Chapter 3

An Introduction to Sobolev Spaces and Pseudo-Differential Operators

In this chapter, we give a brief introduction to the classical Sobolev spaces $H^s(\mathbb{R}^n)$. Sobolev spaces measure the differentiability (or regularity) of functions in $L^2(\mathbb{R}^n)$ and they are a fundamental tool in the study of partial differential equations. We also list some basic facts of the theory of pseudo-differential operators without proof. This is useful to study smoothness properties of solutions of dispersive equations.

3.1 Basics

We begin by defining Sobolev spaces.

Definition 3.1. Let $s \in \mathbb{R}$. We define the *Sobolev space* of order s, denoted by $H^s(\mathbb{R}^n)$, as:

$$H^{s}(\mathbb{R}^{n}) = \left\{ f \in \mathcal{S}'(\mathbb{R}^{n}) : \Lambda^{s} f(x) = ((1 + |\xi|^{2})^{s/2} \widehat{f}(\xi))^{\vee}(x) \in L^{2}(\mathbb{R}^{n}) \right\}, \tag{3.1}$$

with norm $\|\cdot\|_{s,2}$ defined as:

$$||f||_{5,2} = ||\Lambda^s f||_2. \tag{3.2}$$

Example 3.1 Let n=1 and $f(x)=\chi_{[-1,1]}(x)$. From Example 1.1, we have that $\widehat{f}(\xi)=\sin{(2\pi\xi)}/(\pi\xi)$. Thus, $f\in H^s(\mathbb{R})$ if s<1/2.

Example 3.2 Let n = 1 and $g(x) = \chi_{[-1,1]} * \chi_{[-1,1]}(x)$. In Example 1.2, we saw that

$$\widehat{g}(\xi) = \frac{\sin^2(2\pi \, \xi)}{(\pi \, \xi)^2}.$$

Thus, $g \in H^s(\mathbb{R})$ whenever s < 3/2.

Example 3.3 Let $n \ge 1$ and $h(x) = e^{-2\pi |x|}$. From Example 1.4, it follows that

$$\widehat{h}(\xi) = \frac{\Gamma[(n+1)/2]}{\pi^{(n+1)/2}} \frac{1}{(1+|\xi|^2)^{(n+1)/2}}.$$
(3.3)

© Springer-Verlag New York 2015

45

F. Linares, G. Ponce, *Introduction to Nonlinear Dispersive Equations*, Universitext, DOI 10.1007/978-1-4939-2181-2_3

Using polar coordinates, it is easy to see that $h \in H^s(\mathbb{R}^n)$ if s < n/2 + 1. Notice that in this case s depends on the dimension.

Example 3.4 Let $n \ge 1$ and $f(x) = \delta_0(x)$. From Example 1.9, we have $\widehat{\delta}_0(\xi) = 1$. Thus, $\delta_0 \in H^s(\mathbb{R}^n)$ if s < -n/2.

From the definition of Sobolev spaces, we deduce the following properties.

Proposition 3.1.

- 1. If s < s', then $H^{s'}(\mathbb{R}^n) \subseteq H^s(\mathbb{R}^n)$.
- 2. $H^s(\mathbb{R}^n)$ is a Hilbert space with respect to the inner product $\langle \cdot, \cdot \rangle_s$ defined as follows:

If
$$f, g \in H^s(\mathbb{R}^n)$$
, then $\langle f, g \rangle_s = \int_{\mathbb{R}^n} \Lambda^s f(\xi) \overline{\Lambda^s g(\xi)} d\xi$.

We can see, via the Fourier transform, that $H^s(\mathbb{R}^n)$ is equal to:

$$L^2(\mathbb{R}^n; (1+|\xi|^2)^s d\xi).$$

- 3. For any $s \in \mathbb{R}$, the Schwartz space $S(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.
- 4. If $s_1 \le s \le s_2$, with $s = \theta s_1 + (1 \theta) s_2$, $0 \le \theta \le 1$, then

$$||f||_{s,2} \leq ||f||_{s_1,2}^{\theta} ||f||_{s_2,2}^{1-\theta}.$$

Proof. It is left as an exercise.

To understand the relationship between the spaces $H^s(\mathbb{R}^n)$ and the differentiability of functions in $L^2(\mathbb{R}^n)$, we recall Definition 1.2 in the case p=2.

Definition 3.2. A function f is differentiable in $L^2(\mathbb{R}^n)$ with respect to the kth variable, if there exists $g \in L^2(\mathbb{R}^n)$ such that

$$\int\limits_{\mathbb{R}^n} \left| \frac{f(x+h e_k) - f(x)}{h} - g(x) \right|^2 dx \to 0 \text{ when } h \to 0,$$

where e_k has kth coordinate equal to 1 and 0 in the others.

Equivalently (see Exercise 1.9) $\xi_k \widehat{f}(\xi) \in L^2(\mathbb{R}^n)$, or

$$\int_{\mathbb{R}^n} f(x)\partial_{x_k}\phi(x)\,dx = -\int_{\mathbb{R}^n} g(x)\phi(x)\,dx$$

for every $\phi \in C_0^{\infty}(\mathbb{R}^n)$ $(C_0^{\infty}(\mathbb{R}^n))$ being the space of functions infinitely differentiable with compact support).

Example 3.5 Let n=1 and $f(x)=\chi_{(-1,1)}(x)$, then $f'=\delta_{-1}-\delta_{1}$, where δ_{x} represents the measure of mass 1 concentrated in x, therefore $f'\notin L^{2}(\mathbb{R})$.

3.1 Basics 47

Example 3.6 Let n = 1 and g be as in Example 3.2. Then,

$$\frac{dg}{dx}(x) = \chi_{(-2,0)} - \chi_{(0,2)}, \text{ and so } \frac{dg}{dx} \in L^2(\mathbb{R}).$$

With this definition, for $k \in \mathbb{Z}^+$ we can give a description of the space $H^k(\mathbb{R}^n)$ without using the Fourier transform.

Theorem 3.1. If k is a positive integer, then $H^k(\mathbb{R}^n)$ coincides with the space of functions $f \in L^2(\mathbb{R}^n)$ whose derivatives (in the distribution sense, see (1.42)) $\partial_x^{\alpha} f$ belong to $L^2(\mathbb{R}^n)$ for every $\alpha \in (\mathbb{Z}^+)^n$ with $|\alpha| = \alpha_1 + \cdots + \alpha_n \leq k$. In this case, the norms $||f||_{k,2}$ and $\sum_{|\alpha| \leq k} ||\partial_x^{\alpha} f||_2$ are equivalent.

