Chapter 3
An Introduction to Sobolev Spaces and
Pseudo-Differential Operators

In this chapter, we give a brief introduction to the classical Sobolev spaces H*(IR").
Sobolev spaces measure the differentiability (or regularity) of functions in L*(R")
and they are a fundamental tool in the study of partial differential equations. We also
list some basic facts of the theory of pseudo-differential operators without proof.
This is useful 1o study smoothness properties of solutions of dispersive equations.

3.1 Basics

We begin by defining Sobolev spaces.
Definition 3.1. Let s € R. We define the Sobolev space of order s, denoted by
H*(R"), as:

H\®R=(fe SR : A° f)=((1+EPYFEW () € L'RM}, (3.1

with norm |- ;2 defined as:

Ifls2 = 14° fll2 (3.2)
Example 3.1 Let n =1 and f(x)= x;-1,y(x). From Example 1.1, we have that
(&)= sin(2nE)/(7E). Thus, f e H*R) if s <1/2.

Example 3.2 Let n =1 and g{x) = x—1.1) * X(=1.1{x). In Example 1.2, we saw
that

N sin? (2 &)
¢)= ———
88 = =5
Thus, g € H*(R) whenever s < 3/2.
Example 3.3 Let n =1 and h(x) = e, From Example 1.4, it follows that

Il(n+1)/2] I

e = — o T (3.3)
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Using polar coordinates, it is easy to see that # € H*(R") if s < n/2+ 1. Notice
that in this case s depends on the dimension.

Example 34 Let n = 1 and f(x) = 8p(x). From Example 1.9, we have

o(&) = 1. Thus, do € H*R") if 5 < —n/2.

From the definition of Sobolev spaces, we deduce the following properties.
Proposition 3.1,

L Ifs <5 then HY (RS H (R).
2. H*(R") is a Hilbert space with respect to the inner product {-,-); defined as
Sollows:

if fig € H'R™), then (f, g)s = f A* () A E dE.

Rn
We can see, via the Fourier transform, that H*(R") is equal to:
L* R (1 + |EF) d6).

3. Foranys € R, the Schwartz space S(R") is dense in H*(R").
4 If5)<5<s, with s=8514+(1—8)52, 0<0 <\, then

# -t
fls2 < WANG 2N F053.

Proof. Itis lefi as an exercise. o
To understand the relationship between the spaces H*(R") and the differentia-
bility of functions in L*(R"), we recall Definition 1.2 in the case p = 2.

Definition 3.2. A function f is differentiable in L*(R") with respect to the kth
variable, if there exists g € L*(R") such that

f| Fx+he) = f(x)
;
R '

- g(x)|2d.'c — 0 when h — 0,

where e, has kth coordinate equal to 1 and 0 in the others.
Equivalently (see Exercise 1.9) & f(€) € L*(R"), or

[ remptds = - [swpwas
Rﬂ

R"

for every ¢ € Cf,”(R") (C°(R") being the space of functions infinitely
differentiable with compact support).

Example 3.5 Let n =1 and f(x) = x(~1,)(x), then f' =4d_| — §;, where 4,
represents the measure of mass 1 concentrated in x , therefore f* ¢ LX(R).
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Example 3.6 Let n =1 and g be asin Example 3.2. Then,
dg dg _ .2
E(.\:) = X2 — Xz andso Tx e LYR).

With this definition, for k € Z* we can give a description of the space HYR")
without using the Fourier transform.

