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The Hille-Yosida Theorem

Semigroup theory is the abstract study of first-order ordinary differ-
ential equations with values in Banach spaces, driven by linear, but
possibly unbounded operators.

Definition 1. Let X be a Banach space. A one parameter family of
T (t), 0 ≤ t < ∞, of bounded linear operators from X to X is a
strongly continuous semigroup of bounded linear operators on X if

(i) T (0) = I ,

(ii) T (t + s) = T (t)T (s) for every t, s ≥ 0,

(iii) lim
t↓0
T (t)x = x for every x ∈ X .

We will use C0 semigroup to connote a strongly continuous semi-
group.
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Definition 2. A linear operator A defined by

D(A) =
{
x ∈ X : lim

t↓0

T (t)x− x
t

exists
}

(0.1)

and

Ax = lim
t↓0

T (t)x− x
t

for x ∈ D(A) (0.2)

is called the infinitesimal generator of the semigroup T (t).
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Theorem 1. Let T (t) be a C0 semigroup. There exist constants ω ≥ 0
and M ≥ 1 such that

‖T (t)‖ ≤M eωt for 0 ≤ t <∞. (0.3)

Proof. First we prove that there exists η > 0 such that ‖T (t)‖ is
bounded for 0 ≤ t ≤ η. By contradiction, we suppose this is false.
Then there is a sequence {tn} satisfying tn ≥ 0, lim

n→∞
tn = 0 and

‖T (tn)‖ ≥ n. From uniform boundedness theorem it then follows that
for some x ∈ X , ‖T (tn)x‖ is unbounded contrary to (iii) in Definition
1. Hence ‖T (t)‖ ≤ M for 0 ≤ t ≤ η. Since ‖T (0)‖ = 1, M ≥ 1. Let

ω =
logM

η
≥ 0. Given t ≥ 0 we have t = nη + δ where 0 ≤ δ < η

and therefore by the semigroup property

‖T (t)‖ = ‖T (δ)T (η)n‖ ≤Mn+1 ≤MM t/η = Meωt.
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Corollary 1. If T (t) is a C0 semigroup then for every x ∈ X , t 7→
T (t)x is a continuous function from [0,∞) into X .

Proof. Let t, h ≥ 0. We observe that

‖T (t + h)x− T (t)x‖ ≤ ‖T (t)‖‖T (h)x− x‖ ≤Meωt‖T (h)x− x‖

and for t ≥ h ≥ 0 that

‖T (t−h)x−T (t)x‖ ≤ ‖T (t−h)‖‖x−T (h)x‖ ≤Meωt‖x−T (h)x‖.

Then the continuity follows.
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Theorem 2. Let T (t) be a C0 semigroup and let A be its infinitesimal
generator. Then

(i) For x ∈ X ,

lim
h↓0

1

h

∫ t+h

t

T (s)x ds = T (t)x. (0.4)

(ii) For x ∈ X ,
∫ t
0 T (s)x ds ∈ D(A) and

A
( ∫ t

0

T (s)x ds
)

= T (t)x− x. (0.5)

(iii) For x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax. (0.6)
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(iv) For x ∈ D(A),

T (t)x− T (s)x =

∫ t

s

T (τ )Axdτ =

∫ t

s

AT (τ )x dτ. (0.7)

Proof.
Part (i) follows from the continuity.
To show part (ii) let x ∈ X and h > 0. We write

T (h)− I
h

∫ t

0

T (s)x ds =
1

h

∫ t

0

(
T (s + h)x− T (s)x

)
ds

=
1

h

∫ t+h

t

T (s)x ds− 1

h

∫ h

0

T (s)x ds.

Now taking h ↓ 0 the right hand side tends to T (t)x − x whence (ii)
follows.
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Now we prove (iii). Let x ∈ D(A) and h > 0.Then

T (h)− I
h

T (t)x = T (t)
T (h)− I

h
x→ T (t)Ax as h ↓ 0. (0.8)

Hence, T (t)x ∈ D(A) and AT (t)x = T (t)Ax. From (0.8) we also
deduce that

d+

dt
T (t)x = AT (t)x = T (t)Ax.
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Now we need to verify that for t > 0, the left derivative exists and
equals to T (t)Ax. To do so, we write

lim
h↓0

(T (t)x− T (t− h)x

h
− T (t)Ax

)
= lim

h↓0
T (t− h)

(T (h)x− x
h

− Ax
)

+ lim
h↓0

(
T (t− h)Ax− T (t)Ax

)
We notice that both terms on the right hand side are zero. The first
one due to the fact that x ∈ D(A) and ‖T (t − h)‖ is bounded on
0 ≤ h ≤ t. The second one because of the strong continuity of T (t).
Thus property (iii) follows.

