(1) Prove the following formula in $S'(\mathbb{R}^n)$:

$$(\widehat{e^{-a|x|^2}})(\xi) = \left(\frac{\pi}{a}\right)^{n/2} e^{-\pi^2|\xi|^2/a}, \ \mathcal{R}e \ a \ge 0, \ a \ne 0,$$

where \sqrt{a} is defined in the branch $\Re a > 0$.

- (2) Show that if $f \in L^1(\mathbb{R}^n)$, $f \not\equiv 0$, with compact support, then for any $\epsilon > 0$, $\hat{f} \notin L^1(e^{\epsilon |x|} dx)$.
- (3) Consider the initial value problem associated to the wave equation

(0.1)
$$\begin{cases} \partial_t^2 w - \Delta w = 0, \quad x \in \mathbb{R}^n, \ t \in \mathbb{R}^+, \\ w(x,0) = f(x), \\ \partial_t w(x,0) = g(x), \end{cases}$$

Prove that:

(i) If $f, g \in C_0^{\infty}(\mathbb{R}^n)$ are real valued functions, then the solution can be described by the following expression:

(0.2)
$$w(x,t) = U'(t)f + U(t)g = \cos(Dt)f + \frac{\sin(Dt)}{D}g,$$

where $\widehat{U(t)h}(\xi) = \frac{\sin(2\pi|\xi|t)}{2\pi|\xi|}\widehat{h}(\xi)$ and $\widehat{Dh}(\xi) = 2\pi|\xi|\widehat{h}(\xi).$

- (ii) If f, g are supported in $\{x \in \mathbb{R}^3 : |x| \leq M\}$ show that $w(\cdot, t)$ is supported in $\{x \in \mathbb{R}^3 : |x| \leq M + t\}.$
- (iii) Suppose n = 3 and $f \equiv 0$, prove that

$$w(x,t) = \frac{1}{4\pi t} \int_{\{|y|=t\}} g(x+y) \, dS_y.$$

Hint: Deduce and apply the identity

$$\int_{\{|x|=t\}} e^{2\pi i \xi \cdot x} \, dS_x = 4\pi t \, \frac{\sin(2\pi |\xi|t)}{2\pi |\xi|}.$$

If $g \in C_0^{\infty}(\mathbb{R}^3)$ is supported in $\{x \in \mathbb{R}^3 : |x| \le M\}$, where is the support of $w(\cdot, t)$?

(iv) If $f \in H^2(\mathbb{R}^3)$ and $g \in H^1(\mathbb{R}^3)$ show that $w \in C([0,T]: H^2(\mathbb{R}^3))$.