(1) (Spectrum of the multiplication operator). Let $q : \mathbb{R} \to \mathbb{R}$ be such that q is mensurable and finite *a.e.* Define M_q the multiplication operator by q:

$$\begin{cases} D(M_q) = \{ \phi \in L^2(\mathbb{R}) : q \phi \in L^2(\mathbb{R}) \}, \\ M_q \phi = q \phi. \end{cases}$$

- (i) Prove that M_q is a closed operator densely defined.
- (ii) Prove that M_q is a seff-adjoint operator (*i.e.* $M_q = M_q^*$). **Remark:** In particular, this implies that $\sigma(M_q) \subset \mathbb{R}$.
- (iii) Let $r \in \mathbb{R}$, define $I_r = \{x \in \mathbb{R} : q(x) = r\}$. Prove that

$$\operatorname{av}(M_q) = \{ r \in \mathbb{R} : \lambda(I_r) > 0 \},\$$

where λ denotes the Lebesgue measure on \mathbb{R} .

- (iv) Suppose q continuous, show that $\sigma(M_q) = q(\mathbb{R})$. **Hint:** Prove that $q(\mathbb{R}) \subset \sigma(M_q)$, suppose that $r = q(t) \in \rho(M_q)$ and use the function $\phi_{\epsilon}(x) = \frac{\chi_{B_{\epsilon}}}{\sqrt{\lambda(B_{\epsilon})}}$, where $B_{\epsilon} = \{x \in \mathbb{R} : |q(x) - r| < \epsilon\}$, to obtain a contradiction.
- (v) Coming back to the general case (*i.e.* $q \in L^1_{loc}(\mathbb{R})$), define the **essential image** of q by

$$\operatorname{Im}_{e}(q) = \{ r \in \mathbb{R} : \lambda(q^{-1}(B(r,\epsilon))) > 0, \ \forall \ \epsilon > 0 \},\$$

where $B(r, \epsilon) = \{y \in \mathbb{R} : |y - r| < \epsilon\}$. Prove that $\operatorname{Im}_e(q) \subset \overline{q(\mathbb{R})}$, that equality holds if q is continuous, but it does not hold in general.

- (vi) Prove that $\sigma(M_q) = \text{Im}_e(q)$.
- (2) Let *H* be a Hilbert space and $A: D(A) \subseteq H \to H$ be a closed linear operator such that $A \subseteq A^*$. (i) Let $z = \alpha + i\beta \in \mathbb{C} \setminus \mathbb{R}$ (*i.e.* $\beta \neq 0$). Prove that Im(A - z) is a closed set.
 - (ii) Let $z = \alpha + i\beta \in \mathbb{C} \setminus \mathbb{R}$ and $\eta \in \mathbb{C}$ such that $|\eta| < |\beta|$. Prove that $N(A^* (z+\eta)) \cap N(A^* z)^{\perp} = \{0\}$.
 - (iii) Let M and N be two subspaces of H satisfying dim $M > \dim N$. Show that $M \cap N^{\perp} \neq \{0\}$.
 - (iv) Deduce that $z \mapsto \dim N(A^* z)$ is constant on the upper half-plane \mathbb{C}_+ , where $\mathbb{C}_+ = \{z \in \mathbb{C} : Im \, z > 0\}$.
- (3) Let H be a Hilbert space and $A: D(A) \subseteq H \to H$ be a linear operator such that $A = A^*$ and $M \in \mathbb{R}$. Prove that

$$A \ge M \quad \iff \quad \sigma(A) \subset [M, +\infty).$$

Hint: If $\xi \in \rho(A)$, show that the spectral ray $r(\xi)$ of $(A - \xi)^{-1}$ is given by $r(\xi) = \frac{1}{d(\xi, \sigma(A))}$.