Part (iv) can be deduced by integrating (0.6) from 0 to t.
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Corollary 2. If A is the infinitesimal generator of a C0 semigroup T (t)
then D(A) is dense in X and A is a closed linear operator.

Proof. For every x ∈ X we set xt = 1
t

∫ t
0 T (s)x ds.

From (ii) in Theorem 2 xt ∈ D(A) for all t > 0 and by (i) xt → x as
t ↓ 0. Therefore D(A) = X . The operator A is clearly linear. Now
we show that it is closed. Let xn ∈ D(A), xn → x and Axn → y as
n→∞. By (iv) in Theorem 2 we have that

T (t)xn − xn =

∫ t

0

T (s)Axn ds. (0.9)

The integrand converges to T (s)y uniformly on bounded intervals.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Thus letting n→∞ in (0.9) we obtain

T (t)x− x =

∫ t

0

T (s)y ds. (0.10)

Dividing the last identity by t > 0 and making t ↓ 0, we deduce by
employing (i) in Theorem 2 that x ∈ D(A) and Ax = y.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 3. Let T (t) and S(t) be C0 semigroups of bounded linear
operators with infinitesimal generatorsA andB respectively. IfA = B
then T (t) = S(t) for t ≥ 0.

Proof. Let x ∈ D(A) = D(B). By (iii) in Theorem 2 we deduce that
the function s→ T (t− s)S(s)x is differentiable and that

d

ds
T (t− s)S(s)x = −AT (t− s)S(s)x + T (t− s)BS(s)x

= −T (t− s)AS(s)x + T (t− s)BS(s)x = 0.

Therefore the function s→ T (t−s)S(s)x is constant and in particular
its values at s = 0 and s = t are the same, that is, T (t)x = S(t)x. This
is true for any x ∈ D(A) since from Corollary 2 D(A) is dense in X
and T (t) and S(t) are bounded, T (t)x = S(t)x for every x ∈ X .
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If A is the infinitesimal generator of a C0 semigroup then by Corollary
2, D(A) = X . A stronger result can be proved.

Theorem 4. Let A be the infinitesimal generator of the C0 semigroup
T (t). If D(An) is the domain de An, then

∞
∩
n=1
D(An) is dense in X .

Proof. See Theorem 2.7 in [3].

Exercise 5. Let A be the infinitesimal generator of a C0 semigroup
T (t) satisfying ‖T (t)‖ ≤M for t ≥ 0. If x ∈ D(A2), show that

‖Ax‖2 ≤ 4M 2‖A2x‖‖x‖. (0.11)
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Definition 3. A C0 semigroup of operators T (t) is called a C0 semi-
group of contractions if

‖T (t)‖ ≤ 1.

i.e. this corresponds to M = 1 and ω = 0 in (0.3).

In the next the characterization of the infinitesimal generators of C0

semigroups of contractions will be established.
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Theorem 6 (Hille-Yosida). A linear (unbounded) operator A is the in-
finitesimal generator of a C0 semigroup of contractions T (t), t ≥ 0 if
and only if

(i) A is closed and D(A) = X .

(ii) (0,∞) ⊂ ρ(A) and

‖Rλ(A)‖ ≤ 1

λ
. (0.12)
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Proof of Hille-Yosida Theorem

Necessity. By Corollary 2 we have A closed and D(A) = X .
For λ > 0 and x ∈ X , set

Rλx =

∫ ∞
0

e−λtT (t)x dt. (0.13)

Since t → T (t)x is continuous and uniformly bounded the integral
exists as an improper Riemann integral and defines a bounded linear
operator Rλ with

‖Rλx‖ =

∫ ∞
0

e−λt‖T (t)x‖ dt ≤ 1

λ
‖x‖. (0.14)
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In addition, for h > 0

T (h)− I
h

Rλx =
1

h

∫ ∞
0

e−λt
(
T (t + h)x− T (t)x

)
dt

=
eλh − 1

h

∫ ∞
0

e−λt T (t)x dt− eλh

h

∫ h

0

e−λt T (t)x dt.

(0.15)

as h ↓ 0, the right hand side of (0.15) converges to λRλx − x. This
implies that for every x ∈ X and λ > 0, Rλx ∈ D(A) and ARλ =
λRλ − Ior

(λI − A)Rλ = I. (0.16)
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For x ∈ D(A) we have

RλAx =

∫ ∞
0

e−λtT (t)Axdt =

∫ ∞
0

e−λtAT (t)x dt

= A
( ∫ ∞

0

e−λtT (t)x dt
)

= ARλx,
(0.17)

where we have used (iii) in Theorem 2 and the fact that A is closed.
From (0.16) and (0.17) we conclude that

Rλ(λI − A)x = x for x ∈ D(A).