Proof. The proof follows by combining the formula $\widehat{\partial_x^{\alpha} f}(\xi) = (2\pi i \xi)^{\alpha} \widehat{f}(\xi)$ (see (1.10)) and the inequalities:

$$|\xi^{\beta}| \le (1+|\xi|^2)^{k/2} \le \sum_{|\alpha| \le k} |\xi^{\alpha}|, \qquad \beta \in (\mathbb{Z}^+)^n, \ |\beta| \le k.$$

Theorem 3.1 allows us to define in a natural manner $H^k(\Omega)$, the Sobolev space of order $k \in \mathbb{Z}^+$ in any subset Ω (open) of \mathbb{R}^n . Given $f \in L^2(\Omega)$, we say that $\partial_x^{\alpha} f$, $\alpha \in (\mathbb{Z}^+)^n$ is the α th partial derivative (in the distribution sense) of f, if for every $\phi \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} f \, \partial_x^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \partial_x^{\alpha} f \, \phi \, dx.$$

Then,

$$H^k(\Omega) = \{ f \in L^2(\Omega) : \partial_x^{\alpha} f \text{ (in the distribution sense) } \in L^2(\Omega), |\alpha| \le k \}$$

with the norm

$$||f||_{H^k(\Omega)} \equiv \left(\sum_{|\alpha| \le k} \int_{\Omega} |\partial_x^{\alpha} f(x)|^2 dx\right)^{1/2}.$$

Example 3.7 For n = 1, b > 0, and f(x) = |x|, one has that $f \in H^1((-b,b))$ and $f \notin H^2((-b,b))$.

The next result allows us to relate "weak derivatives" with derivatives in the classical sense.

Theorem 3.2 (Embedding). If s > n/2 + k, then $H^s(\mathbb{R}^n)$ is continuously embedded in $C_{\infty}^k(\mathbb{R}^n)$, the space of functions with k continuous derivatives vanishing at infinity. In other words, if $f \in H^s(\mathbb{R}^n)$, s > n/2 + k, then (after a possible modification of f in a set of measure zero) $f \in C_{\infty}^k(\mathbb{R}^n)$ and

$$||f||_{C^k} \le c_s ||f||_{s,2}. \tag{3.4}$$

Proof. Case k=0: We first show that if $f \in H^s(\mathbb{R}^n)$, then $\widehat{f} \in L^1(\mathbb{R}^n)$ with

$$\|\widehat{f}\|_1 \le c_s \|f\|_{s,2}, \text{ if } s > n/2.$$
 (3.5)

Using the Cauchy-Schwarz inequality, we deduce:

$$\int_{\mathbb{R}^{n}} |\widehat{f}(\xi)| d\xi = \int_{\mathbb{R}^{n}} |\widehat{f}(\xi)| (1 + |\xi|^{2})^{s/2} \frac{d\xi}{(1 + |\xi|^{2})^{s/2}}$$

$$\leq ||A^{s} f||_{2} \left(\int_{\mathbb{R}^{n}} \frac{d\xi}{(1 + |\xi|^{2})^{s}} \right)^{1/2} \leq c_{s} ||f||_{s,2}$$

if s > n/2. Combining (3.5), Proposition 1.2, and Theorem 1.1, we conclude that

$$||f||_{\infty} = ||(\widehat{f})^{\vee}||_{\infty} \le ||\widehat{f}||_{1} \le c_{s}||f||_{s,2}.$$

Case $k \ge 1$: Using the same argument, we have that if $f \in H^s(\mathbb{R}^n)$ with s > n/2 + k, then for $\alpha \in (\mathbb{Z}^+)^n$, $|\alpha| \le k$, it follows that $\widehat{\partial_x^\alpha f} \in L^1(\mathbb{R}^n)$ and

$$\|\partial_{x}^{\alpha}f\|_{\infty} \leq \|\widehat{\partial_{x}^{\alpha}f}\|_{1} = \|(2\pi i \xi)^{\alpha}\widehat{f}\|_{1} \leq c_{s}\|f\|_{s,2}.$$

Corollary 3.1. If $s = n/2 + k + \theta$, with $\theta \in (0, 1)$, then $H^s(\mathbb{R}^n)$ is continuously embedded in $C^{k+\theta}(\mathbb{R}^n)$, the space of C^k functions with partial derivatives of order k Hölder continuous with index θ .

Proof. We only prove the case k = 0, since the proof of the general case follows the same argument. From the formula of inversion of the Fourier transform and the Cauchy-Schwarz inequality we have:

$$\begin{split} |f(x+y)-f(x)| &= \left| \int\limits_{\mathbb{R}^n} e^{2\pi i (x\cdot\xi)} \widehat{f}(\xi) (e^{2\pi i (y\cdot\xi)} - 1) \, d\xi \right| \\ &\leq \left(\int\limits_{\mathbb{R}^n} (1+|\xi|^2)^{n/2+\theta} |\widehat{f}(\xi)|^2 \, d\xi \right)^{1/2} \left(\int\limits_{\mathbb{R}^n} \frac{|e^{2\pi i (y\cdot\xi)} - 1|^2}{(1+|\xi|^2)^{n/2+\theta}} \, d\xi \right)^{1/2}. \end{split}$$

But

$$\begin{split} \int_{\mathbb{R}^n} \frac{|e^{2\pi i(y\cdot\xi)} - 1|^2}{(1+|\xi|^2)^{n/2+\theta}} \, d\xi \\ & \leq c \int_{|\xi| \leq |y|^{-1}} |y|^2 |\xi|^2 \frac{d\xi}{(1+|\xi|^2)^{n/2+\theta}} + 4 \int_{|\xi| > |y|^{-1}} \frac{d\xi}{(1+|\xi|^2)^{n/2+\theta}} \end{split}$$

49

$$\leq c|y|^2 \int\limits_0^{|y|^{-1}} \frac{r^{n+1}}{(1+r)^{n+2\theta}} \, dr + 4 \int\limits_{|y|^{-1}}^\infty \frac{r^{n-1}}{(1+r)^{n+2\theta}} \, dr \leq c |y|^{2\theta}.$$

If |y| < 1, we conclude that $|f(x+y) - f(x)| \le c|y|^{\theta}$. This finishes the proof.

