(1) Show that a linear combination of functions

$$\begin{cases} \mathbb{R} \to \mathbb{C} \\ x \mapsto \frac{1}{x - \lambda} \end{cases}$$

where $\lambda \in \mathbb{C} \setminus \mathbb{R}$, is dense in the space $C_0(\mathbb{R})$ of continuous functions in \mathbb{R} with limit 0 at $\pm \infty$ with the *sup* norm.

Hint: Use Stone-Weierstrass theorem.

- (2) Show that $E_0(\lambda) = \mathcal{F}^{-1}\xi_{\{|\xi|^2 < \lambda\}}\mathcal{F}$ is the spectral family associated to H_0 .
- (3) Let (M, μ) be a measurable space with measure μ finite. Suppose that f is measurable, real in M which is finite a.e. $[\mu]$. Prove that the operator

$$\varphi \stackrel{T_f}{\mapsto} f\varphi \quad \text{in} \quad L^2(M, d\mu)$$

with domain

$$D(T_f) = \{ \varphi | f \varphi \in L^2(M, d\mu) \}$$

is self-adjoint and $\sigma(T_f)$ is the essential image of f.

(4) Let \mathcal{H} be a Hilbert space and $T: D(T) \subset \mathcal{H} \to \mathcal{H}$. Show that there exists a unique map

$$\begin{cases} L^{\infty}(\mathbb{R}) \to \mathcal{B}(\mathcal{H}) \\ f \mapsto f(T) \end{cases}$$

continuous with norm ≤ 1 , with the following properties:

- (i) The map is a ring homomorphism;
- (ii) $f(T)^* = \overline{f}(T)$ for all f;
- (iii) f(T) > 0 if f > 0;
- (iv) If f_n converges pointwise to $f \in L^{\infty}(\mathbb{R})$ and $||f_n||$ is bounded, then $f_n(T) \to f(T)$ strongly;
- (v) If $f_n \in L^{\infty}$ converges pointwise to the identity function $x \mapsto x$, and $|f_n(x)| \leq |x|$, we have

$$f_n(T)v \to Tv$$

for all $v \in D(T)$.

We recall de definition of ring homomorphism:

Let R and S be rings. Then $\phi : R \to S$ is a ring homomorphism if (a) ϕ is homomorphism of additive groups: $\phi(a + b) = \phi(a) + \phi(b)$ and (b) ϕ preserves multiplication: $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.