Thus, Rλ is the inverse of λI − A, it exists for all λ > 0 and satisfies
the estimate (0.12). Therefore conditions (i) and (ii) are necessary.
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To prove the sufficiency we need some preparation.

Lemma 1. Let A satisfy the conditions (i) and (ii) and let Rλ(A) =
(λI − A)−1. Then

lim
λ→∞

λRλ(A)x = x for x ∈ X. (0.18)

Proof. Since λRλ(A)x− x = ARλ(A)x = Rλ(A)Ax,

‖λRλ(A)x− x‖ ≤ ‖Rλ(A)‖‖Ax‖ ≤ 1

λ
‖Ax‖ → 0 as λ→∞.

Thus Rλ(A)x → x as λ → ∞ if x ∈ D(A). But since ‖λRλ(A)‖ ≤ 1
and D(A) is dense, we deduce then as well

λRλ(A)x→ x as λ→∞ for all x ∈ X.
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We define, for λ > 0, the Yosida approximation of A by

Aλ = λARλ(A) = λ2Rλ(A)− λI. (0.19)

Lemma 2. Let A satisfy the conditions (i) and (ii). If Aλ is the Yosida
approximation of A. Then

lim
λ→∞

Aλx = Ax for x ∈ D(A). (0.20)

Proof. If x ∈ D(A) we observe that

Aλx = λARλ(A) = λRλ(A)Ax.

Then using (0.20) the result follows.
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Exercise 7. A semigroup of bounded linear operator, T (t), is called
uniformly continuous if

lim
t↓0
‖T (t)− I‖ = 0.

Prove that a linear operator A is the infinitesimal generator of a uni-
formly continuous semigroup if and only if A is a bounded linear op-
erator.
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Lemma 3. Let A satisfy the conditions (i) and (ii). If Aλ is the Yosida
approximation of A, then Aλ is the infinitesimal generator of a uni-
formly continuous semigroup of contractions etAλ. In addition, for ev-
ery x ∈ X , λ, µ > 0 we have

‖etAλx− etAµx‖ ≤ t‖Aλx− Aµx‖. (0.21)

Proof. We notice that Aλ in (0.19) is a bounded linear operator and
by Exercise 7 it is the infinitesimal generator of a uniformly continuous
semigroup etAλ of bounded linear operators. On the other hand,

‖etAλ‖ = e−tλ‖etλ2Rλ(A)‖ ≤ e−tλetλ
2‖Rλ(A)‖ ≤ 1

which tells us that etAλ is a semigroup of contractions.
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We also observe that etAλ, etAµ, Aλ and Aµ commute with each other.
Thus

‖etAλx− etAµx‖ =
∥∥∥ ∫ 1

0

d

ds
(etsAλet(1−s)Aµx) ds

∥∥∥
≤ t‖

∫ 1

0

etsAλet(1−s)Aµ(Aλx− Aµx) ds‖

≤ t‖(Aλx− Aµx)‖.
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Sufficiency. Let x ∈ D(A). Then

‖etAλx− etAµx‖ ≤ t‖Aλx− Aµx‖ ≤ t‖Aλx− Ax‖ + t‖Ax− Aµx‖.

Which implies by Lemma 2 for x ∈ D(A), that etAλx converges uni-
formly as λ → ∞ in bounded intervals. Since D(A) is dense in X
and ‖etAλ‖ ≤ 1 we deduce

lim
λ→∞

etAλx = T (t)x for every x ∈ X. (0.22)

The limit in (0.22) is uniform on bounded intervals. From (0.22) we
can see that the limit T (t) satisfies T (0) = I and ‖T (t)‖ ≤ 1. Fur-
thermore, the map t 7→ T (t)x is continuous for t ≥ 0 as a uniform
limit of the continuous function t → etAλx. Thus T (t) is a semigroup
of contractions on X .
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To end the proof we shall prove that A is the infinitesimal generator of
T (t).
Let x ∈ D(A). Then by (0.22) and Theorem 2 it follows that

T (t)x− x = lim
λ→∞

(etAλx− x)

= lim
λ→∞

∫ t

0

etAλAλx ds =

∫ t

0

T (s)Axds.
(0.23)

where the last equality is deduced from the uniform convergence of
etAλAλx to T (t)Ax on bounded intervals. Let now B be the infinites-
imal generator of T (t) and x ∈ D(A). We observe from (0.23) that

T (t)x− x
t

=
1

t

∫ t

0

T (s)Axds for t > 0. (0.24)
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Then making t ↓ 0 in (0.24) we get x ∈ D(B) and Bx = Ax. There-
fore A ⊆ B. Since B is the infinitesimal generator of T (t), from the
necessary conditions we deduce that 1 ∈ ρ(B). On the other hand,
we assume that 1 ∈ ρ(A) by (ii) in the statement of the theorem. Since
A ⊆ B, (I −B)D(A) = (I − A)D(A) = X whence

D(B) = (I −B)−1X = D(A).