Theorem 3.3. If $s \in (0, n/2)$, then $H^s(\mathbb{R}^n)$ is continuously embedded in $L^p(\mathbb{R}^n)$ with p = 2n/(n-2s), i.e., s = n(1/2-1/p). Moreover, for $f \in H^s(\mathbb{R}^n)$, $s \in (0, n/2)$,

$$||f||_p \le c_{n,s} ||D^s f||_2 \le c ||f||_{s,2},$$
 (3.6)

where

$$D^{l} f = (-\Delta)^{l/2} f = ((2\pi |\xi|)^{l} \widehat{f})^{\vee}.$$

Proof. The last inequality in (3.6) is immediate, so we just need to show the first one. We define

$$D^{s} f = g$$
 or $f = D^{-s} g = c_{n,s} \left(\frac{1}{|\xi|^{s}} \widehat{g}\right)^{\vee} = \frac{c_{n,s}}{|x|^{n-s}} * g,$ (3.7)

where we have used the result of Exercise 1.14. Thus, by the Hardy-Littlewood-Sobolev estimate (2.10) it follows that

$$||f||_p = ||D^{-s}g||_p = ||\frac{c_{n,s}}{|x|^{n-s}} * g||_p \le c_{n,s} ||g||_2 = c||D^s f||_2.$$
 (3.8)

We notice from Theorems 3.2 and 3.3, and Corollary 3.1 that the local regularity in H^s , s > 0, increases with the parameter s.

Examples 3.1 and 3.3 show that the functions in $H^s(\mathbb{R}^n)$ with s < n/2 or s < n/2 + 1, respectively, are not necessarily continuous nor C^1 . Moreover, let $f \in L^2(\mathbb{R}^n)$ with

$$\widehat{f}(\xi) = \frac{1}{(1+|\xi|)^n \log(2+|\xi|)}$$

(which is radial, decreasing, and positive). A simple computation shows that $f \in H^{\frac{n}{2}}(\mathbb{R}^n)$, but $\widehat{f} \notin L^1(\mathbb{R}^n)$ and so $f \notin L^{\infty}(\mathbb{R}^n)$, since $f(0) = \int \widehat{f}(\xi) d\xi = \infty$ (see also Exercise 3.11(iii)).

To complete the embedding results of the spaces $H^s(\mathbb{R}^n)$, s > 0, it remains to consider the case s = n/2 (since for s = k + n/2, $k \in \mathbb{Z}^+$, the result follows from this one). So, we define the space of functions of the bounded mean oscillation or BMO, introduced by John and Nirenberg [JN].

Definition 3.3. For $f: \mathbb{R}^n \to \mathbb{C}$ with $f \in L^1_{loc}(\mathbb{R}^n)$, we say that $f \in BMO(\mathbb{R}^n)$ (f has bounded mean oscillation (BMO)) if

$$||f||_{\text{BMO}} = \sup_{\substack{x \in \mathbb{R}^n \\ r > 0}} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f_{B_r(x)}| \, dy < \infty, \tag{3.9}$$

where

$$f_{B_r(x)} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) dy.$$

Notice that $\|\cdot\|_{BMO}$ is a semi-norm since it vanishes for constant functions.

BMO(\mathbb{R}^n) is a vector space with $L^{\infty}(\mathbb{R}^n) \subseteq BMO(\mathbb{R}^n)$ since $||f||_{BMO} \le 2||f||_{\infty}$ and $\log |x| \in BMO(\mathbb{R}^n)$.

Theorem 3.4. $H^{n/2}(\mathbb{R}^n)$ is continuously embedded in BMO(\mathbb{R}^n). More precisely, there exists c = c(n) > 0 such that

$$||f||_{\text{BMO}} \le c ||D^{n/2}f||_2.$$

Proof. Without loss of generality, we assume f real valued. Consider $x \in \mathbb{R}^n$ and r > 0.

Let $\phi_r \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\phi_r \subseteq \{x \mid |x| \le \frac{2}{r}\}$ with $0 \le \phi_r(x) \le 1$ and $\phi_r(x) \equiv 1$ if |x| < 1/r, and define

$$f(x) = f_l + f_h = (\widehat{f}\phi_r)^{\vee} + (\widehat{f}(1 - \phi_r))^{\vee}.$$

We observe that

$$||f||_{\text{BMO}} \le ||f_l||_{\text{BMO}} + ||f_h||_{\text{BMO}}$$

and $f_l \in H^s(\mathbb{R}^n)$ for any s > 0; therefore,

$$f_{l,B_r(x)} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f_l(y) \, dy = f_l(x_0)$$

for some $x_0 \in B_r(x)$, and so for any $y \in B_r(x)$

$$|f_l(y) - f_{l,B_r(x)}| \le 2r \|\nabla f_l\|_{\infty}.$$

Using this estimate we get:

$$\begin{split} \frac{1}{|B_r(x)|} \int_{B_r(x)} \left| f_l(y) - f_{l,B_r(x)} \right| dy &\leq \frac{1}{|B_r(x)|^{1/2}} \Big(\int_{B_r(x)} |f_l(y) - f_{l,B_r(x)}|^2 \, dy \Big)^{1/2} \\ &\leq 2r \, \|\nabla f_l\|_{\infty} \leq 2r \, \|\widehat{\nabla f_l}\|_1 \\ &\leq 2r \, \int_{|\xi| \leq 1/2r} |\xi|^{1-n/2} |\xi|^{n/2} |\widehat{f}(\xi)| \, d\xi \\ &\leq 2r \, \Big(\int_{|\xi| \leq 1/2r} |\xi|^{2-n} \, d\xi \Big)^{1/2} \|D^{n/2} f\|_2 \leq c \|D^{n/2} f\|_2. \end{split}$$

Also,

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} |f_h(y) - f_{h,B_r(x)}| dy \le \frac{2}{|B_r(x)|^{1/2}} \|f_h\|_2$$

$$\leq \frac{2}{|B_r(x)|^{1/2}} \left(\int_{|\xi| \geq 1/2r} |\widehat{f}(\xi)|^2 d\xi \right)^{1/2} \int_{|\xi| \geq 1/2r} c^{n} |\xi|^n |\widehat{f}(\xi)|^2 d\xi \right)^{1/2} \leq \|D^{n/2} f\|_2,$$

which yields the desired result.

We have shown that $H^s(\mathbb{R}^n)$ with s > n/2 is a Hilbert space whose elements are continuous functions. From the point of view of nonlinear analysis, the next property is essential.

