
Teoria Espectral

1. Unbounded Operators

These notes are intend to introduce the unbounded operators and
several notions and properties related to them. The notes are sketchy
and you might consult some additional textbooks.

– M. Reed and B. Simon, Methods of Modern Mathematical Physics,
Volumes 1, 2

– E. Hille, Methods in Classical and Functional Analysis
– T. Kato, Perturbation Theory

We will use the following notation. We will denote X, Y to be Banach
spaces. We will use B(z,R) to denote an open ball with center z and
radius R.

1.1. Closed operators.

Definition 1.1. A linear operator T : D(T ) ⊂ X → Y is closed
if and only if for all sequence {φn} ⊂ D(T ) such that

φn
X→ φ and Tφn

Y→ ψ

then
φ ∈ D(T ) and Tφ = ψ,

if and only if the graph

G(T ) = {(φ, Tφ) : φ ∈ D(T )}
is a closed set in X × Y .

Remark 1.2. A linear closed operator is the best we can have after a
linear continuous operator.

Example 1.3. The operator H0 defined by{
D(H0) = H2(Rn)

H0f = −∆f

is a closed operator.
It is not difficult to show that H0 = F−1M0F where{

D(M0) = {φ ∈ L2(Rn) : |ξ|2φ ∈ L2(Rn)}
M0φ = |ξ|2φ.

Affirmation: M0 is closed.
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Indeed, let {φn} ⊂ D(M0) such that φn → φ in L2 and M0φn → ψ
in L2. Then there exists a subsequence {φnk

} of {φn} such that{
φnk

(x)→ φ(x)

|x|2φnk
(x)→ ψ(x)

almost every x ∈ Rn.

This implies that |x|2φ(x) = ψ(x) a.e. Hence | · |2φ ∈ L2(Rn). Thus
φ ∈ D(M0) and ψ = M0φ. It follows that H0 is closed.

Exercise 1.4. If A : D(A) ⊂ X → Y is bounded, show that

A is closed ⇐⇒ D(A) is closed in X.

Exercise 1.5. Let{
T : D(T ) ⊂ X → Y be a closed operator,

A : D(A) ⊂ X → Y be a bounded operator and D(T ) ⊂ D(A).

Show that T + A : D(T ) ⊂ X → Y is a closed operator and

(T + A)φ = Tφ+ Aφ.

Remark 1.6. The perturbation of a closed operator by a bounded op-
erator is a closed operator.

Definition 1.7. Let T : D(T ) ⊂ X → Y and S : D(S) ⊂ X → Y be
linear operators. The sum of T and S is given by{

D(T + S) = D(T ) ∩D(S)

(T + S)φ = Tφ+ Sφ ∀φ ∈ D(T + S).

Definition 1.8.

(1) Let T : D(T ) ⊂ X → Y be a linear operator. The kernel of
the operator T is defined by

N(T ) = ker T = {φ ∈ D(T ) : Tφ = 0} which a subspace of D(T ).

The image of the operator T is defined by

Im(T ) = R(T ) = {Tφ : φ ∈ D(T )} which a subspace of Y.

(2) Let T : D(T ) ⊂ X → Y be an injective linear operator, we
define T−1 by{

D(T−1) = R(T )

T−1Tφ = φ, ∀φ ∈ D(T ).
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Thus T−1 : R(T ) ⊂ Y → X.

(3) If T : D(T ) ⊂ X → Y , S : D(S) ⊂ Y → Z are two linear
operators, we define S ◦ T by{

D(S ◦ T ) = {φ ∈ D(T ) : Tφ ∈ D(S)}
S ◦ T (φ) = S(Tφ).

Some remarks on the graph of a linear operator T : D(T ) ⊂ X → Y .

(1) T is closed ⇐⇒ G(T ) is closed.

(2) G(T ) closed ; D(T ) is closed.

Example 1.9. H0 is a closed linear operator but D(H0) = H2(Rn) is

not closed in L2(Rn). Since H2(Rn) = L2(Rn) this would imply that
H2(Rn) = L2(Rn) which is false.

Theorem 1.10 (Closed Graph Theorem). Let X, Y be Banach spaces.
If T : X → Y is a closed linear operator, then T ∈ B(X, Y ).

Remark 1.11. Note that the operator T is required to be everywhere-
defined, i.e., the domain D(T ) of T is X.

Example 1.12. If T : D(T ) ⊂ X → Y is a closed operator and
S : X → X is a bounded operator. R(S) = ImS ⊂ D(T ). Then
T ◦ S ∈ B(X, Y ).
T ◦ S is closed. Let {φn} ⊂ X = D(T ◦ S) such that{

φn
X→ φ

(T ◦ S)φn
Y→ ψ

Since S is continuous we have that{
Sφn

X→ Sφ

T (Sφn)
Y→ ψ.

