We denote by X and Y Banach spaces.

- (1) Let \mathcal{M} be a subspace of $X \times Y$. Prove that \mathcal{M} is the graph of a linear operator if and only if \mathcal{M} does not contain points of the form $(0, v), v \neq 0$.
- (2) Let $T: D(T) \subset X \to Y$ be a linear operator. Prove that if T is a closable operator then $D(\overline{T}) = \{u \in X : u_j (\in D(T)) \xrightarrow{X} u \text{ and } \{Tu_j\} \text{ is a Cauchy sequence in } Y\}.$
- (3) Consider the operators A_j , j = 0, 1, 2, defined by

$$D(A_0) = H^1([-\pi, \pi]),$$

$$D(A_1) = \{ \phi \in \mathcal{D}(A_0) / \phi(-\pi) = \phi(\pi) \},$$

$$D(A_2) = \{ \phi \in \mathcal{D}(A_1) / \phi(-\pi) = \phi(\pi) = 0 \},$$

and

$$A_j = \frac{1}{i} \frac{d}{dx}, \ j = 0, 1, 2.$$

- (i) Prove that A_j is closed for j = 0, 1, 2.
- (ii) Show that $\sigma(A_0) = \sigma(A_2) = \mathbb{C}$ and $\sigma(A_1) = \mathbb{Z}$.
- (4) (Operator with empty spectrum) We Define A^{\pm} by

$$D(A^{\pm}) = \{ \phi \in D(A_0) : \phi(\pm \pi) = 0 \},\$$
$$A^{\pm}\phi = A_0\phi = \frac{1}{i}\phi'.$$

Show that $\sigma(A^{\pm}) = \emptyset$.

(5) (An operator without eigenvalues)
Let
$$D(M) = L^2([-\pi, \pi]) = L^2_{per}$$
.
 $M: D(M) \to L^2_{per}$
 $f \mapsto Mf(x) = x f(x)$ a.e. $x \in [-\pi, \pi]$.

Prove that

(i) $M \in \mathcal{B}(L^2([-\pi, \pi]));$ (ii) $M\phi = \lambda \phi \implies \phi = 0;$ (iii) $\sigma(M) = [-\pi, \pi].$