The Hille-Yosida Theorem

Semigroup theory is the abstract study of first-order ordinary differ-
ential equations with values in Banach spaces, driven by linear, but
possibly unbounded operators.

Definition 1. Let X be a Banach space. A one parameter family of
T(t), 0 <t < oo, of bounded linear operators from X to X is a
strongly continuous semigroup of bounded linear operators on X if

(1) T(0) =1,
(i) T(t+s)=T(t)T(s) foreveryt,s > 0,
(iii) 1561 T(t)x = x forevery z € X.

We will use C, semigroup to connote a strongly continuous semi-
group.



Definition 2. A linear operator A defined by

T _
D(A)={zeX: %r)lm exists | (0.1)
and T
Ax = lgglm for v € D(A) (0.2)

is called the infinitesimal generator of the semigroup T'(t).
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Theorem 1. LetT'(t) be a Cy semigroup. There exist constants w > 0
and M > 1 such that

|T(#)|| < Me*t for 0<t< oo. (0.3)

Proof. First we prove that there exists n > 0 such that ||T(¢)|| is
bounded for 0 < ¢t < 7. By contradiction, we suppose this is false.
Then there is a sequence {t,} satisfying ¢, > 0, limt¢, = 0 and

n—oo

|T'(t,)|| > n. From uniform boundedness theorem it then follows that
for some x € X, ||T(t,)x| is unbounded contrary to (iii) in Definition
1. Hence ||T'(t)|| < M for 0 <t <mn. Since ||T(0)|| =1, M > 1. Let

log M

W = > (0. Givent > Owe havet = nn+ d where 0 < 9 <7

U
and therefore by the semigroup property

IO = IT@)T(n)"| < M™ < MM = Me*.



Corollary 1. If T'(t) is a Cy semigroup then for every x € X, t
T'(t)z is a continuous function from [0, o) into X.

Proof. Let t, h > 0. We observe that

IT(t + k) = T(O)z|| < |TOIT(R)z — 2| < Me|T(h)x — =]
and fort > h > 0 that
1Tt =h)x=T@)z|| < |T(t=h)|l|lz =T (h)z| < Me* ||z —T(h)x|.

Then the continuity follows. []
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Theorem 2. Let T'(t) be a Cy, semigroup and let A be its infinitesimal
generator. Then

(i) Forz € X,

1 t+h

l}gl(”)l n T(s)xds=T(t)x. (0.4)
(i) Forz € X, [ T(s)xds € D(A) and

A(/O T(s)x ds) =T(t)x — x. (0.5)
(i) Forx € D(A), T(t)x € D(A) and

%T(t)a: _ AT(t)z = T(t)Ax. (0.6)
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(iv) Forx € D(A),

T(t)e — T(s)z = / T(r)Ax dr — / AT(Fwdr. (0.7)

Proof.
Part (i) follows from the continuity.
To show part (ii) let . € X and h > 0. We write

/T :cds——/ (T(s+h)x —T(s)x)ds

h/ T(s xds——/T ) ds.

Now taking A J 0 the right hand side tends to 7'(t)x — x whence (ii)
follows.
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Now we prove (iii). Let x € D(A) and h > 0.Then

= L) = T(t)% v o T(t)Az as h10.  (0.8)

Hence, T'(t)x € D(A) and AT (t)x = T(t)Az. From (0.8) we also
deduce that

d+
ET(t):z: = AT (t)x =T (t)Ax.
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Now we need to verify that for ¢ > 0, the left derivative exists and
equals to 7'(t) Azx. To do so, we write

l}ilﬁ)l(T@)aj — Z(t —he T(t)Ax) = 1}&101 T(t—h) (T(h):; L Aa:)
+lim (T(t = h)Az - T(t) Ax)

We notice that both terms on the right hand side are zero. The first
one due to the fact that x € D(A) and ||T'(t — h)|| is bounded on
0 < h < t. The second one because of the strong continuity of 7°(t).
Thus property (iii) follows.

