We denote by X and Y Banach spaces.
(1) Let \mathcal{M} be a subspace of $X \times Y$. Prove that \mathcal{M} is the graph of a linear operator if and only if \mathcal{M} does not contain points of the form $(0, v), v \neq 0$.
(2) Let $T: D(T) \subset X \rightarrow Y$ be a linear operator. Prove that if T is a closable operator then $D(\bar{T})=\left\{u \in X: u_{j}(\in D(T)) \xrightarrow{X} u\right.$ and $\left\{T u_{j}\right\}$ is a Cauchy sequence in $\left.Y\right\}$.
(3) Consider the operators $A_{j}, j=0,1,2$, defined by

$$
\begin{aligned}
& D\left(A_{0}\right)=H^{1}([-\pi, \pi]) \\
& D\left(A_{1}\right)=\left\{\phi \in \mathcal{D}\left(A_{0}\right) / \phi(-\pi)=\phi(\pi)\right\} \\
& D\left(A_{2}\right)=\left\{\phi \in \mathcal{D}\left(A_{1}\right) / \phi(-\pi)=\phi(\pi)=0\right\}
\end{aligned}
$$

and

$$
A_{j}=\frac{1}{i} \frac{d}{d x}, j=0,1,2
$$

(i) Prove that A_{j} is closed for $j=0,1,2$.
(ii) Show that $\sigma\left(A_{0}\right)=\sigma\left(A_{2}\right)=\mathbb{C}$ and $\sigma\left(A_{1}\right)=\mathbb{Z}$.
(4) (Operator with empty spectrum) We Define $A^{ \pm}$by

$$
\begin{gathered}
D\left(A^{ \pm}\right)=\left\{\phi \in D\left(A_{0}\right): \phi(\pm \pi)=0\right\} \\
A^{ \pm} \phi=A_{0} \phi=\frac{1}{i} \phi^{\prime}
\end{gathered}
$$

Show that $\sigma\left(A^{ \pm}\right)=\emptyset$.
(5) (An operator without eigenvalues)

Let $D(M)=L^{2}([-\pi, \pi])=L_{\text {per }}^{2}$.

$$
\begin{aligned}
M: D(M) & \rightarrow L_{\mathrm{per}}^{2} \\
f & \mapsto M f(x)=x f(x) \quad \text { a.e. } x \in[-\pi, \pi] .
\end{aligned}
$$

Prove that
(i) $M \in \mathcal{B}\left(L^{2}([-\pi, \pi])\right)$;
(ii) $M \phi=\lambda \phi \Longrightarrow \phi=0$;
(iii) $\sigma(M)=[-\pi, \pi]$.