Theorem 3.1. If k is a positive integer, then H*(R") coincides with the space
of functions f € LY(R") whose derivatives (in the distribution sense, see (1.42))
32 f belong to LX(R") for every a € (Z%Y with |la|=a) +---+a, <k

In this case, the norms || f|lc2and ¥ 182 flla are equivalent.

ler| <k

Proof. The proof follows by combining the formula é;';}’ (&) = (21ri'§)"f(§) (see
(1.10)) and the inequalities:

B A+ P < Y. Be @Y, 1Bl <k 0

|or| <

Theorem 3.1 altows us to define in a natural manner H*(82), the Sobolev space of
order k € Z* in any subset £2 (open) of R". Given f € L*(£2), we say that 37 f,
o € {Z*)" is the ath partial derivative (in the distribution sense) of f, if for every
¢ € C5°(52)

ffa;'w.r:(— l)'“'faffqbdx.
[ 2
Then,
H*(2) = | f € L}(£2) : 8" f(in the distribution sense) € L*(£2), || < k)

with the norm

iy = (3 [ e seias)”

| =k

Example 3.7 Forn =1,b > 0, and f(x) = |x|, one has that f € HYW(—b,b))
and f ¢ HY((— b.b)).

The next result allows us to relate “weak derivatives” with derivatives in the
classical sense.

Theorem 3.2 (Embedding). If s > n/2 4k, then H*(R") is continitouisly em-
bedded in C* (R"), the space of functions with k continuous derivatives vanishing
at infinity. In other words, if f € H*(R"), s > n/2 + k, then (after a possible
modification of f in a set of measure zero) f € C*(R") and

Iflic: = e Ufllsa (3.4)
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Proof. Case k = 0: We first show that if f & H*(R"), then fe LY(®") with

Il < cllflsan if s> n/2. (3.5)

Using the Cauchy-Schwarz inequality, we deduce:

dg

FENDE = - 1 ez 45
R[If(l;')l 3 IR[If(-'f)l( +1E17) ENGEE

2

12
i dt
< 1A 1 ( Rf g +|s|=)s) <l flla

if 5 > n/2. Combining (3.5), Proposition 1.2, and Theorem 1.1, we conclude that

W lloe = NCF Voo < IF1L < el Fllsae

Case Lk > 1: Using the same argument, we have that if___f € H'(R") with
s > nf2+k, then for € (Z*)", |a| <k, it follows that 82 f e LY (R*) and
188 flloo < 132 Flly = §2mi&) Flly < sl f 52
a

Corollary 3.1. If s =n/24+k+6, with 6 € (0, 1), then H*(R") is continwously
embedded in C*+*(R"), the space of C* functions with partial derivatives of order
k Hélder continuous with index 8.

Proof. We only prove the case & = 0, since the proof of the general case follows
the same argument. From the formula of inversion of the Fourier transform and the
Cauchy-Schwarz inequality we have:

ft+3) - fol =| f e Fley(e o) - 1) d |
Rn

leZTiGE) 2 (172
9

=( J (+ |E|2)"”+"|ﬁe)|2ds)m( AT ERy

R
But
e2miy &) _ q)2

252 dE f 43
. — % 3 L T
= C]:; <yl el (1 4 [g[P)ni2+d * elziyi-t (14 g2+

d§
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is17! o0

rl+l ’.n—l kY
b [ G o+ [ e = e
0

[¥1-1
If |y| < 1, we conclude that | f(x + y) — f(x)| < c|yi’. This finishes the proof.Ci

Theorem 3.3. Ifs € (0,n/2), then H*(R") is continuously embedded in LP(R")
with p = 2nf(n — 25), ie, s = n(1/2 — 1/p). Moreover, for f € H'(R"),
se(0,n/2)

"f”p < cns 107 fll2 < cll flls2, (3.6)

where

D'f =(—ay’*f =) fy.