Part (iv) can be deduced by integrating (0.6) from 0 to ¢.



Corollary 2. If A is the infinitesimal generator of a Cy semigroup T'(t)
then D(A) is dense in X and A is a closed linear operator.

Proof. For every z € X we setx, = 1 [ T(s)x ds.

From (i) in Theorem 2 x; € D(A) forallt > 0 and by (i) x; — x as
t 1 0. Therefore D(A) = X. The operator A is clearly linear. Now
we show that it is closed. Let x, € D(A), z, — = and Ax,, — y as
n — oo. By (iv) in Theorem 2 we have that

T(t)x, —x, = /tT(S)Axn ds. (0.9)
0

The integrand converges to T'(s)y uniformly on bounded intervals.



Thus letting n — oo in (0.9) we obtain

t
Tt —z = / T(s)yds. (0.10)
0
Dividing the last identity by ¢ > 0 and making ¢ | 0, we deduce by

employing (i) in Theorem 2 that x € D(A) and Az = y.
[
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Theorem 3. Let T'(t) and S(t) be Cy, semigroups of bounded linear
operators with infinitesimal generators A and B respectively. If A = B
thenT(t) = S(t) fort > 0.

Proof. Let x € D(A) = D(B). By (iii) in Theorem 2 we deduce that
the function s — T'(t — 5)S(s)x is differentiable and that

iT(t —5)S(s)x = —AT(t — s5)S(s)x +T(t — s)BS(s)x

ds
= —T(t —s)AS(s)x+T(t —s)BS(s)x = 0.
Therefore the function s — T'(t —s)S(s)x is constant and in particular
its values at s = 0 and s = t are the same, thatis, T'(t)x = S(t)x. This

is true for any x € D(A) since from Corollary 2 D(A) is dense in X
and T'(t) and S(t) are bounded, T'(t)x = S(t)x forevery x € X. [



If A is the infinitesimal generator of a C,; semigroup then by Corollary
2, D(A) = X. A stronger result can be proved.

Theorem 4. Let A be the infinitesimal generator of the C, semigroup
T(t). If D(A™) is the domain de A", then aD(A”) is dense in X .

Proof. See Theorem 2.7 in [3]. ]

Exercise 5. Let A be the infinitesimal generator of a C, semigroup
T(t) satisfying | T(t)|| < M fort > 0. If v € D(A?), show that

| Az[|* < AMZ|| A%z ||| ]]. (0.11)



Definition 3. A C, semigroup of operators T'(t) is called a C, semi-

group of contractions if
7)) < 1.

i.e. this corresponds to M =1 and w = 0 in (0.3).

In the next the characterization of the infinitesimal generators of C|
semigroups of contractions will be established.
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Theorem 6 (Hille-Yosida). A linear (unbounded) operator A is the in-
finitesimal generator of a C, semigroup of contractions T'(t), t > 0 if
and only if

(i) A is closed and D(A) = X.

(ii) (0,00) C p(A) and

IRA(A)] < (0.12)

1
N
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Proof of Hille-Yosida Theorem

Necessity. By Corollary 2 we have A closed and D(A) = X.
For A > 0and z € X, set

Ryx :/ e MT(t)x dt. (0.13)
0

Since t — T'(t)x is continuous and uniformly bounded the integral
exists as an improper Riemann integral and defines a bounded linear
operator R, with

> 1
IRl = [Tl dr < Sl (.14
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In addition, for A > 0
Th)—1
h

A1 oo A ph
= / e MT(t)x dt — —/ e MT(t)x dt.
h 0 h 0

as h | 0, the right hand side of (0.15) converges to AR,x — x. This
implies that for every x € X and A > 0, Ryx € D(A) and AR, =
)\R)\ — Jor

1 o0
Ry=—[ e™T(t+h)x—T(t)z)dt
A hA (0.15)

(M — ARy = 1. (0.16)
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For x € D(A) we have

RyAzx = / e MT(t) Az dt = / e MAT(t)x dt

o 0 (0.17)

= A(/ e MT(t)x dt) = ARz,
0

where we have used (iii) in Theorem 2 and the fact that A is closed.
From (0.16) and (0.17) we conclude that

Ry A — A)x =x forx € D(A).