Theorem 3.5. If s > n/2, then $H^s(\mathbb{R}^n)$ is an algebra with respect to the product of functions. That is, if $f, g \in H^s(\mathbb{R}^n)$, then $fg \in H^s(\mathbb{R}^n)$ with

$$||fg||_{s,2} \le c_s ||f||_{s,2} ||g||_{s,2}.$$
 (3.10)

Proof. From the triangle inequality, we have that for every $\xi, \eta \in \mathbb{R}^n$:

$$(1+|\xi|^2)^{s/2} \le 2^s [(1+|\xi-\eta|^2)^{s/2} + (1+|\eta|^2)^{s/2}].$$

Using this we deduce that

$$|A^{s}(fg)| = |(1 + |\xi|^{2})^{s/2} \widehat{(fg)}(\xi)|$$

$$= (1 + |\xi|^{2})^{s/2} \left| \int_{\mathbb{R}^{n}} \widehat{f}(\xi - \eta) \widehat{g}(\eta) d\eta \right|$$

$$\leq 2^{s} \int_{\mathbb{R}^{n}} \left[(1 + |\xi - \eta|^{2})^{s/2} |\widehat{f}(\xi - \eta) \widehat{g}(\eta)| + (1 + |\eta|^{2})^{s/2} |\widehat{f}(\xi - \eta) \widehat{g}(\eta)| \right] d\eta$$

$$\leq 2^{s} (|\widehat{A^{s}f}| * |\widehat{g}| + |\widehat{f}| * |\widehat{A^{s}g}|).$$

Thus, taking the L^2 -norm and using (1.39) it follows that

$$||fg||_{s,2} = ||A^{s}(fg)||_{2} \le c(||A^{s}f||_{2}||\widehat{g}||_{1} + ||\widehat{f}||_{1}||A^{s}g||_{2}). \tag{3.11}$$

Finally, (3.5) assures one that if r > n/2, then

$$||fg||_{s,2} \le c_s(||f||_{s,2}||\widehat{g}||_1 + ||\widehat{f}||_1 ||g||_{s,2})$$

$$\le c_s(||f||_{s,2}||g||_{r,2} + ||f||_{r,2}||g||_{s,2}).$$
(3.12)

Choosing r = s, we obtain (3.10).

The inequality (3.12) is not sharp as the following scaling argument shows. Let $\lambda > 0$ and

$$f(x) = f_1(\lambda x), g(x) = g_1(\lambda x), f_1, g_1 \in \mathcal{S}(\mathbb{R}^n).$$

Then, as $\lambda \uparrow \infty$ the right-hand side of (3.12) grows as λ^{s+r} , meanwhile the left-hand side grows as λ^s . This will not be the case if we replace $\|\cdot\|_{r,2}$ in (3.12) with the $\|\cdot\|_{\infty}$ -norm to get that

$$||fg||_{s,2} \le c_s(||f||_{s,2} ||g||_{\infty} + ||f||_{\infty} ||g||_{s,2})$$
 (3.13)

which in particular shows that for any s > 0, $H^s(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ is an algebra under the point-wise product.

For $s \in \mathbb{Z}^+$, the inequality (3.13) follows by combining the Leibniz rule for the product of functions and the Gagliardo–Nirenberg inequality:

$$\|\partial_x^{\alpha} f\|_{p} \leq c \sum_{|\beta|=m} \|\partial_x^{\beta} f\|_{q}^{\theta} \|f\|_{r}^{1-\theta}$$
 (3.14)

with $|\alpha| = j$, c = c(j, m, p, q, r), $1/p - j/n = \theta(1/q - m/n) + (1 - \theta)1/r$, $\theta \in [j/m, 1]$. For the proof of this inequality, we refer the reader to the reference [Fm].

For the general case s > 0, where the usual point-wise Leibniz rule is not available, the inequality (3.13) still holds (see [KPo]). The inequality (3.13) has several extensions, for instance: Let $s \in (0,1)$, $r \in [1,\infty)$, $1 < p_j, q_j \le \infty$, $1/r = 1/p_j + 1/q_j$, j = 1, 2. Then,

$$\|\Phi^{s}(fg)\|_{r} \leq c(\|\Phi^{s}(f)\|_{p_{1}}\|g\|_{q_{1}} + \|f\|_{p_{2}}\|\Phi^{s}(g)\|_{q_{2}}),$$

with $\Phi^s = \Lambda^s$ or D^s , (for the proof of this estimate and further generalizations [KPV4], [MPTT], and [GaO]). The extension to the case $r = p_j = q_j = \infty$, j = 1, 2 was given in [BoLi].

In many applications, the following commutator estimate is often used:

$$\sum_{|\alpha|=s} \|[\partial_{x}^{\alpha}; g] f\|_{2} = \sum_{|\alpha|=s} \|\partial_{x}^{\alpha}(gf) - g\partial_{x}^{\alpha} f\|_{2}$$

$$\leq c_{n,s} \left(\|\nabla g\|_{\infty} \sum_{|\beta|=s-1} \|\partial_{x}^{\beta} f\|_{2} + \|f\|_{\infty} \sum_{|\beta|=s} \|\partial_{x}^{\beta} g\|_{2} \right), \tag{3.15}$$

(see [Kl2]). Similarly, for $s \ge 1$ one has

$$\|[\Lambda^{s};g]f\|_{2} \le c (\|\nabla g\|_{\infty} \|\Lambda^{s-1}f\|_{2} + \|f\|_{\infty} \|\Lambda^{s}g\|_{2}), \tag{3.16}$$

(see [KPo]).

There are "equivalent" manners to define fractional derivatives without relying on the Fourier transform. For instance:

Definition 3.4 (Stein [S1]). For $b \in (0, 1)$ and an appropriate f define

$$\mathcal{D}^b f(x) = \left(\int \frac{|f(x) - f(y)|^2}{|x - y|^{n+2b}} \, dy \right)^{1/2}. \tag{3.17}$$

Theorem 3.6 (Stein [S1]). Let $b \in (0,1)$ and $\frac{2n}{(n+2b)} \le p < \infty$. Then f, $D^b f \in L^p(\mathbb{R}^n)$ if and only if f, $\mathcal{D}^b f \in L^p(\mathbb{R}^n)$.

Moreover,

$$||f||_p + ||D^b f||_p \sim ||f||_p + ||D^b f||_p.$$

The case p = 2 was previously considered in [AS].

For other "equivalent" definitions of fractional derivatives see [Str1].

Finally, to complete our study of Sobolev spaces we introduce the localized Sobolev spaces.

Definition 3.5. Given $f: \mathbb{R}^n \to \mathbb{R}$, we say that $f \in H^s_{loc}(\mathbb{R}^n)$ if for every $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ we have $\varphi f \in H^s(\mathbb{R}^n)$. In other words, for any $\Omega \subseteq \mathbb{R}^n$ open bounded $f|_{\Omega}$ coincides with an element of $H^s(\mathbb{R}^n)$.

This means that f has the sufficient regularity, but may not have enough decay to be in $H^s(\mathbb{R}^n)$.