Proof, The last inequality in (3.6) is immediate, so we just need to show the first
one. We define

5 — -y ] ﬁv cﬂ.i 37
D’f=g or f=D g=cn.ﬁ(ﬁ8) =|_t|,,_,*g- 3.7

where we have used the result of Exercise 1.14. Thus, by the Hardy-Littlewood—
Sobolev estimate (2.10) it follows that

C
Il = 107 gy = N * gl < cns gl = <l D* fllz. (3.8)

lxjr=s

O
We notice from Theorems 3.2 and 3.3, and Corollary 3.1 that the local regularity in
H* s > 0, increases with the parameter 5.
Examples 3.1 and 3.3 show that the functions in H*(R") with 5 < n/2 or
5 < nf2 + |, respectively, are not necessarily continuous nor C !, Moreover, let
f € L*(R™) with ,

(1 +15]" log 2 + 151

(thCh is radial, decreasmg, and positive). A simple computation shows that f €
HI(R"™), but f ¢ L'(R") and so f ¢ L®(R"), since f(0) = ff(f;‘)d&' = 00 (see
also Exercise 3.1 1(iii)).

To complete the embedding results of the spaces H*(R"), s > 0, it remains to
consider the case s = n/2 (since for s = k 4+ n/2, k € Z* the result follows from
this one). So, we define the space of functions of the bounded mean oscillation or
BMO, intreduced by John and Nirenberg [JN].

Definition 3.3, For f : R" — C with f € L} (R"), we say that f € BMO(R")
(f has bounded mean oscillation (BMQO)) il

fe)=

- ) = famldy < o0, (3.9)
| f llsmo S Bl Brmlf) faldy

r>0
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where

fBao= Fiyxdy.

1
| B:(x)] Brix)

Notice that || ||amo is a semi-norm since it vanishes for constant functions.
BMO(R") is a vector space with L(R") T BMO(R"} since | fllamo < 21 f oo
and log x| € BMO(R").

Theorem 3.4. H"2(R") is continuously embedded in BMO(R"). More precisely,
there exists ¢ = c(n) > 0 such that

. 2
| f lamo < c || D™ £lla.

Proof. Without loss of generality, we assume f real valued. Consider x € R* and
r>0.

Let ¢, € C(R") such that suppg, € {x||x| < 2} with 0 < ¢,(x) < 1 and
¢ (x) = 1if |x] < 1/r, and define

FO) = fi+ fo = (Fo)' + (FU — )",
We observe that

1 £ lemo < ILfiliamo + Il fullumo

and f; € H*(R") for any s > Q; therelore,

fi(3)dy = filxo)

S0 = —=——
! 1B (x| Jg, o)

for some xg € B,(x), and so for any y € B,(x)
1) = fraol €27 IV filloo-

Using this estimate we get:

2]

SO = fram

d l (/ L) 2d )u
4 < P R i 2 A
TR EAY A fO) = fupl dy

<2r 1V filloo < 2r IV filly

<2 f 1! 2 Fie)) de
E1=<1/2r

1
|B,(x)| B (%)

bl llz 2 2
<2 ([ P dg) 07 < D
1§l=1/2r

Also,

1
IBr(-t)l B.(x)

2
(¥ = frpddy < Wllﬁr"z
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2 - 12
= B.mI7 (flslzl/zrlf(lg)l2 dﬁ) Jr <
<= L - r"|»;r'|fu,=)|3au,:)”2 < 10" fll2,

which yields the desired result. a
We have shown that H*(R"} with 5 > »/2 is a Hilbert space whose elements

are continuous functions. From the point of view of nonlinear analysis, the next
property is essential.

Theorem 3.5. If s = n/2, then H*(R") is an algebra with respect to the product
of functions. That is, if f,g € H*(R"), then fg € H'(R") with

I f2glls2 = esllflls2lighsa. (3.10)

Proof. From the triangle incquality, we have that for every &, 3 € R™:
A+ 6P <210 + 1€ = al )2 + (1 + ).
Using this we deduce that
A (f8)] = (1 + IEPY(Fe)e)
| 7 - ngenan

Rll

< [ [(1+ 16 = iy 1 Fi ~mgen

R
+ (1 -+ InPY1Fg - g dn
< POATI+ 181+ |1+ A%).