Therefore A = B.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Corollary 3. A linear operator A is the infinitesimal generator of a C0

semigroup satisfying ‖T (t)‖ ≤ eωt if and only if

(i) A is closed and D(A) = X ,

(ii) The resolvent set satisfies that {λ : Imλ = 0, λ > ω} ⊂ ρ(A) and
for such λ

‖Rλ(A)‖ ≤ 1

λ− ω
.

Proof. Exercise.
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The Lumer-Phillips Theorem

In this section we present a characterization of infinitesimal genera-
tors of dissipative linear operators.

Definition 4. Let X be a Banach space and let X∗ be its dual. We
denote the value of x∗ ∈ X∗ at x ∈ X by either 〈x∗, x〉 or 〈x, x∗〉. For
any x ∈ X we define the duality set F (x) ⊆ X∗ by

F (x) = {x∗ : x∗ ∈ X∗ and 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}. (0.25)

From the Hahn-Banach theorem we note that the set F (x) 6= ∅ for
every x ∈ X .

Definition 5. A linear operator A is dissipative if for every x ∈ D(A)
there exists x∗ ∈ F (x) such that

Re 〈Ax, x∗〉 ≤ 0.
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An explicit example of a dual set follows.

Example 1. Let X be a Hilbert space with inner product (·|·). We
show that F (x) = {(·|x)}.
Indeed, for each y∗ ∈ X∗ the Riesz’ representation theorem gives
a unique y ∈ X such that 〈x, y∗〉 = (x|y) holds for all x ∈ X and
‖y‖ = ‖y∗‖. For an element y∗ ∈ F (x) we thus have ‖x‖ = ‖y‖
and (x|y) = ‖x‖‖y‖. The last equality holds if and only if x and y are
linearly dependent. In view of the first equality there thus exists α ∈ C
with |α| = 1 and x = αy. Hence, y∗ ∈ F (x) implies that y = x. The
reverse implication is obvious.
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Next we give a useful characterization of dissipative operators.

Theorem 8. A linear operator A is dissipative if and only if

‖(λI − A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0. (0.26)

Proof. Let A be dissipative, λ > 0 and x ∈ D(A). If x∗ ∈ F (x) and
Re 〈Ax, x∗〉 ≤ 0 then

‖λx− Ax‖‖x‖ ≥ |〈λx− Ax, x∗〉| ≥ Re 〈λx− Ax, x∗〉 ≥ λ‖x‖2

and (0.26) follows readily.
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Conversely, let x ∈ D(A) and assume that

λ‖x‖ ≤ ‖λx− Ax‖ for all λ > 0.

If y∗λ ∈ F (λx− Ax) and z∗λ =
y∗λ
‖y∗λ‖

then ‖z∗λ‖ = 1 and

λ‖x‖ ≤ ‖λx− Ax‖ = 〈λx− Ax, z∗λ〉
= λRe 〈x, z∗λ〉 − Re 〈Ax, z∗λ〉 ≤ λ‖x‖ − Re 〈Ax, z∗λ〉

for every λ > 0. Therefore for λ = n we have

Re 〈Ax, z∗n〉 ≤ 0 and Re 〈x, z∗n〉 ≥ ‖x‖ −
1

n
‖Ax‖. (0.27)

Since the unit ball of X∗ is compact in the weak-star topology of X∗

the sequence z∗n, n→∞, has a weak-star limit point z∗ ∈ X∗, ‖z∗‖ =
1.
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From (0.27) it follows that Re 〈Ax, z∗〉 ≤ 0 and Re 〈x, z∗n〉 ≥ ‖x‖. But

Re 〈x, z∗n〉 ≤ |〈x, z∗n〉| ≤ ‖x‖

and therefore 〈x, z∗n〉 = ‖x‖. Taking x∗ = ‖x‖ z∗ we have that

x∗ ∈ F (x) and Re 〈Ax, x∗〉 ≤ 0.

Thus for every x ∈ D(A) there is an x∗ ∈ F (x) such that

Re 〈Ax, x∗〉 ≤ 0

and A is dissipative.
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Theorem 9 (Lumer-Phillips). Let A be a linear operator with dense
domain D(A) in X .

(i) If A is dissipative and there is a λ0 > 0 such that R(λ0I−A) = X ,
then A is the infinitesimal generator of a C0 semigroup of contrac-
tions on X .