Thus, R, is the inverse of A — A, it exists for all A > 0 and satisfies
the estimate (0.12). Therefore conditions (i) and (ii) are necessary.
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To prove the sufficiency we need some preparation.

Lemma 1. Let A satisfy the conditions (i) and (ii) and let R)(A) =
(Al — A)~%. Then

lim AR\(A)x =z forx € X. (0.18)

A—00

Proof. Since )\R)\(A)l' — T = AR)\<A>£B = R)\(A)AI,
1
IAEA(A)z — 2l < [|[RA(A)[ Az < {[|Az] — 0 as A = oco.

Thus Ry\(A)x — xas A\ — oo if x € D(A). But since [[AR\(A)|| <1
and D(A) is dense, we deduce then as well

AR\(A)xr - x as A — oo forall z € X.

[]
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We define, for A > 0, the Yosida approximation of A by
Ay = MAR)\(A) = NRy(A) — A (0.19)

Lemma 2. Let A satisfy the conditions (i) and (ii). If A, is the Yosida
approximation of A. Then

lim Ayz = Ax forx € D(A). (0.20)

A—00
Proof. If x € D(A) we observe that

Then using (0.20) the result follows. ]
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Exercise 7. A semigroup of bounded linear operator, T'(t), is called
uniformly continuous if

lim ||T(t) — I|| = 0.

t10

Prove that a linear operator A is the infinitesimal generator of a uni-
formly continuous semigroup if and only if A is a bounded linear op-
erator.
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Lemma 3. Let A satisfy the conditions (i) and (ii). If A, is the Yosida
approximation of A, then A, is the infinitesimal generator of a uni-
formly continuous semigroup of contractions e'*. In addition, for ev-
eryr € X, A\, u >0 we have

e — x| < t|Aye — Az (0.21)

Proof. We notice that A, in (0.19) is a bounded linear operator and
by Exercise 7 it is the infinitesimal generator of a uniformly continuous
semigroup e¢'“* of bounded linear operators. On the other hand,

HetAAH _ e—tAHet)\QRA(A)H < e—t)\etVHRA(A)H <1

which tells us that ¢ is a semigroup of contractions.



We also observe that ', e, A, and A, commute with each other.
Thus

1
||6tAAx . etAﬂxH _ H/ di((etsAAet(l—s)A#x) dSH
0 S

1
<t / e M A — Az ds||
0
< tl(Ave — A,
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Sufficiency. Let x € D(A). Then

tA)y

e — ez <t Ay — Az < t|Aye — Ax|| + t]|Ax — Az

Which implies by Lemma 2 for z € D(A), that ¢z converges uni-
formly as A — oo in bounded intervals. Since D(A) is dense in X
and ||| < 1 we deduce

lim 2 = T(t)z forevery z € X. (0.22)

A—00

The limit in (0.22) is uniform on bounded intervals. From (0.22) we
can see that the limit T'(¢) satisfies 7'(0) = I and ||T(¢)|| < 1. Fur-
thermore, the map ¢ — T'(¢)x is continuous for ¢ > 0 as a uniform
limit of the continuous function t — e x. Thus T'(t) is a semigroup
of contractions on X.