Example 3.8 Let n = 1, f(x) = x, and g(x) = |x|, then $f \in H^s_{loc}(\mathbb{R})$ for every $s \ge 0$ and $g \in H^s_{loc}(\mathbb{R})$ for every s < 3/2.

3.2 Pseudo-Differential Operators

We recall some results from the theory of pseudo-differential operators that we need to describe the local smoothing effect for linear elliptic systems.

The class $S^m = S^m_{1,0}$ of classical symbols of order $m \in \mathbb{R}$ is defined by

$$S^{m} = \{ p(x, \xi) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n}) : |p|_{S^{m}}^{(j)} < \infty, \ j \in \mathbb{N} \},$$
 (3.18)

where

$$|p|_{S^m}^{(j)} = \sup \{ \|\langle \xi \rangle^{-m+|\alpha|} \partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(\cdot, \cdot) \|_{L^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)} : |\alpha + \beta| \le j \}$$
(3.19)

and $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$.

The pseudo-differential operator Ψ_p associated to the symbol $p \in S^m$ is defined by

$$\Psi_p f(x) = \int_{\mathbb{R}^n} e^{2\pi i x \cdot \xi} p(x, \xi) \hat{f}(\xi) d\xi, \qquad f \in \mathcal{S}(\mathbb{R}^n).$$
 (3.20)

Example 3.9 A partial differential operator

$$P = \sum_{|\alpha| \le N} a_{\alpha}(x) \partial_x^{\alpha},$$

with $a_{\alpha} \in \mathcal{S}(\mathbb{R}^n)$ is a pseudo-differential operator $P = \Psi_p$ with symbol

$$p(x,\xi) = \sum_{|\alpha| \leq N} a_\alpha(x) (2\pi \, i \, \xi)^\alpha \in S^N.$$

Example 3.10 The fractional differentiation operator defined in (3.1) as $\Lambda^{\rho} = \Psi_{(\xi)^{\rho}}$ is also a pseudo-differential operator with symbol in S^{ρ} , $\rho \in \mathbb{R}$.

The collection of symbol classes S^m , $m \in \mathbb{R}$, is in some cases closed under composition, adjointness, division, and square root operations. This is not the case for polynomials in ξ , and sometimes this closure allows one to construct approximate inverses and square roots of pseudo-differential operators.

Next, we list some properties of pseudo-differential operators whose proofs can be found for instance in [Kg].

Theorem 3.7 (Sobolev boundedness). Let $m \in \mathbb{R}$, $p \in S^m$, and $s \in \mathbb{R}$. Then, Ψ_p extends to a bounded linear operator from $H^{m+s}(\mathbb{R}^n)$ to $H^s(\mathbb{R}^n)$. Moreover, there exist $j = j(n; m; s) \in \mathbb{N}$ and c = c(n; m; s) such that

$$\|\Psi_p f\|_{H^s} \le c \|p\|_{S^m}^{(j)} \|f\|_{H^{m+s}}. \tag{3.21}$$

Theorem 3.8 (Symbolic calculus). Let $m_1, m_2 \in \mathbb{R}$, $p_1 \in S^{m_1}$, $p_2 \in S^{m_2}$. Then, there exist $p_3 \in S^{m_1+m_2-1}$, $p_4 \in S^{m_1+m_2-2}$, and $p_5 \in S^{m_1-1}$ such that

$$\Psi_{p_1}\Psi_{p_2} = \Psi_{p_1p_2} + \Psi_{p_3},$$

$$\Psi_{p_1}\Psi_{p_2} - \Psi_{p_2}\Psi_{p_1} = \Psi_{-i\{p_1,p_2\}} + \Psi_{p_4},$$

$$(\Psi_{p_1})^* = \Psi_{\hat{p}_1} + \Psi_{p_5},$$
(3.22)

where $\{p_1, p_2\}$ denotes the Poisson bracket, i.e.,

$$\{p_1, p_2\} = \sum_{i=1}^{n} (\partial_{\xi_i} p_1 \, \partial_{x_j} p_2 - \partial_{x_j} p_1 \, \partial_{\xi_j} p_2), \tag{3.23}$$

and such that for any $j \in \mathbb{N}$ there exist $j' \in \mathbb{N}$ and $c_1 = c_1(n; m_1; m_2; j)$, $c_2 = c_2(n; m_1; j)$ such that

$$|p_3|_{S^{m_1+m_2-1}}^{(j)} + |p_4|_{S^{m_1+m_2-2}}^{(j)} \le c_1 |p_1|_{S^{m_1}}^{(j')} |p_2|_{S^{m_2}}^{(j')}$$

$$|p_5|_{S^{m_1+1}}^{(j')} \le c_2 |p_1|_{S^{m_1}}^{(j')}.$$

Remark 3.1.

- (i) (3.22) tell us that the "principal symbol" of the commutator $[\psi_{p_1}; \psi_{p_2}]$ is given by the formula in (3.23).
- (ii) It is useful for our purpose to consider the class of symbols $S^{m,N} = S_{1,0}^{m,N}$ defined as $p(x,\xi) \in C^N(\mathbb{R}^n \times \mathbb{R}^n)$ such that

$$|p|_{S^m}^{(N)} < \infty$$
, with $|p|_{S^m}^{(N)}$ defined in (3.19). (3.24)

For N sufficiently large the results in Theorem 3.7 extend to the class $S^{m,N}$.

3.3 The Bicharacteristic Flow

In this section, we introduce the notion of bicharacteristic flow. This plays a key role in the study of linear variable coefficients Schrödinger equations and in the well-posedness of the initial value problem (IVP) associated to the quasilinear case as we can see in the next and the last chapters.

Let $\mathcal{L} = \partial_{x_j} a_{jk}(x) \partial_{x_k}$ be an elliptic self-adjoint operator, that is, $(a_{jk}(x))_{jk}$ is a $n \times n$ matrix of functions $a_{jk} \in C_b^{\infty}$, real, symmetric, and positive definite, i.e., $\exists v > 0$ such that $\forall x, \xi \in \mathbb{R}^n$,

$$v^{-1} \|\xi\|^2 \le \sum_{i,k=1}^n a_{jk}(x) \xi_j \xi_k \le v \|\xi\|^2.$$
 (3.25)

Let h_2 be the principal symbol of \mathcal{L} , i.e.,

$$h_2(x,\xi) = -\sum_{j,k=1}^n a_{jk}(x)\xi_j \xi_k.$$
 (3.26)