(ii) IfA is the infinitesimal generator of a C0 semigroup of contractions
on X then R(λI − A) = X for all λ > 0 and A is dissipative.
Moreover, for every x ∈ D(A) and every x∗ ∈ F (x),

Re 〈Ax, x∗〉 ≤ 0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Proof. Let λ > 0, for A being dissipative we deduce from Theorem 8
that

‖(λx− Ax)‖ ≥ λ‖x‖ for every λ > 0 and x ∈ D(A). (0.28)

Since R(λ0I − A) = X , (0.28) implies for λ = λ0 that (λ0I − A)−1

is a bounded linear operator and so it is closed. If R(λI − A) = X
for every λ > 0 we have ρ(A) ⊇ (0,∞) and ‖Rλ(A)‖ ≤ λ−1 by
(0.28). Thus the Hille-Yosida theorem yields that A is the infinitesimal
generator of a C0 semigroup of contractions on X .

To complete (i) it remains to show that R(λI − A) = X for all λ > 0.
Consider

Λ = {λ : 0 < λ <∞ and R(λI − A) = X}.
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Let λ ∈ Λ, from (0.28), λ ∈ ρ(A). Since ρ(A) is open, a neighborhood
of λ is in ρ(A). The intersection of this neighborhood with the real line
is clearly in Λ and therefore Λ is open. On the other hand, let λn ∈ Λ,
λn → λ > 0. For every y ∈ X there exists an xn ∈ D(A) such that

λnxn − Axn = y. (0.29)

By using (0.28) we deduce that ‖xn‖ ≤ λ−1n ‖y‖ ≤ c for some c > 0.
We notice now that

λm‖xn − xm‖ ≤ ‖λm(xn − xm)− A(xn − xm)‖
= |λn − λm|‖xn‖
≤ c |λn − λm|.

(0.30)
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Therefore {xn} is a Cauchy sequence. Let xn → x. Then by (0.29)
Axn → λx − y. Since A is closed, x ∈ D(A) and λx − Ax = y.
Therefore R(λI −A) = X and λ ∈ Λ. Thus Λ is closed in (0,∞) and
since λ0 ∈ Λ by hypothesis Λ 6= ∅. Thus Λ = (0,∞). This completes
the proof of (i).
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Proof of (ii). If A is the infinitesimal generator of a C0 semigroup of
contractions, T (t), on X , then by the Hille-Yosida theorem ρ(A) ⊇
(0,∞) and so R(λI − A) = X for all λ > 0. In addition, if x ∈ D(A),
x∗ ∈ F (x) then

|〈T (t)x, x∗〉| ≤ ‖T (t)x‖‖x∗‖ ≤ ‖x‖2.

Therefore,

Re〈T (t)x− x, x∗〉 = Re〈T (t)x, x∗〉 − ‖x‖2 ≤ 0 (0.31)

Dividing (0.31) by t > 0 and letting t ↓ 0 yields

Re〈Ax, x∗〉 ≤ 0.

This holds for every x∗ ∈ F (x) and the proof is complete.
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Corollary 4. Let A a densely defined closed linear operator. If both
A and A∗ are dissipative, the operator A is the infinitesimal generator
of a C0 semigroup of contractions on X .

Proof. From (i) in Theorem 9 it is sufficient to show thatR(I−A) = X .
Since A is dissipative and closed R(I − A) is a closed subspace of
X . If R(I − A) 6= X then there exists x∗ ∈ X∗, x∗ 6= 0 such that
〈x∗, x−Ax〉 = 0 for x ∈ D(A). This implies x∗−A∗x∗ = 0. Since A∗

is also dissipative it follows from Theorem 8 that x∗ = 0, contradicting
the construction of x∗.
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Applications

In our first two example we will use the theory developed in [1] to
study initial/boundary-value problem for second-order PDE. We will
use a particular example.

Example 2. We consider the initial/boundary-value problem
ut −∆u = 0 in UT = U × (0, T ),

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0},
(0.32)

we suppose that the bounded open set U has a smooth boundary.
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We will reinterpret (0.32) as the flow determined by a semigroup on
X = L2(U). We set

D(A) = H1
0(U) ∩H2(U), (0.33)

and define
Au = ∆u if u ∈ D(A). (0.34)

We already saw that A is an unbounded linear operator on X .
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We define the bilinear form associated to −∆, as

B[u, v] =

∫
U

∇u · ∇v dx. (0.35)

Using the Poincaré inequality

‖u‖2L2(U) ≤ ‖∇u‖2L2(U) (0.36)

it follows that
1

2
‖u‖2H1

0 (U) ≤ B[u, u]. (0.37)
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Claim: The operator A generates a contraction semigroup {T (t)}t≥0
in L2(U).