To end the proof we shall prove that A is the infinitesimal generator of
T(t).
Let x € D(A). Then by (0.22) and Theorem 2 it follows that

T(t)r —x = Jim (eba — )

; ; (0.23)
= lim [ e Axds :/ T(s)Az ds.
0

A—00 0

where the last equality is deduced from the uniform convergence of
e Ayx to T'(t)Ax on bounded intervals. Let now B be the infinites-
imal generator of T'(t) and x € D(A). We observe from (0.23) that

T(t)x —x

1 t
T / T(s)Azds for ¢ > 0. (0.24)
0
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Then making ¢ | 0in (0.24) we get x € D(B) and Bx = Az. There-
fore A C B. Since B is the infinitesimal generator of T'(¢), from the
necessary conditions we deduce that 1 € p(B). On the other hand,

we assume that 1 € p(A) by (ii) in the statement of the theorem. Since
ACB,(I-—B)DA)=(I —A)D(A) =X whence

D(B) = (I — B)‘lX = D(A).
Therefore A = B.
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Corollary 3. A linear operator A is the infinitesimal generator of a C,
semigroup satisfying ||T'(t)|| < e“* if and only if

(i) A is closed and D(A) = X,

(i) The resolvent set satisfies that {\ : Im A = 0, A > w} C p(A) and

for such \ {

A—w
Proof. Exercise. []

[RA(A)] <
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The Lumer-Phillips Theorem

In this section we present a characterization of infinitesimal genera-
tors of dissipative linear operators.

Definition 4. Let X be a Banach space and let X* be its dual. We
denote the value of x* € X* atx € X by either (x*, x) or (x,z*). For
any v € X we define the duality set F'(x) C X* by

F(z)={z": 2" € X* and (z*,z) = ||z||* = ||z*||°}. (0.25)

From the Hahn-Banach theorem we note that the set F'(x) # () for
every r € X.

Definition 5. A linear operator A is dissipative if for every x € D(A)
there exists x* € F(x) such that

Re (Ax, z*) < 0.



An explicit example of a dual set follows.

Example 1. Let X be a Hilbert space with inner product (-|-). We
show that F(x) = {(-|x)}.

Indeed, for each y* € X* the Riesz’ representation theorem gives
a unique y € X such that (x,y*) = (z|y) holds for all xt € X and
lyll = |ly*||. For an element y* € F(xz) we thus have ||z| = ||yl
and (z|y) = ||z||||ly||. The last equality holds if and only if x and y are
linearly dependent. In view of the first equality there thus exists o € C
with |a| = 1 and x = ay. Hence, y* € F(x) implies thaty = x. The
reverse implication is obvious.



Next we give a useful characterization of dissipative operators.

Theorem 8. A linear operator A is dissipative if and only if
|(A — A)x|| > A||z|| forallz € D(A) and A > 0. (0.26)

Proof. Let A be dissipative, A\ > 0 and x € D(A). If z* € F(x) and
Re (Az, z*) < 0then

Iz — Az[l|lz]| > [(Ax — Az,27)| = Re (Az — Az, 2") > Al|z|

and (0.26) follows readily.
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Conversely, let © € D(A) and assume that

AM|z|| < [[Ax — Az]|| forall A > 0.

If y{ € F(Ax — Ax) and z} = . then ||z5|| = 1 and

Il

Azl < [\ — Az|| = (Az — Az, z})
= ARe (z, z}) — Re (Ax, z}) < A||z|| — Re (Az, z7)

for every A > 0. Therefore for A = n we have
1
Re (Ax,z7) <0 and Re(zx,z) > ||| — —||Ax]. (0.27)
n

Since the unit ball of X™ is compact in the weak-star topology of X*
the sequence z’, n — oo, has a weak-star limit point z* € X*, ||2*|| =
1.
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From (0.27) it follows that Re (Ax, z*) < 0 and Re (x, z}) > ||z||. But
Re (z, 2,) < [(z, 2,)| <[]
and therefore (z, z*) = ||z||. Taking =* = ||z|| 2* we have that
" € F(x) and Re (Az,z") <0.
Thus for every x € D(A) there is an 2* € F(z) such that
Re (Ax,z*) <0

and A is dissipative. ]
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Theorem 9 (Lumer-Phillips). Let A be a linear operator with dense
domain D(A) in X.

(i) If A is dissipative and there is a A\, > 0 such that R(\,] — A) = X,
then A is the infinitesimal generator of a C,, semigroup of contrac-
tions on X .

