tempered distribution. For example the
function f (x) = ex

2

in R defines the distribution

〈f, ϕ〉 =

∫ ∞
−∞

ex
2

ϕ(x) dx.

Observe that e−x
2/2 ∈ S(R) and so we have

〈f, ϕ〉 =

∫ ∞
−∞

ex
2

e−x
2/2 dx =

∫ ∞
−∞

ex
2/2 = +∞

which does not define a tempered distribution.
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Exercise 2. Prove

(i) If M ∈ C∞(Rn) and ∀α ∈ (Z+)n, there exist N, c such that

|∂αM | ≤ c(1 + |x|)N ,

then the map f → Mf is a continuous linear transformation of
S(Rn) into itself.

(ii) If in addition, there exist γ, c > 0 such that

|M(x)| ≥ c(1 + |x|)−γ,

then the mapping is one-to-one and onto with continuous inverse.
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Exercise 3. Verify that if f satisfies∫
|x|≤A
|f (x)| dx ≤ cAN as A→∞

for some constants c and N , then∫
Rn
|f (x)ϕ(x)| dx <∞ ∀ϕ ∈ S(Rn).

Therefore ∫
Rn
f (x)ϕ(x) dx

defines a tempered distribution.
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