We first notice that D(A) given by (0.33) is dense in L2(U).
The operator A is closed. Indeed, let {uj}∞j=1 ⊂ D(A) with

uj → u, Auj → v in L2(U) (0.38)

By the regularity theory (see Theorem 4 Section 6.3.2 in [1])

‖uj − uk‖H2(U) ≤ c ‖Auj − Auk‖L2(U) (0.39)

for all j, k. Thus (0.39) implies {uj}∞j=1 is a Cauchy sequence inH2(U)
and so

uj → u in H2(U). (0.40)

Therefore u ∈ D(A). Furthermore (0.40) implies that ∆uj → ∆u in
L2(U), and so v = Au.
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Formally, assuming u smooth and vanishing rapidly as |x| → ∞ we
can obtain (0.39) in our case. Suppose u is a solution of −∆u = f ,
then integrating by parts twice we obtain∫

Rn
f 2 dx =

∫
Rn

(∆u)2 dx =
n∑

i,j=1

∫
Rn
uxixiuxjxj dx

= −
n∑

i,j=1

∫
Rn
uxixixjuxj dx

=
n∑

i,j=1

∫
Rn
uxixjuxjxi dx

=

∫
Rn
|D2u|2 dx.

Regularizing u and using that u ∈ H1
0(U) the argument above yields

inequality (0.39).
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Next we check the resolvent conditions.
From the Fredholm theory (see Theorem 3 in §6.2.2 in [1] for a second
order elliptic operator) for λ > 0 the BVP{

−∆u + λu = f in U,

u = 0 in ∂U,
(0.41)

has a unique weak solution u ∈ H1
0(U) for each f ∈ L2(U), i.e. there

is a unique u ∈ H1
0(U) such that

B[u, v] + λ(u, v) = (f, v) for all v ∈ H1
0(U), (0.42)

where (·, ·) is the inner product in L2(U). By the regularity theory (see
(0.39)) u ∈ H2(U) ∩ H1

0(U). Hence u ∈ D(A). Now we write (0.41)
as

λu− Au = f (0.43)
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Thus (λ I − A) : D(A)→ X is one-to-one and onto, provided λ > 0.
Hence (0,∞) ⊂ ρ.

Consider the weak form of the BVP (0.41), (0.42) and setting v = u
we have

λ ‖u‖2L2(U) ≤ ‖f‖L2(U)‖u‖L2(U).

Hence, since u = Rλf , we have the estimate

‖Rλf‖L2(U) ≤
1

λ
‖f‖L2(U).

This bound is valid for all f ∈ L2(U). Thus

‖Rλ‖ ≤
1

λ
.

Collecting the previous information we can apply the Hille-Yosida the-
orem to prove our claim.
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Example 3. We consider the initial/boundary-value problem associ-
ated to the wave equation,

utt −∆u = 0 in UT = U × [0, T ]

u = 0 on ∂U × [0, T ]

u = g, ut = h on U × {t = 0}
(0.44)

where U is a bounded open set in Rn with smooth boundary.
We rewrite (0.44) as a first order system by letting v = ut, that is,

ut = v, vt −∆u = 0 in UT = U × [0, T ]

u = 0 on ∂U × [0, T ]

u = g, ut = h on U × {t = 0}.
(0.45)
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Using the Poincaré inequality ‖u‖2L2(U) ≤ c‖∇u‖2L2(U), we have that

1

2
‖u‖2H1

0 (U) ≤ ‖∇u‖2L2(U). (0.46)

We take X = H1
0(U)× L2(U) with the norm

‖(u, v)‖ =
(
‖∇u‖2L2(U) + ‖v‖2L2(U)

)1/2
.

Define
D(A) = [H2(U) ∩H1

0(U)]×H1
0(U)

and
A(u, v) = (v,∆u) for (u, v) ∈ D(A). (0.47)
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We shall show that A satisfies the hypothesis of the Hille-Yosida the-
orem.
1. The domain of A is dense in H1

0(U)× L2(U).

2. A is closed. Indeed, let {(uk, vk)}∞k=1 ⊂ D(A) such that

(uk, vk)→ (u, v), A(uk, vk)→ (f, g) in H1
0(U)× L2(U).

Since A(uk, vk) = (vk,∆uk), we have that f = v and −∆uk = −g in
L2(U). By the regularity theory (see Theorem 4 Section 6.3.2 in [1])

‖uj − uk‖H2(U) ≤ c ‖∆uj −∆uk‖L2(U) (0.48)

for all j, k. It follows that uk → u in H2(U) and g = ∆u. Thus
(u, v) ∈ D(A), A(u, v) = (v,∆u) = (f, g)
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3. Now let λ > 0, (f, g) ∈ X = H1
0(U) × L2(U), and consider the

operator equation

λ(u, v)− A(u, v) = (f, g). (0.49)

or equivalently{
λu− v = f u ∈ H2(U) ∩H1

0(U)

λv −∆u = g v ∈ H1
0(U).