On the other hand, since T is closed Sφ ∈ D(T ) and ψ = T ◦ Sφ.
This implies that T ◦ S is closed. Thus T ◦ S : X → Y is closed.
Therefore the Closed Graph Theorem implies T ◦ S ∈ B(X, Y ).

Exercise 1.13. Let T : D(T ) ⊂ X → Y be a linear operator. If T is
closed and injective, show that T−1 is closed.
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1.2. Closure of an operator. Closable operators.

Definition 1.14. Let A : D(A) ⊂ X → Y and B : D(B) ⊂ X → Y be
two linear operators. We say that B extends A if and only if

D(A) ⊆ D(B)

Bφ = Aφ, ∀φ ∈ D(A).

We use the following notation A ⊆ B or B
∣∣
D(A)

= A.

Example 1.15. Define the operator

Ḣ0 : S(Rn) ⊆ L2(R2)→ L2(Rn)

f 7→ −∆f.

It is clear that Ḣ0 ⊆ H0.

Definition 1.16. The linear operator T : D(T ) ⊂ X → Y is closable
if and only if there exists a closed linear operator S with T ⊆ S. That
is, there exists a closed extension of T .

Lemma 1.17. Let M be a subspace of X × Y , then M is the graph of
a linear operator if and only if M does not contain points of the form
(0, v), v 6= 0.

Proof. Exercise. �

Proposition 1.18. Let T : D(T ) ⊂ X → Y be a linear operator. The
following affirmations are equivalent:

(i) T is closable.

(ii) G(T ) is the graph of a linear operator (closed).

(iii) If {φn} ⊆ D(T ) such that φn
X→ 0 and Tφn

Y→ v, then v ≡ 0.

Proof.
(i) =⇒ (ii) Let T : D(T ) ⊂ X → Y be a closable operator, then

there exists S : D(S) ⊂ X → Y closed such that T ⊆ S, that is,
G(T ) ⊂ G(S). This implies that

G(T ) ⊂ G(S) = G(S)

does not contain points (0, v), v 6= 0 by Lemma 1.17. Therefore G(T )

is the graph of a linear operator which is closed since G(T ) is closed.
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(ii) =⇒ (iii) If {φn} ⊆ D(T ) is such that φn
X→ 0 and Tφn

Y→ v,
then

(φn, Tφn)︸ ︷︷ ︸
∈ G(T )

X×Y→ (0, v)︸ ︷︷ ︸
∈ G(T )

This implies that v ≡ 0 since G(T ) is the graph of a linear operator.

(iii) =⇒ (ii) If M = (0, v) ∈ G(T ), then v = 0 which implies that

G(T ) is the graph of a linear operator.

(ii) =⇒ (i) Let S : D(S) ⊆ X → Y be a closed linear operator such

that G(S) = G(T ). Hence

G(T ) ⊆ G(T ) = G(S)

implies that T ⊆ S is closed and thus T is closable. �

Definition 1.19. If T is a closable operator, the operator T defined by
G(T ) = G(T ) is called the closure of T .

Exercise 1.20. If T : D(T ) ⊂ X → Y is closable, show that

D(T ) = {φ ∈ X : φj∈D(T )
X→ φ and {Tφj} is a Cauchy sequence in Y }.

Example 1.21 (A no closable operator). Let X = Y = L2([0, 1]), and
φ ∈ X different from 0. Let

T : D(T ) = C0([0, 1]) ⊆ L2([0, 1])→ L2([0, 1])

f 7→ f(1)φ.

Then T is not closable.
Indeed, suppose that T is closable. Let fj(x) = xj, then Tfj = φ for

all j ∈ N.
On the other hand,

‖fj‖L2 =
(∫ 1

0

x2j dx
)1/2

=
( 1

2j + 1

)1/2
→

j→∞
0

Since T is closable then φ ≡ 0 which is a contradiction.

We will see that all differential operator is closable.

Definition 1.22. Let T be a closed operator, a subspace N ⊂ D(T ) is

a core if and only if T
∣∣
N

= T , that is, if it is possible to recover T
from N.

Exercise 1.23. Show that C∞0 (Rn) and S(Rn) are core of H0.
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1.3. Resolvent, spectrum of an operator.

Definition 1.24. Let T : D(T ) ⊆ X → X a linear operator. The
resolvent set of T denoted by ρ(T ) is defined by

ρ(T ) = {z ∈ C : (T − z)−1 exists and (T − z)−1 ∈ B(X)}.

Remark 1.25. If T is a closed operator we have that

z ∈ ρ(T ) ⇐⇒

{
T − z : D(T ) ⊆ X → X is injective

T − z : D(T ) ⊆ X → X is surjective

⇐⇒ For all ψ ∈ X, there exists a unique φ ∈ D(T )

such that (T − z)φ = ψ.