Thus, taking the L?-norm and using (1.39) it follows that

=1+ 1§77

I fellsa = 1A*C(f@)2 < cCUA® FI2HEN + 1 F i1 A%gl). (3.11)

Finally, (3.5) assures one that if r > n/2, then

I fellsa < el f NealiEls + N Fll gl
< el flls2llgllez + 0 Fllr2llgls2)-

Choosing r = s, we obtain (3.10). O

The inequality (3.12) is not sharp as the following scaling argumeni shows. Let
A > Oand

(3.12)

flxy= fildx), g(x)=g@(Ax), fi. g1 € SRY).

2l [0
.‘—__
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Then, as A 1 oo the right-hand side of (3.12) grows as A**", meanwhile the left-hand
side grows as A*. This will not be the case if we replace |- ||, 2 in (3.12) with the
Il llog-norm to get that

Ifglls2 < el fllz gloe + I1f oo Nglls,2) (3.13)

which in particular shows that for any s = 0, H*(R") N L*(R") is an algebra under
the point-wise product.

For s € Z*, the inequality (3.13) follows by combining the Leibniz rule for the
product of functions and the Gagliardo-Nirenberg inequality:

l92 A, < ¢ Y, Haf Al 1fI° (.14)
|Bl=m

with |a| = j, ¢ =c(j,m, p,q.r) V/p—j/n =8(l{g —m/n}y+ (1 — )]/,
8 € [j/m, 1]. For the proof of this inequality, we refer the reader to the reference
[Fm].

For the general case s = 0, where the usual point-wise Leibniz rule is not available,
the inequality (3.13) still holds (see [KPo]). The inequality (3.13) has several exten-
sions, for instance: Lets € (0,1),r € [1,00), | < pj.q; <00, lfr=1/p;+1/q;,
Jj = 1,2.Then,

IS (f)llr < c@ (M pliglly + NFEp 1P (@)Mlg:),

with @' = A* or D", (for the proofl of this estimate and further generalizations
{KPV4], [MPTT], and [GaO]). The extension to the case r = p; = gq; = oq,
j = 1,2 was given in {BoLi].

In many applications, the lollowing commutator estimate is often used:

Do NBgl fla= ) BIeS) — 832 fl2

laf=x lor)=s

(3.15)
< Gus (IW8lleo Y 107 A2+ 1f ko Y. 105 gl2),
Ifi=s=1 IAl=s
(see [K12]). Similarly, for s = 1 one has
1A% 8] fl2 < c(IV gl llA™" fll2 + [ flloo 1A% 8ll2). (3.16)

(sce [KPo]).
There are “equivalent” manners o define fractional derivatives without relying
on the Fourier transform. For instance:

Definition 3.4 (Stein [S1]). For b < (0, 1) and an appropriate f define

— F(vM)? A2
'D”f(x):( M—d,\) . G.A7)

I_x — ylﬂ"’%
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Theorem 3.6 (Stein [S1]). Ler b & (0, 1) and Bﬁ”z—b; <p<oco.Then f, D'f €
LP(R"™) ifand only if f, D" f € LP(R).
Moreover,

1Ny + 0D° M, ~ W filp + ID° fll .

The case p = 2 was previously considered in [AS].

For other “equivalent” definitions of fractional derivatives see [Strl].

Finally, to complete our study of Sobolev spaces we introduce the localized
Sobolev spaces.

Definition 3.5. Given f:R" -» R, we say that f € HJ (R") if for every ¢ €
Cg°(R") we have ¢ f € H'(R"). In other words, for any £2 € R" open bounded
Fflp coincides with an element of H*(R").

This means that f has the sufficient regularity, but may not have enough decay
tobein H*(R").

Example 3.8 Let n =1, f(x}=x,and g(x)=[x], then f € H (R) lorevery
s > 0and g € H{ (R) forevery 5 < 3/2.