The bicharacteristic flow is the flow of the Hamiltonian vector field:

$$H_{h_2} = \sum_{i=1}^{n} \left[\partial_{\xi_i} h_2 \cdot \partial_{x_i} - \partial_{x_i} h_2 \cdot \partial_{\xi_i} \right]$$
 (3.27)

and is denoted by $(X(s; x_0, \xi_0), \Xi(s; x_0, \xi_0))$, i.e.,

$$\begin{cases} \frac{d}{ds} X_j(s; x_0, \xi_0) = -2 \sum_{k=1}^n a_{jk}(X(s; x_0, \xi_0)) \, \Xi_k(s; x_0, \xi_0), \\ \frac{d}{ds} \Xi_j(s; x_0, \xi_0) = \sum_{k,l=1}^n \partial_{x_j} a_{lk}(X(s; x_0, \xi_0)) \, \Xi_k(s; x_0, \xi_0) \, \Xi_l(s; x_0, \xi_0) \end{cases}$$
(3.28)

for $j = 1, \ldots, n$, with

$$(X(0; x_0, \xi_0), \Xi(0; x_0, \xi_0)) = (x_0, \xi_0). \tag{3.29}$$

The bicharacteristic flow exists in the time interval $s \in (-\delta, \delta)$ with $\delta = \delta(x_0, \xi_0)$, and $\delta(\cdot)$ depending continuously on (x_0, ξ_0) .

The bicharacteristic flow preserves h_2 , i.e.,

$$\frac{d}{ds}h_2(X(s;x_0,\xi_0),\Xi(s;x_0,\xi_0))=0,$$

so the ellipticity hypothesis (3.25) gives

$$\nu^{-2} \|\xi_0\|^2 \le \|\Xi(s; x_0, \xi_0)\|^2 \le \nu^2 \|\xi_0\|^2, \tag{3.30}$$

and hence $\delta = \infty$.

In the case of constant coefficients, $h_2(x,\xi) = -|\xi|^2$, the bicharacteristic flow is given by $(X, \Xi)(\xi, x_0, \xi_0) = (x_0 - 2s\xi_0, \xi_0)$.

For general symbol $h(x, \xi)$, the bicharacteristic flow is defined as:

$$\begin{cases} \frac{dX}{ds} = \partial_{\xi} h(X, \Xi) \\ \frac{d\Xi}{ds} = -\partial_{x} h(X, \Xi). \end{cases}$$
(3.31)

In applications, the notion of the bicharacteristic flow

$$t \mapsto (X(t; x_0, \xi_0), \ \Sigma(t; x_0, \xi_0))$$
 (3.32)

being nontrapping arises naturally.

Definition 3.6. A point $(x_0, \xi_0) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \{0\}$ is nontrapped forward (respectively, backward) by the bicharacteristic flow if

$$||X(t; x_0, \xi_0)|| \to \infty \text{ as } t \to \infty \text{ (resp, } t \to -\infty).$$
 (3.33)

If each point $(x_0, \xi_0) \in \mathbb{R}^n \times \mathbb{R}^n - \{0\}$ is nontrapped forward, then the bicharacteristic flow is said to be nontrapping.

In particular, if one assumes that the "metric" $(a_{jk}(x))$ in (3.26) possesses an "asymptotic flat property," for example,

$$|\partial_x^{\alpha}(a_{jk}(x) - \delta_{jk})| \le \frac{c_{\alpha}}{|x|^{1 + \epsilon(\alpha)}}, \quad \epsilon(\alpha) > 0, \quad 0 \le |\alpha| \le m = m(n), \tag{3.34}$$

then it suffices to have that for each $(x_0, \xi_0) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \{0\}$ and for each $\mu > 0$ there exists $\hat{t} = \hat{t}(\mu; x_0, \xi_0) > 0$ such that

$$||X(\hat{t}; x_0, \xi_0)|| \ge \mu$$

to guarantee that the bicharacteristic flow is nontrapping.

The next result shows that the Hamiltonian vector field is differentiation along the bicharacteristics.

Lemma 3.1. Let $\phi \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. Then,

$$(H_{h},\phi)(x,\xi) = \partial_s[\phi(X(s;x,\xi),\Xi(s;x,\xi))]|_{s=0} = \{h_2,\phi\}. \tag{3.35}$$

Notice that $-i\{h_2, \phi\}$ is the principal symbol of the commutator $[\psi_{h_2}, \psi_{\phi}]$ (see 3.22).

Proof. By the chain rule,

$$\partial_{s}[\phi(X(s;x,\xi),\Xi(s;x,\xi))] = (\nabla_{x}\phi)(X(s;x,\xi),\Xi(s;x,\xi)) \cdot \partial_{s}X(s;x,\xi) \\
+ (\nabla_{\xi}\phi)(X(s;x,\xi),\Xi(s;x,\xi)) \cdot \partial_{s}\Xi(s;x,\xi) \\
= (\nabla_{x}\phi \cdot \nabla_{\xi}h_{2})(X(s;x,\xi),\Xi(s;x,\xi)) \\
- (\nabla_{\xi}\phi \cdot \nabla_{x}h_{2})(X(s;x,\xi),\Xi(s;x,\xi)).$$

Setting s = 0, the lemma follows.

3.4 Exercises

3.4 **Exercises**

3.1 Prove that for any $k \in \mathbb{Z}^+$ and any $\theta \in (0,1)$

$$\chi_{(-1,1)} \stackrel{k \text{ times}}{* \cdots *} \chi_{(-1,1)}(x) \in C_0^{k-1,\theta}(\mathbb{R}) \backslash C^k(\mathbb{R}).$$

- 3.2 Prove Proposition 3.1.
- 3.3 Let $f_n : \mathbb{R}^n \to \mathbb{R}$ with $f_n(x) = e^{-2\pi |x|}$.
 - Prove that $f_1 * f_1(x) = \frac{e^{-2\pi |x|}}{2\pi} (1 + 2\pi |x|).$ Hint: Use an explicit computation or Exercise 1.1(ii).

 (ii) Show that $f_1 * f_1(x) \in C^2(\mathbb{R})$, but is not in $C^3(\mathbb{R})$.

 (iii) Prove that $f_n * f_n \in C_{\infty}^{n+1}(\mathbb{R}^n)$.

 - (iv) More general, prove that if $g \in H^{s_1}(\mathbb{R}^n)$ and $h \in H^{s_2}(\mathbb{R}^n)$, then $g * h \in C_{\infty}^{[s_1+s_2]}(\mathbb{R}^n)$ (where [·] denotes the greatest integer function.)
- 3.4 Let $\phi(x) = e^{-|x|}, x \in \mathbb{R}$:
 - (i) Prove that

$$\phi(x) - \phi''(x) = 2\delta, \tag{3.36}$$

57

in the distribution sense, i.e., $\forall \varphi \in C_0^{\infty}(\mathbb{R})$,

$$\int \phi(x)(\varphi(x) - \varphi''(x)) dx = 2\varphi(0),$$

- (b) by taking the Fourier transform in (3.36).
- (ii) Prove that given $g \in L^2(\mathbb{R})$ (or $H^3(\mathbb{R})$) the equation:

$$\left(1 - \frac{d^2}{dx^2}\right)f = g$$

has solution $f = \frac{1}{2} e^{-|\cdot|} * g \in H^2(\mathbb{R})$ (or $H^{s+2}(\mathbb{R})$).