(0.50)

But (0.50) implies

λ2u−∆u = λf + g, u ∈ H2(U) ∩H1
0(U). (0.51)
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Since λ2 > 0, estimate (0.46) and the regularity theory imply there
exists a unique solution u of (0.51). Defining v = λu− f in H1

0(U) we
have proved that (0.49) has a unique solution (u, v). Thus (0,∞) ⊂
ρ(A).
4. Whenever (0.49) holds, we write (u, v) = Rλ(f, g). Now from the
second equation in (0.50) we deduce

λ‖v‖2L2(U) +

∫
U

∇u · ∇v dx =

∫
U

gv dx.

Substituting v = λu− f , we obtain

λ
(
‖v‖2L2(U)+

∫
U

∇u · ∇u dx
)

=

∫
U

gv dx +

∫
U

∇u · ∇f dx

≤ (‖g‖2L2(U) + ‖∇f‖2L2(U))
1/2(‖v‖2L2(U) + ‖∇u‖2L2(U))

1/2.
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From the definition
‖(u, v)‖ ≤ 1

λ
‖(f, g)‖

and thus
‖Rλ‖ ≤

1

λ
.

We verified the hypotheses of the Hille-Yosida theorem which guaran-
tees the existence of a C0 semigroup of operators associated to IBVP
(0.45).
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Example 4. Consider the linear operator

A : H4(R)→ L2(R)

defined by
u 7→ −(1− ∂2

x)
2u.

We will show that A generates a C0-semigroup on L2(R) by using the
Hille-Yosida theorem.

In general, Fourier transforms are used in this context (when allowed)
to prove existence and uniqueness of solution for the resolvent equa-
tion (λ − A)u = f , which is needed in the application of the Hille-
Yosida Theorem (for all λ > 0) or Lumer-Phillips Theorem (for some
λ > 0).
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Here the operator A : D(A) ⊂ X → X is defined by

D(A) = H4(R), X = L2(R), Au = −u + 2uxx − uxxxx.

Fixed λ > 0, we have to show that: given f ∈ L2(R), there exists a
unique u ∈ H4(R) such that

λu + u− 2uxx + uxxxx = f (0.52)

Uniqueness: Let u be the solution in H4(R) of (0.52). Then taking
Fourier transform, we conclude that

u =
( f̂

λ + 1 + 2ξ2 + ξ4

)∨
. (0.53)

This show that (0.52) have at most one solution in H4(R).
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Existence: Define

u =
( f̂

λ + 1 + 2ξ2 + ξ4

)∨
.

Since f̂ ∈ L2(R) and ∣∣∣ f̂

λ + 1 + 2ξ2 + ξ4

∣∣∣ ≤ |f̂ |.
we have that

f̂

λ + 1 + 2ξ2 + ξ4
∈ L2(R). Thus u is well defined and

belongs to L2(R). Taking Fourier transform in (0.53), we obtain

(λ + 1 + 2ξ2 + ξ4)û = f̂ ∈ L2. (0.54)
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and then (1 + ξ4)û ∈ L2 which implies that u ∈ H4(R). From (0.54),

(λ + 1− 2(iξ)2 + (iξ)4)û = f̂

and then, since u ∈ H4(R), it follows that

λu + u− 2uxx + uxxxx = f.

This shows that (0.52) have a solution in H4(R).
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From (0.53)

‖(λ− A)−1f‖ = ‖u‖ = ‖û‖ =
∥∥∥ f̂

λ + 1 + 2ξ2 + ξ4

∥∥∥ ≤ 1

λ
‖f̂‖ =

1

λ
‖f‖

and thus
‖(λ− A)−1‖ ≤ 1

λ
,

which is an estimate we need to apply the Hille-Yosida theorem.

Remark 1. We can use Fourier transform to find the candidate of C0

semigroup in the previous example. Indeed it should be

T (t)u = (e−t(1+ξ
2)2û)∨, t ≥ 0,

where ̂ , ∨ are the Fourier transform and inverse Fourier transform.
Verify that T (t) is indeed a C0 semigroup.
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Example 5. Define for every v ∈ Y = Hs(R), s ≥ 3, an operator
A1(v) by D(A1(v)) = H1(R) and for u ∈ D(A1(v)), A1(v)u = vDu.

There exists β > 0 such that −(A1(v) + βI) is a dissipative operator.

First we note that since v ∈ Hs(R), Dv ∈ Hs−1(R). Since s ≥ 3 the
Sobolev embedding guarantees that Dv ∈ L∞(R) and

‖Dv‖∞ ≤ c‖v‖Hs−1 ≤ c ‖v‖Hs.
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Now, for every u ∈ H1(R) we have

(A1(v)u, u) =

∫
v Du · u dx =

1

2

∫
vDu2 dx = −

∫
Dv u2 dx

≥ −1

2
‖Dv‖∞‖u‖22 ≥ −c0 ‖v‖Hs‖u‖22.