3.2 Pseudo-Differential Operators

We recall some results from the theory of pseudo-differential operaters that we need
to describe the local smoothing effect for linear elliptic systems.
The class §™ = ST, of classical symbols of order m € R is defined by

5" = {p(x.£) € C®R" x R") : |p|% < o0, j € N}, (3.18)
where
IS =sup (1EY 18288 p(-, YL=moxrn * la + B] < ) (3.19)

and (§) = (1 + |§[H'2.
The pseudo-differential operator ¥, associated to the symbol p € §™ is defined
by

fw= [ w0 feS®Y. G2

Example 3.9 A partial differential operator

P= )" a0,
le|=N
with g, € S(R") is a pseudo-differential operator P = ¥, with symbol
px.8)= Y aa(x)2m it)F" € SV,

lal =N
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Example 3.10 The fractional differentiation operator defined in (3.1) as A” = W¥ye
is also a pseudo-differential operator with symbol in 57, p € R.

The collection of symbol classes $™, m € R, is in some cases closed under
composition, adjointness, division, and square root operations. This is not the case
for polynomials in &, and sometimes this closure allows one to construct approximate
inverses and square roots of pseudo-differential operators.

Next, we list some properties of pscudo-differential operators whose proofs can
be found for instance in [Kg).

Theorem 3.7 (Sobolev boundedness). Letm € R, p € S" and s € R. Then, ¥,
extends to a bounded linear operator from H™(R") to H*(R"). Moreover, there
exist j = j(n;m;s) € Nand ¢ = c(n;m; s) such that

W fllare < € P10 1A s (3.21)

Theorem 3.8 (Symbolic calculus). Ler my, m; € R, p; € 8", p, € 8™, Then,
there exist py € SMtm-L p, e §™+"=2 and ps € §™! such that
Vi ¥p = Ypipy + ¥y
Vo W = Vo W, = Yoiiprpot + ¥y (3.22)
(¥, ) = v + ¥,

where {1, pa} denotes the Poisson bracket, i.e.,

n
(P, P2l =) (3,1 3, p2 — 3, p1 B, p2). (3.23)
=

and such that for any j € N there exist j' € Nand ¢y = cj(n;my: ma; j) 2 =
ca(n;my; j) such that

h (0] 4" "
Ip3|sjm|+m2—l + Ip-lls{n|+mz-! S Cl |p|.lsj'"| lp‘.’ljj'“:

" g
|Ps|;m.-| <czlpilm-

Remark 3.1.

(i)  (3.22) tell us that the “principal symbol” of the commutator [rp, ; ¥, ] is given
by the formula in (3.23).
(ii) It is useful for our purpose to consider the class of symbols S™V = S;’f(','v

defined as p(x, &) € CY(R" x R") such that
Iplw < 00, with |p{sw defined in (3.19). (3.24)

For N sufficiently large the results in Theorem 3.7 extend to the class $™¥.
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3.3 The Bicharacteristic Flow

In this section, we introduce the notion of bicharacteristic low. This plays a key role
in the study of lincar variable coefficients Schrédinger equations and in the well-
posedness of the initial value problem (IVP) associated to the quasilinear case as we
can see in the next and the last chapters.

Let £ = de;a i (x)dy, be an elliptic self-adjoint operator, that is, (a;:(x))j is a
n x n matrix of functions a; € Cp°, real, symmetric, and positive definite, i.e.,
Jv > 0Osuchihat ¥x, £ e R",

n

vIEIR 2 ) ap(kE < vIEIR (3.25)

jk=1
Let /i3 be the principal symbol of L, i.c.,

n

ha(x,§) == 3 au(xbe. (3.26)

Jhk=1

The bicharacteristic flow is the Aow of the Hamilionian vector field:
n
Hiy =Y [Ogha - dg, — 8 ha - 3] (3.27)
j=1
and is denoted by (X(s; xg, £3), Z(s; x0, £p)), ..,

d ]
—X;(s:x0,80) = -2 *_Zl a;(X(s; X0, &0)) Ex (51 xp, £o),

as . (3.28)
d—:j(-ﬁ-"u, &) = z 3;Jﬂ£k(x(52«fa'§0)) E (53 X0, E0) Ei(s; X0, &)
s kJ=1
for j = 1,...,n, with
(X(0; xo0, &0}, E(0; x40, E0)) = (x0, &p). (3.29)