3.5 Show that if $k \in \mathbb{Z}^+$ and $p \in [1, \infty)$, then

$$F_{k,p}(\mathbb{R}^n) = L_k^p(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$$

is a Banach algebra with respect to point-wise product of functions. Moreover, if $f, g \in F_{k,p}$, then

$$||fg||_{k,p} \le c_k(||f||_{k,p}||g||_{\infty} + ||f||_{\infty}||g||_{k,p}). \tag{3.37}$$

Notation:

$$L_k^p(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{C} : \partial^\alpha f \text{ (distribution sense) } \in L^p, |\alpha| \le k \},$$

whose norm is defined as:

$$\|f\|_{k,p} = \sum_{|\alpha| \le k} \|\partial^{\alpha} f\|_{p}.$$

Observe that when p=2 one has $L_k^p(\mathbb{R}^n)=H^k(\mathbb{R}^n)$. More generally, we define

$$L_s^p(\mathbb{R}^n) = (1 - \Delta)^{-s/2} L^p(\mathbb{R}^n) \text{ for } s \in \mathbb{R}, \text{ with } ||f||_{s,p} = ||(1 - \Delta)^{s/2} f||_p.$$
(3.38)

Hint: From Leibniz formula and Hölder's inequality it follows that (assume n = 1 to simplify)

$$\|(fg)^{(k)}\|_{p} \leq \sum_{i=0}^{k} c_{j} \|f^{(k-j)}\|_{p_{j_{1}}} \|g^{(j)}\|_{p_{j_{2}}}, \text{ with } \frac{1}{p} = \frac{1}{p_{j_{1}}} + \frac{1}{p_{j_{2}}}.$$

Combine the Gagliardo-Nirenberg inequality (3.14):

$$||h^{(k-j)}||_{p_i} \le c||h^{(k)}||_p^\theta ||h||_{\infty}^{1-\theta}, \quad \theta = \theta(n, k, j, p_j),$$

with Young's inequality (if 1/p + 1/p' = 1 with p > 1, then $ab \le a^p/p + b^{p'}/p'$) to get the desired result (3.37).

3.6 Extend the result of Theorem 3.3 to the spaces $L_s^p(\mathbb{R}^n)$, i.e., if $f \in L_s^p(\mathbb{R}^n)$, 0 < s < n/p, then $f \in L^r(\mathbb{R}^n)$ with $s = n(\frac{1}{p} - \frac{1}{q})$, and

$$||f||_r \le c_{n,s} ||D^s f||_p \le c_{n,s} ||f||_{s,p}.$$
 (3.39)

3.7 (i) Prove that if $1 and <math>b \in (0, 1)$, then

$$||A^b f||_p \sim ||f||_p + ||D^b f||_{p}$$

Hint: Use Theorem 2.8.

- (ii) Given any $s \in \mathbb{R}$ find $f_s \in H^s(\mathbb{R})$ such that $f_s \notin H^{s'}(\mathbb{R})$ for any s' > s. Hint:
 - (a) Notice that it suffices to find f_0 .
 - (b) Show that if $g \in L^2(\mathbb{R})$ and $g \notin L^p(\mathbb{R})$ for any p > 2, then one can take $f_0 = g$.
 - (c) Use (b) to find f_0 .
- 3.8 Show that if $f \in H^s(\mathbb{R}^n)$, s > n/2, with $||f||_{n/2,2} \le 1$, then

$$||f||_{\infty} \le c [1 + \log(1 + ||f||_{5,2})]^{1/2}$$

with c = c(s, n), see [BGa].

- 3.9 Prove the following inequalities:
 - (i) If s > n/2, then

$$||f||_{\infty} \le c_{n,s} ||f||_2^{1-n/2s} ||D^s f||_2^{n/2s}.$$

3.4 Exercises 59

(ii) If s > n/p, 1 , then

$$||f||_{\infty} \leq c_{n,s,p} ||f||_{p}^{1-n/ps} ||D^{s}f||_{p}^{n/ps}.$$

- (iii) Prove Gagliardo-Nirenberg inequality (3.14) for p even integer, m = 2, j = 2, and $q, r \in (1, \infty)$ such that 1/q + 1/r = 2/p.
- (iv) Combine Exercises 2.10 and 2.11, and Theorem 2.6 to prove the Gagliardo-Nirenberg inequality in the general case.
- 3.10 ([AS]). Using Definition 3.4:
 - (i) Prove that for $b \in (0, 1)$

$$||D^b f||_2 = c_n ||D^b f||_2. (3.40)$$

(ii) Prove that

$$\mathcal{D}^{b}(fg)(x) \le \|f\|_{\infty} \mathcal{D}^{b}g(x) + |g(x)|\mathcal{D}^{b}f(x) \tag{3.41}$$

and

$$\|\mathcal{D}^{b}(fg)\|_{2} \le \|f\mathcal{D}^{b}g\|_{2} + \|g\mathcal{D}^{b}f\|_{2}. \tag{3.42}$$

(iii) Let $F \in C_b^1(\mathbb{R} : \mathbb{R})$, F(0) = 0. Show that

$$||D^b(F(f))||_2 \le ||F'||_{\infty} ||D^b f||_2.$$

Hint: Apply part (i).