(i) If A is the infinitesimal generator of a Cy semigroup of contractions
on X then RIAI — A) = X forall A\ > 0 and A is dissipative.
Moreover, for every x € D(A) and every x* € F(x),

Re (Ax,z*) < 0.
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Proof. Let A > 0, for A being dissipative we deduce from Theorem 8
that

|(Ax — Ax)|| > A||x|| forevery A > 0and x € D(A). (0.28)

Since R(\I — A) = X, (0.28) implies for A = ), that (Ao — A)™!
is a bounded linear operator and so it is closed. If R(A\] — A) = X
for every A > 0 we have p(A) D (0,00) and ||Ry(A)|| < X! by
(0.28). Thus the Hille-Yosida theorem yields that A is the infinitesimal
generator of a C,, semigroup of contractions on X.

To complete (i) it remains to show that R(Al — A) = X for all A > 0.
Consider

A={A:0<A<oo0 and RN —A)=X}.



Let A € A, from (0.28), A € p(A). Since p(A) is open, a neighborhood
of Aisin p(A). The intersection of this neighborhood with the real line
is clearly in A and therefore A is open. On the other hand, let A\, € A,
A, — A > 0. For every y € X there exists an x,, € D(A) such that

A, — Ax, = . (0.29)

By using (0.28) we deduce that ||z, || < A ' ||ly|| < ¢ for some ¢ > 0.
We notice now that
)‘men - me < H)‘m(xn - xm) - A(xn - xm)H
= |)‘n - )‘mH‘an (0.30)
< c|h = Anl-
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Therefore {x,} is a Cauchy sequence. Let z,, — x. Then by (0.29)
Az, — Mx —y. Since A is closed, x € D(A) and \z — Az = y.
Therefore R(A\ — A) = X and A € A. Thus A is closed in (0, c0) and
since Ay € A by hypothesis A # (). Thus A = (0, c0). This completes
the proof of (i).
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Proof of (ii). If A is the infinitesimal generator of a C;; semigroup of
contractions, 7'(t), on X, then by the Hille-Yosida theorem p(A) DO
(0,00) and so R(AI — A) = X for all A > 0. In addition, if x € D(A),
x* € F(x) then

(), 2)| < |T#)xl[|l="]] < |l
Therefore,
Re(T(t)xr — z,2%) = Re(T(t)x, 2*) — ||z]|* <0 (0.31)
Dividing (0.31) by ¢ > 0 and letting ¢ | 0 yields
Re(Azx, x*) <0.

This holds for every x* € F(x) and the proof is complete.
[]
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Corollary 4. Let A a densely defined closed linear operator. If both
A and A* are dissipative, the operator A is the infinitesimal generator
of a C,, semigroup of contractions on X .

Proof. From (i) in Theorem 9 it is sufficient to show that R(/—A) = X.
Since A is dissipative and closed R(I — A) is a closed subspace of
X. If R(I — A) # X then there exists * € X*, 2* # 0 such that
(x*,x — Ax) = 0 for x € D(A). This implies 2* — A*z* = (. Since A*
is also dissipative it follows from Theorem 8 that * = 0, contradicting
the construction of z*. O



Applications

In our first two example we will use the theory developed in [1] to
study initial/boundary-value problem for second-order PDE. We will
use a particular example.

Example 2. We consider the initial/boundary-value problem

u—Au=0 in Upr=U x (0,T),
u =0 on OU x [0,T7, (0.32)
U=y on U x {t =0},

we suppose that the bounded open set U has a smooth boundary.
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We will reinterpret (0.32) as the flow determined by a semigroup on
X = L*(U). We set

D(A) = H\(U)n H(U), (0.33)

and define
Au = Au ifu e D(A). (0.34)

We already saw that A is an unbounded linear operator on X.
l
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We define the bilinear form associated to —A, as

Blu,v] = / Vu-Vudz. (0.35)
U
Using the Poincaré inequality
ullz20) < IVullZ2w (0.36)
it follows that |
Slullizyw) < Blu,ul. (0.37)
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Claim: The operator A generates a contraction semigroup {7(¢) }:>¢
in L2(U).