Taking β > β0(v) = c0‖v‖Hs we have the result.
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Example 6. Consider the Laplace operator with Dirichlet boundary
conditions. Let X = L2(0, π) and consider the operator

(Af )(x) = f ′′(x)

with domain

D(A) = {f ∈ L2(0, π) : f cont. differentiable on [0, π], f ′′ exists a.e.

f ′′ ∈ L2(0, π), f ′(x)− f ′(0) =

∫ x

0

f ′′(s) ds for x ∈ [0, π]

and f (0) = f (π) = 0}

Then

〈Af, f〉 =

∫ π

0

f ′′(s)f (s) ds = −
∫
f ′(s)f ′(s) ds = −‖f ′‖2 ≤ 0.
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Example 7. Let X = L2(R) and Af = f ′ with D(A) = C1
0(R).

Then

〈Af, f〉 =

∫
R
f ′ · f̄ = −

∫
R
f · f ′ = −〈f, Af〉 = −〈Af, f〉

for f ∈ D(A), showing that

〈Af, f〉 + 〈Af, f〉 = 0, i.e 〈Af, f〉 ∈ iR.
This means that both A and −A are dissipative.
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Exercises

1. Consider the initial value problem for the linear hyperbolic system{−→u t + A(x, t)−→u x = D(x, t)−→u +
−→
f (x, t) for x ∈ R, 0 < t < T,

−→u (x, 0) = −→g (x) for x ∈ R.

Suppose the matrices A, D and −→g ,
−→
f are sufficiently regu-

lar. Prove that this problem admits a unique classical solution
−→u ∈ C1

B(R× [0, T ];Rn).

2. Show that a semigroup of operators in a Banach space is strongly
continuous in [0,∞), i.e. S(t)φ → S(t0)φ when t → t0, if the
continuity is satisfied at t0 = 0.
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3. Let ϕ(x) be a function defined in −∞ < x <∞. Let (S(t)ϕ)(x) =
ϕ(x+ t), clearly {S(t)}t≥0 satisfies the first two semigroup proper-
ties.

(a) Is S(t) strongly continuous in X = L2(Rn)?

(b) Is S(t) is strongly continuous in X = CB(Rn)? Where CB(Rn)
denotes the space of bounded continuous functions in Rn.

4. Define for t > 0

(S(t)g)(x) =

∫
Rn

Φ(x− y, t) g(y) dy, x ∈ Rn

where g : Rn → R and Φ is the fundamental solution of the heat
equation. Set S(0)g = g.

(a) Prove that {S(t)}t≥0 is a semigroup of contractions in L2(Rn).

(b) Show that {S(t)}t≥0 is not a semigroup of contractions in
L∞(Rn).
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5. (a) Prove that the infinitesimal generator of a C0-semigroup in X
is a closed operator.

(b) SupposeA : D → X is a closed operator and ϕ ∈ C([0, T ];X)
satisfies ϕ(t) ∈ D for all t ∈ [0, T ]. Show that ϕ ∈ C([0, T ];D)
if and only if Aϕ ∈ C([0, T ];X).

6. Let X be a Banach space and f ∈ C([0, T ];X).

(a) Show that the Riemann integral F (t) =
∫ t
0 f (s) ds exists for

0 ≤ t ≤ T .

(b) Prove that F ∈ C([0, T ];X) and f (0) = lim
t→0+

t−1 F (t).

7. Let X be a Banach space, if f ∈ C([0, T ];X) and S(t) is a
C0-semigroup, show that h(s) = S(t − s)f (s) ∈ C([0, T ];X) for
all 0 ≤ t ≤ T .
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8. Let A : D → X be a closed operator in a Banach space
X and f ∈ C([0, T ];D). Let u(t) =

∫ t
0 f (s) ds. Prove that

u ∈ C([0, T ];D) and Au(t) =
∫ t
0 Af (s) ds.

9. Let {S(t)}t≥0 be a semigroup of contractions in X , with infinites-
imal generator A. Inductively define D(Ak) = {x ∈ D(Ak−1) :
Ak−1x ∈ D(A)}, k = 2, . . . . Show that if x ∈ D(Ak), for some k,
then S(t)x ∈ D(Ak) for all t ≥ 0.
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10. Use the previous exercise to prove that if u is a solution in X =
L2(U) of 

∂tu−∆u = 0 em UT

u = 0 em ∂U × [0, T ]

u = g em U × {t = 0},
with g ∈ C∞c (U), then u(·, t) ∈ C∞(U) for each 0 ≤ t ≤ T .

11. Show that a linear operator A is dissipative if and only if

‖(λI − A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0.
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