- 3.11 (i) Let $f \in L^p(\mathbb{R})$, $1 , be such that <math>f(x_0^+)$, $f(x_0^-)$ exist and $f(x_0^+) \neq f(x_0^-)$ for some x_0 . Prove that $f \notin L^p_{1/p}(\mathbb{R})$.
 - (ii) Let $\varphi \in C_0^{\infty}(\mathbb{R})$ with $\varphi(x) = 1$ if $|x| \le 1$ and $\varphi(x) = 0$ if |x| > 2. Let $a, b \in (0, 1)$. Prove that $|x|^{\alpha} \varphi(x) \in H^b(\mathbb{R})$ if and only if b < a + 1/2.
 - (iii) Let $\alpha \in (0, 1/2)$. Prove that

$$|\log |x||^{\alpha}\,\chi_{|[x|\leq 1/10]}+\frac{10}{9}(1-|x|)\,\chi_{\{1/10\leq |x|\leq 1\}}\in H^1(\mathbb{R}^2)-L^{\infty}(\mathbb{R}^2).$$

3.12 (Sobolev's inequality for radial functions) Let $f : \mathbb{R}^n \to \mathbb{R}$, $n \ge 3$, be a radial function, i.e., f(x) = f(y) if |x| = |y|. Show that f satisfies

$$|f(x)| \le c_n |x|^{(2-n)/2} ||\nabla f||_2.$$

- 3.13 (Hardy's inequalities (see Exercise 1.5))
 - (i) Let $1 \le p < \infty$. If $f \in L_1^p(\mathbb{R}^n)$, then

$$\left\| \frac{|f(\cdot)|}{|x|} \right\|_p \le \frac{p}{n-p} \left\| \nabla f \right\|_p. \tag{3.43}$$

(ii) Let $1 \le p < \infty$, q < n, and $q \in [0, p]$. If $f \in L_1^p(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} \frac{|f(x)|^p}{|x|^q} dx \le \left(\frac{p}{n-q}\right)^q \|f\|_p^{p-q} \|\nabla f\|_p^q. \tag{3.44}$$

Hint: Assume that $f \in C_0^{\infty}(\mathbb{R}^n)$. For (i), write $\||\cdot|^{-1}f\|_p^p$ in spherical coordinates, use integration by parts in the radial variable and Hölder inequality to get the result. For (ii), assume p > q, and apply (3.43) to $|x|^{-1}g(x)$ with $g(x) = |f(x)|^{p/q}$.

3.14 Prove Heisenberg's inequality. If $f \in H^1(\mathbb{R}^n) \cap L^2(|x|^2 dx)$, then

$$||f||_{2}^{2} \leq \frac{2}{n} ||\mathbf{x}_{j} f||_{2} ||\partial_{x_{j}} f||_{2} = \frac{4\pi}{n} ||\mathbf{x}_{j} f||_{2} ||\mathbf{\xi}_{j} \widehat{f}||_{2} \leq \frac{2}{n} ||\mathbf{x} f||_{2} ||\nabla f||_{2}.$$
 (3.45)

Hint: Use the density of $S(\mathbb{R}^n)$ and integration by parts to obtain the identity

$$||f||_2^2 = -\frac{1}{n} \int x_j \partial_{x_j} (|f(x)|^2) dx.$$

3.15 Denote u = u(x, t), the solution of the IVP associated to the inviscid Burgers' equation:

$$\begin{cases} \partial_t u + u \partial_x u = 0, \\ u(x, 0) = u_0(x) \in C_0^{\infty}(\mathbb{R}), \end{cases}$$
 (3.46)

 $t, x \in \mathbb{R}$. Prove that for every T > 0,

$$u \in C^{\infty}(\mathbb{R} \times [-T, T])$$
 or $u \notin C^{1}(\mathbb{R} \times [-T, T])$.

Hint: Combine the commutator estimate (3.16) and integration by parts to obtain the energy estimate

$$\frac{d}{dt} \|u(t)\|_{k,2} \le c_k \|\partial_x u(t)\|_{\infty} \|u(t)\|_{k,2} \text{ for all } k \in \mathbb{Z}^+.$$
 (3.47)

- 3.16 Let $P(x, \partial_x) = \sum_{|\alpha| \le m_1} a_{\alpha}(x) \partial_x^{\alpha}$ and $Q(x, \partial_x) = \sum_{|\alpha| \le m_2} b_{\alpha}(x) \partial_x^{\alpha}$ be two differential operators. Check the properties stated in Theorem 3.8 for P and Q.
- 3.17 (i) If $\Lambda = (1 \Delta)^{1/2}$ and $y \in \mathbb{R}$, show that the symbol $p = p(\xi)$ of $\Lambda^{i,y}$, $p(\xi) = (1 + |\xi|^2)^{iy/2} \in S_0$, and

$$|p|_{S^0}^j \le c_n (1+|y|)^j$$
.

- (ii) Show that if $p = p(x, \xi) \in S^0 = S^0_{1,0}$, then $e^{p(x,\xi)} \in S^0 = S^0_{1,0}$.
- 3.18 Prove that the bicharacteristic flow in (3.28) $(X(s; x_0, \xi_0), \Xi_k(s; x_0, \xi_0))$ satisfies

- (i) $X(s; x_0, \rho \xi_0) = X(\rho s; x_0, \xi_0),$
- (ii) $\Xi_k(s; x_0, \rho \xi_0) = \rho \Xi_k(\rho s; x_0, \xi_0).$

Hint: Use the homogeneity of $h_2(x,\xi) = -a_{jk}(x)\xi_j\xi_k$.

3.19 Prove that if Ψ_p is a pseudo-differential operator with symbol $p \in S^0$, then for any $b \in \mathbb{R}$,

$$\|\Psi_p f\|_{L^2((x)^b dx)} \le c_{k,n} \|f\|_{L^2((x)^b dx)},\tag{3.48}$$

where

$$||g||_{L^2(\langle x\rangle^h dx)} = \left(\int |g(x)|^2 \langle x\rangle^h \, dx\right)^{1/2}$$

and

$$\langle x \rangle = (1 + |x|^2)^{1/2}.$$
 (3.49)

Hint:

- (i) Follow an argument similar to that given in the proof of Theorem 2.1 to show that it suffices to establish (3.48) for $b = 4k, k \in \mathbb{Z}$.
- (ii) Consider the case b = -4k, $k \in \mathbb{Z}^+$, and show that (3.48) is equivalent to

$$\left\| \frac{1}{(x)^{2k}} \Psi_p (\langle x \rangle^{2k} g) \right\|_2 \le c \|g\|_2. \tag{3.50}$$

- (iii) Obtain (3.50) by combining integration by parts, Theorems 3.7 and 3.8.
- (iv) Finally, prove the case $b = 4k, k \in \mathbb{Z}^+$, by duality.
- 3.20 Let a, b > 0. Assume that $\Lambda^a f = (1 \Delta/4\pi^2)^{a/2} f \in L^2(\mathbb{R}^2)$ (i.e., $f \in H^a(\mathbb{R}^n)$) and $\langle x \rangle^b f \in L^2(\mathbb{R}^n)$ (see 3.49). Prove that for any $\theta \in (0, 1)$,

$$||A^{(1-\theta)a}(\langle x \rangle^{\theta b} f)||_2 \le c_{a,b,n} \, ||\langle x \rangle^b f||_2^{\theta} ||A^a f||_2^{1-\theta}.$$

Hint: Combine the three lines theorem, Exercises 3.17 part (i) and (3.19).