Indeed,
=⇒ is easy.
⇐= If T −z is 1−1 and surjective, then (T −z)−1 : X → X is closed

(exercise). Then applying the closed graph Theorem (T −z)−1 ∈ B(X).

Definition 1.26. The spectrum of a linear operator T is the set

σ(T ) = C\ρ(T ).

The set of the eigenvalues of T is given by

ev(T ) = {z ∈ C : T − z is not 1− 1},
i.e.

ev(T ) = {z ∈ C : N(T − z) 6= {0}}.

Remark 1.27. We observe that ev(T ) ⊆ σ(T ), but in general the
inclusion is strict.

Example 1.28. Consider the following operator

T : `1(N)→ `1(N)

{xj} = (x0, x1, x2, . . . ) 7→ (0, x0, x1, . . . ).

Notice that T is 1 − 1 but T is not surjective. This in particular
implies that

ev(T ) ( σ(T )

since 0 /∈ ev(T ) and 0 ∈ σ(T ).

Remark 1.29. There are two possible reasons for z ∈ σ(T ).

(i) T − z is not 1− 1.
(ii) (T − z)−1 is not defined in the whole X.
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Definition 1.30. If z ∈ ρ(T ) we define the resolvent operator by

RT (z) = (T − z)−1.

Remark 1.31. We observe that
(T − z)RT (z)φ = φ, ∀φ ∈ X
RT (z)(T − z)ψ = ψ, ∀ψ ∈ D(T ).

Exercise 1.32 (An operator without eigenvalues).
Let D(M) = L2([−π, π]) = L2

per.

M : D(M)→ L2
per

f 7→Mf(x) = x f(x) a.e. x ∈ [−π, π].

Prove that

(i) M ∈ B(L2([−π, π]));
(ii) Mφ = λφ =⇒ φ = 0;
(iii) σ(M) = [−π, π].

Exercise 1.33 (Spectrum of H0 and M0). We recall that M0 = F−1 ◦
H0 ◦ F. Show that

(i) H0 and M0 do not have eigenvalues;
(ii) σ(H0) = σ(M0) = R+ = [0,∞).

Remark 1.34. Two linear operators unitarily equivalent have the same
spectrum.

Exercise 1.35. Consider the operators Aj, j = 0, 1, 2, defined by

D(A0) = H1([−π, π]),

D(A1) = {φ ∈ D(A0) /φ(−π) = φ(π)},
D(A2) = {φ ∈ D(A1) / φ(−π) = φ(π) = 0},

and

Aj =
1

i

d

dx
, j = 0, 1, 2.

(i) Prove that Aj is closed for j = 0, 1, 2.
(ii) Show that σ(A0) = σ(A2) = C and σ(A1) = Z.

Exercise 1.36 (Operator with empty spectrum). We Define A± by

D(A±) = {φ ∈ D(A0) : φ(±π) = 0},

A±φ = A0φ =
1

i
φ′.

Show that σ(A±) = ∅.
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Next we recall the following property of the spectrum for bounded
operator.

Proposition 1.37. If A ∈ B(X), then the spectrum σ(A) 6= 0 and
σ(A) is a compact in C.

In the case of unbounded operators we only know that σ(T ) is closed!
As a consequence we need the next properties:

Theorem 1.38 (First equation of the resolvent). Let T : D(T ) ⊆ X →
X be a closed linear operator. Suppose that z, z′ ∈ ρ(T ), then

RT (z)−RT (z′) = (z − z′)RT (z) ◦RT (z′).

Proof. We have that

(T − z′)− (T − z) = z − z′.
So applying RT (z) in the above identity, we obtain

RT (z) ◦ (T − z′)− IdD(T ) = (z − z′)RT (z).

Now applying RT (z′) on the right, we get the desired equality

RT (z)−RT (z′) = (z − z′)RT (z) ◦RT (z′).

�

Corollary 1.39. It holds that

RT (z) ◦RT (z′) = RT (z′) ◦RT (z).

Proof. In fact, using

RT (z)−RT (z′) = (z − z′)RT (z) ◦RT (z′)

and

RT (z′)−RT (z) = (z′ − z)RT (z′) ◦RT (z)

the result follows. �

Theorem 1.40 (Neumann series). Let X be a Banach space and A ∈
B(X) such that ‖A‖ < 1, then Id− A is invertible and

(1.1) (Id− A)−1 =
∞∑
j=0

Aj.

In addition, it holds that

(1.2) ‖(Id− A)−1‖ ≤ 1

1− ‖A‖
.
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Proof. Let B =
∞∑
j=0

Aj.