The bicharacteristic flow exists in the time interval 5 € { — 4,5) with § = §(xp, &p),
and 4(-) depending continuously on (xg, &).
The bicharacteristic flow preserves a, i.e.,

d
d—hz(X (5:%0. £0), E(53x0,80)) = 0,
5

so the ellipticity hypothesis (3.25) gives

V25l < (s x0. I < Vil (3.30)

and hence § = oo.
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In the case of constant coefficients, f1a(x, &) = —|&)%, the bicharacteristic flow is

given by (X, E'X§. 0, &) = (vo — 258p. &),
For general symbol i{x, E), the bicharacteristic flow is defined as:

X
=0 h(X. 5

ds
iz (3.31)
d—: = =3, h(X,ZE).
In applications, the notion of the bicharacieristic flow
1= (X85 x0,60), Z'(1;%0.60)) (3.32)

being nontrapping arises naturally.

Definition 3.6. A point(xp, &) € R" x R, {0} is nontrapped forward (respectively,
backward) by the bicharacteristic flow if

1 X{t; xo0, Eo)ll = oo as t — oo (resp, t = —0Q). (3.33)

If each point {xg, £y} € R" x R" — (0} is nontrapped forward, then the bicharacteristic
flow is said to be nontrapping.

In particular, if one assumes that the “metric” (a;:(x)) in (3.26) possesses an
“asympiotic flat property,” for example,

C,
185 (@julx) = 8}l < F:e(u) el@) >0, 0<a|<m=mn), (3.34)

then it suffices to have that for each (xg. &) € R" x R" {0} and foreach ¢ > 0
there exists £ = 1(; xg, &) > 0 such that

| X(F; xq, E0)ll = 1

to guarantee that the bicharacteristic flow is nontrapping.
The next result shows that the Hamiltonian vector field is differentiation along
the bicharacteristics.

Lemma 3.1. Ler¢ € C™(R" x R"). Then,

(Hpy @)z, &) = 0 [@(X{(s5; x, &), E(s:x,ENls=0 = (B2, @) (3.35)
Notice that —i{/12, ¢} is the principal symbo! of the commutator [y, , ¥4] (see 3.22).
Proof. By the chain rule,
g lp(X(s5%, ), E(s; 0, N = (Vo) X(s;x,6) Z(5:x,8)) - 8, X (53 x, )
+ (Ved)(X(s;x,6), E(s5%,8)) - 0, 2(s53x,8)
= (Vi¢ - Veh2)(X(s:x,8), 2(s55x,6))
= (Ve - Vieha)(X (5%, 6), E(s5x,8)).

Setting 5 = 0, the lemma follows. O
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34

3.1

32
33

34

35

Exercises

Prove that for any k € Z* and any 6 € (0, 1)

& ti -
Koty %% YL (®) € CERMNCHR).

Prove Proposition 3.1.
Let f, : R" = R with f(x) =e 21,

=2 x|
(i) Provethat f| = fi(x) = (1 +2m|x)]).

Hint: Use an explicit computation or Exercise 1.1(ii).

(i)  Show that fi * fi(x) € C*(R), butis notin C*(R).

(iii) Prove that f, * f, € C'Y\(R").

(iv) More general, prove that if g € HY(R") and h € H™(R"), then
g * h € Cl9*22(R™) (where [ - ] denotes the greatest integer function.)

