(1) Prove the following formula in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$:

$$
\left(\widehat{e^{-a|x|^{2}}}\right)(\xi)=\left(\frac{\pi}{a}\right)^{n / 2} e^{-\pi^{2}|\xi|^{2} / a}, \quad \operatorname{Re} a \geq 0, \quad a \neq 0
$$

where \sqrt{a} is defined in the branch $\operatorname{Re} a>0$.
(2) Show that if $f \in L^{1}\left(\mathbb{R}^{n}\right), f \not \equiv 0$, with compact support, then for any $\epsilon>0, \widehat{f} \notin$ $L^{1}\left(e^{\epsilon|x|} d x\right)$.
(3) Consider the initial value problem associated to the wave equation

$$
\left\{\begin{array}{l}
\partial_{t}^{2} w-\Delta w=0, \quad x \in \mathbb{R}^{n}, \quad t \in \mathbb{R}^{+} \tag{0.1}\\
w(x, 0)=f(x) \\
\partial_{t} w(x, 0)=g(x)
\end{array}\right.
$$

Prove that:
(i) If $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ are real valued functions, then the solution can be described by the following expression:

$$
\begin{equation*}
w(x, t)=U^{\prime}(t) f+U(t) g=\cos (D t) f+\frac{\sin (D t)}{D} g \tag{0.2}
\end{equation*}
$$

where $\widehat{U(t) h}(\xi)=\frac{\sin (2 \pi|\xi| t)}{2 \pi|\xi|} \widehat{h}(\xi)$ and $\widehat{D h}(\xi)=2 \pi|\xi| \widehat{h}(\xi)$.
(ii) If f, g are supported in $\left\{x \in \mathbb{R}^{3}:|x| \leq M\right\}$ show that $w(\cdot, t)$ is supported in $\left\{x \in \mathbb{R}^{3}:|x| \leq M+t\right\}$.
(iii) Suppose $n=3$ and $f \equiv 0$, prove that

$$
w(x, t)=\frac{1}{4 \pi t} \int_{\{|y|=t\}} g(x+y) d S_{y}
$$

Hint: Deduce and apply the identity

$$
\int_{\{|x|=t\}} e^{2 \pi i \xi \cdot x} d S_{x}=4 \pi t \frac{\sin (2 \pi|\xi| t)}{2 \pi|\xi|}
$$

If $g \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ is supported in $\left\{x \in \mathbb{R}^{3}:|x| \leq M\right\}$, where is the support of $w(\cdot, t)$?
(iv) If $f \in H^{2}\left(\mathbb{R}^{3}\right)$ and $g \in H^{1}\left(\mathbb{R}^{3}\right)$ show that $w \in C\left([0, T]: H^{2}\left(\mathbb{R}^{3}\right)\right)$.