We first notice that D(A) given by (0.33) is dense in L*(U).

The operator A is closed. Indeed, let {u;}5, C D(A) with

w; — u, Au; — v in L*(U) (0.38)
By the regularity theory (see Theorem 4 Section 6.3.2 in [1])
s — wll iy < e[l Au; — Aug| (0.39)

forall j, k. Thus (0.39) implies {u;}>, is a Cauchy sequence in H*(U)
and so
u; — u in H*(U). (0.40)

Therefore u € D(A). Furthermore (0.40) implies that Au; — Auw in
L*(U), and so v = Au.
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Formally, assuming « smooth and vanishing rapidly as |z| — oo we
can obtain (0.39) in our case. Suppose u is a solution of —Au = f,
then integrating by parts twice we obtain

fzdx:/ (Au) dx—Z/ Uy, U,
RTL

1,5=1

= — g / Uy U, AT

1,5=1

Regularizing v and using that u € H,(U) the argument above yields
inequality (0.39).
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Next we check the resolvent conditions.
From the Fredholm theory (see Theorem 3in §6.2.2 in [1] for a second
order elliptic operator) for A > 0 the BVP

{—Au +hu=fin U, 0.41)

u=>0 in OU,

has a unique weak solution u € H}(U) for each f € L*(U), i.e. there
is a unique u € H,(U) such that

Blu,v] + X u,v) = (f,v) forall ve Hy(U), (0.42)

where (-, -) is the inner product in L*(U). By the regularity theory (see
(0.39)) u € H*(U) N Hy(U). Hence u € D(A). Now we write (0.41)
as

A — Au=f (0.43)

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



Thus (A — A) : D(A) — X is one-to-one and onto, provided A > 0.
Hence (0, 00) C p.

Consider the weak form of the BVP (0.41), (0.42) and setting v = u
we have

MullZo@y < I 2w lell 2w)-
Hence, since u = R, f, we have the estimate

1
| B fll2y < <N fll 2

This bound is valid for all f € L*(U). Thus

1
73] < 5

Collecting the previous information we can apply the Hille-Yosida the-
orem to prove our claim.
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Example 3. We consider the initial/boundary-value problem associ-
ated to the wave equation,

i

—Au=0 In UT:UX[O,T]
\ u=0 on OU x |0,T] (0.44)
lu=yg, wy=h on U x{t=0}

where U is a bounded open set in R" with smooth boundatry.
We rewrite (0.44) as a first order system by letting v = u,, that is,

/

u=v, vy —Au=0 in Ur=U x [0,T]
. u=0 on OU x |0,T] (0.45)
u=g, uy=h on U x {t =0}.
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Using the Poincaré inequality ||u|7:, < cl|Vul|7: ), we have that

1
5 el < IVl (0.46)

We take X = H;(U) x L*(U) with the norm

1/2
[, 0) | = (IVullee) + lole)

Define
D(A) = [H*(U) N Hy(U)] x Hy(U)

and
A(u,v) = (v, Au) for (u,v) € D(A). (0.47)

[]
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We shall show that A satisfies the hypothesis of the Hille-Yosida the-
orem.
1. The domain of A is dense in H,(U) x L*(U).

2. Ais closed. Indeed, let {(uy, vy.)}72, C D(A) such that
(ug, vi) = (u,v), Alug,vp) = (f,g) in Hy(U) x L*(U).

Since A(uy, vy) = (vg, Auy), we have that f = v and —Au, = —g in
L?*(U). By the regularity theory (see Theorem 4 Section 6.3.2in [1])

[uj — well 2wy < cl|Auy — Auyg | 2w (0.48)

for all j, k. It follows that v, — w in H*(U) and ¢ = Au. Thus
(u,v) € D(A), A(u,v) = (v, Au) = (f, 9)
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3. Nowlet A > 0, (f,g) € X = H;(U) x L*(U), and consider the
operator equation