Letgp(x) =e™", x e R:
(i) Prove that

P{x) — ¢"(x) = 28, (3.36)

(a) in the distribution sense, i.c., Yo € CFP(R),

f Plx)p(x) — ¢"(x))dx = 2¢(0),

(b) by taking the Fourier transform in (3.36).
(i) Prove that given g € L*(R) (or H*(R)) the equation:

(- 2)r=s

has solution f =} e~ x g € HX(R) (or H***(R)).

Show thatif k € Z* and p € [l,00), then
Fip(R™) = L{(R™ N L®(R")

is a Banach algebra with respect to point-wise product of functions. Moreover,
if f.g € Fip. then

If8lep < celll flle.pliglloo + fllco liglle. p)- (3.37)
Notation:
LI(R") = {f: R" — C:9" f (distribution sense) € L7, || <k},
whaose norm is defined as:

1flep =D 10°flp.

lorl<k



58

3.6

3.7

38

39
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Observe that when p =2 one has L{(R") = HYR").
More generally, we define

LIRY = (1 — &) *LPR") for s € R, with [|flls., = (1 = &) fll.
(3.38)

Hint: From Leibniz formula and Holder’s inequality it follows that {assume
n = 1 to simplify)

1
Pi P

k
o . . 1
D™ M < 3 iUy, 18D Ny, with =

j:o
Combine the Gagliardo—Nirenberg inequality (3.14):

1B, < U@ RRNGE, 6 =0k, j., p)),

with Young's inequality (if 1/p+1/p' =1 with p > 1, then ab =
a’/p + b" [ p' )10 get the desired result (3.37).
Extend the result of Theorem 3.3 to the spaces LI(R"), ie., if f € LI(R"),

0 <s <n/p, then f € L'(R") withs = n( — 1), and

IFllr < cns “Dsﬂlp = Cngs “f".rp (3.39)

(i) Provethatifl < p < oo and b € (0, 1}, then

IA® fllp ~ 1 £l + 1D fil .

Hint: Use Theorem 2.8. .
(ii) Givenany s € R find f; € H*(R) such that f; ¢ H* (R) for any s’ > 5.
Hint:

(a) Notice that it suffices to find fo.

(b) Showthatif g € L2(R)and g ¢ LP(R) for any p > 2, then one can
take fo=g.

(c) Use(b)tofind fo.

Show that if f € H*(R"), s > n/2, with|| fla/22 < 1, then

Il < 01+ log (1 + || fs2)1'/?

with ¢ = ¢{s, n), see [BGa).
Prove the following inequalities:

(iy Ifs>n/2 then

Ifllea < cshfIE™ID° A3/,
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(i) Is=>nfp,1 < p<oo,then

1flloo < €nspllF 1"/ D" SI3PS.

(iii) Prove Gagliardo-Nirenberg inequality (3.14) for p even integer, m = 2,
j=2and g,r € (1,00)suchthat /g + 1/r =2/p.

(iv) Combine Exercises 2.10 and 2.I1, and Theorem 2.6 to prove the
Gagliardo-Nirenberg inequality in the general case.

3.10 ([AS]). Using Definition 3.4;
(i) Provethat forb € (0, 1)

ID* fll2 = cx ID fll2- (3.40)
(ii) Prove that
DP(fg)x) < 11 flocD"glx) + |g(x)ID" £ (x) (3.41)
and
D" (fell2 < IF D°gllz + gD fllz. (3.42)

(iii) Let F € C}(R: R), F(0) = 0. Show that

IDPCF(f M2 < IFheoliD” fil2.

Hint: Apply part (i).
301 (1)) Let f e LP(R), | < p < oo, be such that f(.t[,"), Fixg) exist and
f (x",P ) # f(xy ) for some xo. Prove that f ¢ Lf / ,,(]R).
(ii) Letyp € CP(R) with g{x) = 1 if |x] < 1 and @(x) = 0ifl |x] > 2. Let
a,b € (0, 1). Prove that |x|“¢(x) € H*(R)ifand only if b < a + 1/2.
(iii) Lete € (0, 1/2). Prove that

10 .
|log x|I* Xyx1<110) + 3(1 — 1) xnposin<y € H'(R?) = LZ¥(R?).