Since
∞∑
j=0

‖Aj‖ ≤
∞∑
j=0

‖A‖j <∞,

we deduce that the series B is convergent in norm in B(X) which

implies that B =
∞∑
j=0

Aj ∈ B(X) and for all n ∈ N we have that

(Id− A)
n∑

j=0

Aj =
n∑

j=0

Aj −
n+1∑
j=1

Aj. = Id− An+1

Making n→∞ we deduce that (Id− A)B = Id.
Similarly we prove that B(Id− A) = Id.
Thus B = (Id− A)−1 and

‖(Id− A)−1‖ = ‖
∞∑
j=0

Aj‖ ≤
n∑

j=0

‖A‖j =
1

1− ‖A‖
.

�

Corollary 1.41. If T ∈ G(X) = {A ∈ B(X);A is invertible, A−1 ∈
B(X)}. Then

B(T,
1

‖T−1‖
) ⊂ G(X).

In particular, this implies that G(X) is open. In other words, for all
S ∈ B(X) such that ‖S‖ ≤ 1

‖T−1‖ we have that T + S ∈ G(X).

Moreover,

‖(T + S)−1‖ ≤ ‖T−1‖
1− ‖S‖‖T−1‖

.

Proof. We first notice that

T + S = T ◦ (Id+ T−1 ◦ S)

and

‖T−1 ◦ S‖ ≤ ‖S‖‖T−1‖ < 1.

This implies that (Id+ T−1S) ∈ G(X). Hence

T + S = T ◦ (Id+ T−1 ◦ S) ∈ G(X). (In particular, G(X) is a group).

In addition,

(T + S)−1 = (Id+ T−1S)−1 ◦ T−1
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which implies that

‖(T + S)−1‖ ≤ ‖(Id+ T−1S)−1‖‖T−1‖

≤ ‖T−1‖
1− ‖T−1 ◦ S‖

≤ ‖T−1‖
1− ‖S‖‖T−1‖

.

�

Theorem 1.42. Let T : D(T ) ⊆ X → X be a linear operator not
necessarily closed. Then ρ(T ) is open in C and for all ζ ∈ ρ(T ) and
z ∈ B(ζ, ‖RT (ζ)‖−1) we have z ∈ ρ(T ) and

RT (z) = RT (ζ)
∞∑
j=0

RT (ζ)j(z−ζ)j, ∀z ∈ C such that |z−ζ| < ‖RT (ζ)‖−1.

Proof. (Idea of the proof) If we know that z and ζ are in ρ(T ) then the
first equation of the resolvent would imply that

RT (z)−RT (ζ) = (z − ζ)RT (z)RT (ζ)

or

RT (z)(Id− (z − ζ)RT (ζ)) = RT (ζ).

We can see that

(Id− (z − ζ)RT (ζ)) ∈ G(X) whenever |z − ζ| < ‖RT (ζ)−1‖.

Thus, in this case, it holds that

RT (z) = RT (ζ) ◦ (Id− (z − ζ)RT (ζ))−1

= RT (ζ) ◦
∞∑
j=0

(z − ζ)jRT (ζ)j.

To prove the theorem we let ζ ∈ ρ(T ) and z ∈ B(ζ, ‖RT (ζ)‖−1).
Define

F (z) = RT (ζ) ◦
∞∑
j=0

(z − ζ)jRT (ζ)j.

We notice that F (z) ∈ B(X) since the series
∞∑
j=0

(z−ζ)jRT (ζ)j converges

in norm.
We will show then that F (z) = RT (z).
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For all φ ∈ X, we have

(T − z)F (z)φ = (T − ζ) ◦ F (z)φ+ (ζ − z)F (z)φ

=
{ ∞∑

j=0

(z − ζ)jRT (ζ)j −
∞∑
j=0

(z − ζ)j+1RT (ζ)j+1
}
φ

= φ

Thus

(1.3) (T − z) ◦ F (z) = Id.

Similarly, we get that F (z)◦(T−z) = Id. This implies that z ∈ ρ(T )
and thus

RT (z) = F (z) = RT (ζ) ◦
∞∑
j=0

(z − ζ)jRT (ζ)j.

�

Remark 1.43. Theorem 1.42 tell us that if T : D(T ) ⊂ X → X is
closed, then the map

RT : ρ(T ) ⊂ C→ B(X)

z 7→ RT (z)

is a holomorphic function.
Notice that there are several notions to define a holomorphic function

G : Θ(open) ⊂ C→ B(X).

(i) G(z) has a power series expansion in terms of each z0 ∈ Θ;
(ii) z 7→ G(z)φ is holomorphic for all φ ∈ X;
(iii) z ∈ Θ 7→ 〈ψ,G(z)φ〉 is holomorphic for all ψ ∈ X∗ and for all

φ ∈ X (G is weakly holomorphic).

In a Hilbert space, these three notions are equivalent.