AMu,v) — A(u,v) = (f, g). (0.49)

or equivalently

Au—v=f we HU)NHU) (0.50)
A—Au=g ve HU). '
But (0.50) implies
Nu—Au=\f+g, we HU)NH;U). (0.51)
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Since \* > 0, estimate (0.46) and the regularity theory imply there
exists a unique solution u of (0.51). Defining v = \u — f in H}(U) we
have proved that (0.49) has a unique solution (u,v). Thus (0, 00) C

p(A).
4. Whenever (0.49) holds, we write (u,v) = Ry(f, g). Now from the
second equation in (0.50) we deduce

)\HUH%z(U)—l—/UVu-Vvda::/Ugvd:c.

Substituting v = Au — f, we obtain

)\(Hv||%2(U)+/Vu-Vuda:) :/gvdx+/Vu-Vfd:1:
U U U

< (lgllzzw) + IV o) U0 22wy + IVl o)
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From the definition ]
[ (u, v)|| < X\I(f, il

and thus |

IRl < 5
We verified the hypotheses of the Hille-Yosida theorem which guaran-
tees the existence of a C; semigroup of operators associated to IBVP

(0.45).
[
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Example 4. Consider the linear operator
A: HY(R) = L*(R)

defined by
u— —(1—0)%u.

We will show that A generates a Cy-semigroup on L*(R) by using the
Hille-Yosida theorem.

In general, Fourier transforms are used in this context (when allowed)
to prove existence and uniqueness of solution for the resolvent equa-
tion (A — A)u = f, which is needed in the application of the Hille-
Yosida Theorem (for all A > 0) or Lumer-Phillips Theorem (for some
A>0).



Here the operator A : D(A) C X — X is defined by
D(A) = H'R), X =L*R), Au=—u+ Uy — Upyes-

Fixed A > 0, we have to show that: given f € L*(R), there exists a
unique v € H*(R) such that

AU+ U — 2Uyy + Ugypw = f (0.52)

Uniqueness: Let u be the solution in H*(R) of (0.52). Then taking
Fourier transform, we conclude that

A~

f V
4= <>\ + 1+ 22 +§4) ' (0:53)

This show that (0.52) have at most one solution in H*(R).
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Existence: Define

A~

f v
“e <A+1+2§2+§4) |

Since f € L%(R) and

P

’ /
A4 1+28% 4 ¢

A~

f

have that € L*(R). Thus u is well defined and
we have tha e (R) us u
belongs to L*(R). Taking Fourier transform in (0.53), we obtain

A+14282+Mu=fel (0.54)

<Ifl
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and then (1 + ¢Yu € L? which implies that u € H*(R). From (0.54),
(A +1—-2() + (i€))a= |

and then, since u € H*(R), it follows that
AU+ U — Uy + Upprye = [

This shows that (0.52) have a solution in H*(R).
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From (0.53)

A~

oAl — il — f <l £ :l
IO =4 A1 = Tl = Nl = |3 5a el < 50 =571
and thus !

I =47 < 5,

which is an estimate we need to apply the Hille-Yosida theorem. [

Remark 1. We can use Fourier transform to find the candidate of C)
semigroup in the previous example. Indeed it should be

T(tu = (e "ErR)Y, ¢ >0,

where ~ ,V are the Fourier transform and inverse Fourier transform.
Verify that T'(t) is indeed a C,y semigroup.
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Example 5. Define for every v € Y = H*(R), s > 3, an operator
Ai(v) by D(Ay(v)) = HYR) and foru € D(A;(v)), Ai(v)u = vDu.

There exists 3 > 0 such that —(A,(v) + BI) is a dissipative operator.