3.12 (Sobolev’s inequality for radial functions) Let f : R* — R, n = 3, be a radial
function, i.e., f(x) = f(y)if |x] = |y|. Show that f satisfies

LFEO] < ¢ X132V fl2.
3.13 (Hardy’s inequalities (see Exercise 1.5))
(i) Letl p <oo.If f € LV(R"), then

[P P 9 Al (3.43)

|, =
lxl p = n—
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(i) Letl <p<oo,q<nandqel0,plIf feLT(R"),then

[fCo)I” P\ i ruo-4 o A1
j . 3.
< (o) e (3.44)
E{'l
Hint: Assume that f € C§°(R"). For (i), write [||-|~' £l in spherical coor-

dinates, use integration by parts in the radial variable and Hélder inequality
to get the result. For (ii), assume p > q, and apply (3.43) to |x|~! g(x) with
glx) = | f(x)F,

Prove Heisenberg's inequality. If £ € H'(R™) N L2(]x|* dx), then
. 2 4 ~ 2
I£llz < ;u"jﬂllllax,- fllz = Tllfjﬂlzlll’;'jfliz = ;ll\‘flizllvfllz- (3.45)

Hint: Use the density of S(R") and integration by parts to obtain the identity

.1 ,
ufmzz——jfn&xuunqdm

n

Denote u = u(x,t), the solution of the IVP associated to the inviscid Burgers’
equation:

[B,M-i-uaxu =0, (3.46)

u(x, 0) = ng(x) € CFP(R),
t, x € E. Prove that forevery T > 0,
e CPRx[-T.TD or ug C'Rx[(-T,T).

Hint: Combine the commutatorestimate (3. 16) and integration by parts to obtain
the energy estimate

© Nl < cldaOlolialez forallk €Z*. (347

Let P(x,8,) = 3 a,(x)3% and Q(x,3,) = Y. ba(x)3? be two differential
lee] <m1 lal<my

operators. Check the properties stated in Theorem 3.8 for P and Q.

(i HA=(- A)"‘z and y € R, show that the symbol p = p(£) of A'%,
pE) = (1 + |E[H)?/? € Sp, and

1Pl < e (14|31,
(ii) Show thatif p = p(x,£) € §% = 50, then e*# ¢ §9 =50,

Prove that the bicharacteristic flow in (3.28) (X(s; xg, £0)y (53 x0, £0)) satisfies
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(i) X(sixo.p&) = X(ps:xg ko)
(i) Zi(s;x0,pb0) = p Zelp 5ix0,50)-

Hint: Use the homogeneity of ha(x,§) = —aji(x) &;&;.

3.19 Prove that if ¥, is a pseudo-differential operator with symbol p € 5%, then for

any b e R,
5 Al 22¢0yb axy < €k | 20y dey (3.48)
where
lglzzqapan = ( f () x)” d.x)'”
and
() = (1 + ) (3.49)
Hint:

(i)  Follow an argument similar to that given in the proof of Theorem 2.1 to
show that it suffices to establish (3.48) for b = 4k, k € Z.

(ii) Consider the case b = —4k, k € Z*, and show that {3.48) is equivalent
to

||# ¥r ((x?""xif)“2 =clighs. (3.50)

(iti} Obtain (3.50) by combining integration by parts, Theorems 3.7 and 3.8.
(iv) Finally, prove the case b = 4k, k € Z*, by duality.

3.20 Leta, b > 0. Assume that AYf = (1 — A/4x?)2f € L*R?) (ie., f €
HYR") and {x)? f € LXR") (see 3.49). Prove that for any 8 € (0, 1),

A2V £l < cann G FUG1A% FIR0.

Hint: Combine the three lines theorem, Exercises 3.17 part (i) and (3.19).






