Teoria Espectral Due 22/06/2020

- (1) Let $A: D \to X$ be a closed operator in a Banach space X and $f \in C([0,T];D)$. Let $u(t) = \int_0^t f(s) \, ds$. Prove that $u \in C([0,T];D)$ and $Au(t) = \int_0^t Af(s) \, ds$.
- (2) Define for t > 0

$$(S(t)g)(x) = \int_{\mathbb{R}^n} \Phi(x - y, t) g(y) \, dy, \ x \in \mathbb{R}^n$$

where $g: \mathbb{R}^n \to \mathbb{R}$ and Φ is the fundamental solution of the heat equation. Set S(0)g = g.

- (a) Prove that $\{S(t)\}_{t\geq 0}$ is a semigroup of contractions in $L^2(\mathbb{R}^n)$.
- (b) Show that $\{S(t)\}_{t\geq 0}$ is not a semigroup of contractions in $L^{\infty}(\mathbb{R}^n)$.
- (3) Let $\{S(t)\}_{t\geq 0}$ be a semigroup of contractions in X, with infinitesimal generator A. Inductively define $D(A^k) = \{x \in D(A^{k-1}) : A^{k-1}x \in D(A)\}, k = 2, \ldots$ Show that if $x \in D(A^k)$, for some k, then $S(t)x \in D(A^k)$ for all $t \geq 0$.
- (4) Use the previous exercise to prove that if u is a solution in $X = L^2(U)$ of

$$\begin{cases} \partial_t u - \Delta u = 0 \quad \text{em } U_T \\ u = 0 \quad \text{em } \partial U \times [0, T] \\ u = g \quad \text{em } U \times \{t = 0\}, \end{cases}$$
 with $g \in C_c^{\infty}(U)$, then $u(\cdot, t) \in C^{\infty}(U)$ for each $0 \le t \le T$.

(5) Consider the initial value problem associated to the wave equation

(0.1)
$$\begin{cases} \partial_t^2 w - \Delta w = 0, \quad x \in \mathbb{R}^n, \ t \in \mathbb{R}^+, \\ w(x,0) = f(x), \\ \partial_t w(x,0) = g(x), \end{cases}$$

We already proved that for $f, g \in C_0^{\infty}(\mathbb{R}^n)$ real valued functions, then the solution can be described by the following expression:

(0.2)
$$w(x,t) = U'(t)f + U(t)g = \cos(Dt)f + \frac{\sin(Dt)}{D}g,$$

where $\widehat{U(t)h}(\xi) = \frac{\sin(2\pi|\xi|t)}{2\pi|\xi|}\widehat{h}(\xi)$ and $\widehat{Dh}(\xi) = 2\pi|\xi|\widehat{h}(\xi).$

- (a) Are $\{U(t)\}_{t\geq 0}$ and $\{U'(t)\}_{t\geq 0}$ strongly continuous (one-parameter) unitary groups in $H^s(\mathbb{R}^n)$?
- (b) Are $\{U(t)\}_{t\geq 0}$ and $\{U'(t)\}_{t\geq 0}$ C_0 semigroups of operators in $H^s(\mathbb{R}^n)$?