First we note that since v € H*(R), Dv € H* '(R). Since s > 3 the
Sobolev embedding guarantees that Dv € L>*(R) and

[Dv][oe < ||

et < ¢ ||v]| e
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Now, for every u € H'(R) we have

1
(Al(v)u,u):/vDu-uda:ZQ/szﬂdx:—/Dqudx

1

> = [[Dvllscllulls = —co [[v]

Taking 5 > By(v) = co|v]

+ We have the result.
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Example 6. Consider the Laplace operator with Dirichlet boundary
conditions. Let X = L*(0, ) and consider the operator

(Af)(@) = f(z)
with domain
D(A) = {f € L*(0,7) : f cont. differentiable on [0, |, f" exists a.e.
e L20,m), f'(z) - f1(0) = /0 " f(s)ds for € [0, 7]
and f(0) = f(m) = 0}
Then

Afp = [ F©FEds =~ [ £ PG ds = =7 <o,
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Example 7. Let X = L*(R) and Af = f' with D(A) = C;(R).
Then

Arf) = [ £F==[ 1T ==r,An =A%)

for f € D(A), showing that

(A, 1) +(Af f) =0, ie (Af, f) €iR.

This means that both A and — A are dissipative.
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Exercises
1. Consider the initial value problem for the linear hyperbolic system

Wi+ Al )0 = D(a, )0 + [ (2,8) for s €R, 0<t <T,
U(z,0) = ¢ (x) for z € R.

Suppose the matrices A, D and 7 7 are sufficiently regu-
lar. Prove that this problem admits a unique classical solution
W e CL(R x [0, T];R").

2. Show that a semigroup of operators in a Banach space is strongly
continuous in [0,00), i.e. S(t)p — S(to)p when t — t,, if the
continuity is satisfied at ¢, = 0.
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3. Let ¢(x) be a function defined in —oo < = < oo. Let (S(t)p)(x) =
o(x+1), clearly {S(t)}:>0 satisfies the first two semigroup proper-
ties.

(a) Is S(t) strongly continuous in X = L*(R")?
(b) Is S(t) is strongly continuous in X = Cz(R")? Where Cz(R")
denotes the space of bounded continuous functions in R".

4. Define fort > 0
(St)g)z) = | @z —yt)gly)dy, = €R"
where g : R" — R and ¢ is the fundamental solution of the heat
equation. Set S(0)g = g.
(a) Prove that {S(¢)}/>o is a semigroup of contractions in L*(R").

(b) Show that {S(t)};~o is not a semigroup of contractions in
L>(R™).



5.(a) Prove that the infinitesimal generator of a Cj-semigroup in X
is a closed operator.

(b) Suppose A : D — X is aclosed operator and ¢ € C([0,7T]; X)
satisfies ¢(t) € D for all t € [0,T]. Show that ¢ € C([0,T]; D)
if and only if Ap € C([0,T]; X).

6. Let X be a Banach space and f € C([0,T7]; X).

(a) Show that the Riemann integral F(t) = [ f(s)ds exists for
0<t<T.

(b) Prove that F' € C'([0,T]; X) and f(0) = tli%1+ t1F(t).

7.Let X be a Banach space, if f € C([0,T]; X) and S(¢) is a
Cy-semigroup, show that h(s) = S(t — s)f(s) € C([0,T]; X) for
al0 <t <T.



8.Let A : D — X be a closed operator in a Banach space
X and f € O([0,T);D). Let u(t) = [, f(s)ds. Prove that
u € C([0,T]; D) and Au(t) = [, Af(s)ds.

9. Let {S(t)}+>0 be a semigroup of contractions in X, with infinites-
imal generator A. Inductively define D(A*) = {z € D(A*1) :
Az e D(A)}, k =2,.... Show that if x+ € D(A*), for some &,
then S(t)x € D(A*) forall t > 0.
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10. Use the previous exercise to prove that if v is a solution in X =
L*(U) of

ratu—Au =0 em Ur

Tu=0 em U x [0,T]

lu=g em U x{t=0},

with g € C°(U), then u(-,t) € C*>°(U) foreach 0 <t < T,

11. Show that a linear operator A is dissipative if and only if

|(A — A)x|| > M||z|| forallz € D(A)and A > 0.
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