(1) If A is a closed operator and B is A-bounded operator, then (i) $\mathcal{H} = (\mathcal{D}(A), [\cdot, \cdot])$ is a Hilbert space with inner product

$$[\phi, \psi] = (\phi, \psi) + (A\phi, A\psi).$$

- (ii) $B \in \mathcal{B}(\mathcal{H}, H)$.
- (2) If B is closed and $\rho(A) \neq \emptyset$. Prove that the following affirmations are equivalent: (i) B is A-bounded.
 - (ii) $B(A-z)^{-1} \in \mathcal{B}(H)$ for some $z \in \rho(A)$. (iii) $B(A-z)^{-1} \in \mathcal{B}(H)$ for all $z \in \rho(A)$.
- (3) Let $H_0 = -\Delta$: $H^2(\mathbb{R}^n) \subseteq L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ be the free Hamiltonian and let $z \in$ $\rho(H_0) = \mathbb{C} \setminus [0, +\infty).$
 - (i) Prove that

$$R_0(z)g := (H_0 - z)^{-1}f = \Re_z * g, \ \forall g \in L^2(\mathbb{R}^n)$$

$$R_0(z)g := (|\xi|^2 - z)^{-1})^{\vee} \text{ Check that } R_0(z) \in \Re(L^2(\mathbb{R}^n))$$

where $\Re_z = ((|\xi|^2 - z)^{-1})^{\vee}$. Check that $R_0(z) \in \mathcal{B}(L^2(\mathbb{R}^n))$. (ii) In case n = 1, prove that

$$\mathcal{R}_z(x) = \frac{e^{i\sqrt{z}|x|}}{2\sqrt{z}}, \quad \text{where Im} \sqrt{z} > 0.$$

Hint: Use the Residue Theorem.

(iii) If $z = \lambda + i\eta$ with $\lambda \ge 0$, prove that $\lim_{\eta \to 0} R_0(\lambda + i\eta)$ does not exist $\mathcal{B}(L^2(\mathbb{R}^n))$.