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1. Kato-Rellich Theorem

Problem. Let A : D(A) ⊆ H → H and B : D(B) ⊆ H → H be two
linear densely defined. Suppose that A∗ = A and B ⊆ B∗ such that
D(A) ⊆ D(B).

In particular, it makes sense to consider A + B : D(A) ⊆ H → H.
Moreover, it was proved that

A+B ⊆ A∗ +B∗ ⊆ (A+B)∗.

The question that arises is under what conditions it holds that

(A+B)∗ = A+B.

That problem appears for instance in Quantum Mechanics.
The initial value problem (IVP) for the Schrödinger equation is writ-

ten as

(1.1)


i∂tu = −∆u+ V u︸ ︷︷ ︸

multiplication by a real potential

= (H0 + V )︸ ︷︷ ︸
symmetric operator

u,

u(0) = φ ∈ H2.

If the operator were self-adjoint we should show by means of the
Spectral Theorem that the IVP (1.1) is well-posed, or in other words,
the operator H0 + V generates a unitary group. In addition, we could
obtain information on the spectrum of H0 + V .

In order to do this we need of the following notion.

Definition 1.1. Let A : D(A) ⊆ H → H and B : D(B) ⊆ H → H

be two linear operators. We say that B is bounded in relation to A
(or B is A-bounded) if

(i) D(A) ⊆ D(B),
(ii) There exist α > 0 and β > 0 such that

‖Bφ‖ ≤ α ‖φ‖+ β ‖Aφ‖, ∀φ ∈ D(A).

The number
β0 = inf {β > 0 : (ii) holds}

is called the A-bound related to B.

Exercise 1.2. If A is a closed linear operator and B is a A-bounded
linear operator, show that

(a) H0 = (D(A), [·, ·]) is a Hilbert space with inner product

[φ, ψ] = (φ, ψ) + (Aφ,Aψ).
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(b) B ∈ B(H0).

Example 1.3. Let H = L2(R), A = H0 and

B : H1(Rn) ⊆ L2(R)→ L2(R)

φ 7→ 1

i
φ′,

then B is A-bounded with A-bound equals zero.

Indeed, D(A) = H2(R) ⊆ H1(R) = D(B) implies (i) in Definition
1.1.

Let ε > 0, then |ξ| ≤ ε|ξ|2 + 1
4ε

.

Using Plancherel’s identity we have

‖Bφ‖2 = ‖B̂φ‖2 =

∫
Rn

|ξφ(ξ)|2 dξ

≤
∫
Rn

(ε|ξ|2 +
1

4ε
)2|φ̂(ξ)|2 dξ

≤ cε2
∫
Rn

||ξ|2φ̂(ξ)|2 dξ + c(ε)

∫
Rn

|φ̂(ξ)|2 dξ.

This implies that

‖Bφ‖ ≤ cε‖Aφ‖+ c(ε)‖φ‖, ∀φ ∈ H2(R).

Since this holds for any ε > 0, we deduce that B is A-bounded and
the A-bound of B is equal to zero.

Proposition 1.4. Let A and B be closed linear operators. Suppose
that D(A) ⊆ D(B) and ρ(A) 6= ∅. Then (ii) in Definition 1.1 holds.

Proof. Take z ∈ ρ(A), then

B(A− z)−1 : H→ H

is closed. By the Closed Graph Theorem we get B(A− z)−1 ∈ B(H).
Next, for all φ ∈ D(A)

‖Bφ‖ = ‖B(A− z)−1(A− z)φ‖
≤ ‖B(A− z)−1‖‖(A− z)φ‖
≤ c‖Aφ‖+ c|z|‖φ‖.

�

Exercise 1.5. If B is a closed linear operator, ρ(A) 6= ∅, prove that
the following statements are equivalent
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(1) B is A-bounded.
(2) B(A− z)−1 ∈ B(H) for some z ∈ ρ(A).
(3) B(A− z)−1 ∈ B(H) for all z ∈ ρ(A).

Definition 1.6. Let A be a linear operator such that A ⊆ A∗. We say
that A is a positive operator if and only if

(Aφ, φ) ≥ 0 ∀φ ∈ D(A).

(i.e. a bilinear form

b∗ : D(A)×D(A)→ C
φ 7→ (Aφ, φ)

is positive)
A is strictly positive if and only if

(Aφ, φ) > 0 ∀φ ∈ D(A).

Remarks 1.7.

(i) A ⊆ A∗ implies that

(Aφ, φ) = (φ,Aφ) = (Aφ, φ) ∀φ ∈ D(A)

and so (Aφ, φ) ∈ R.
(ii) We can define an order relation on positive symmetric operators

as: A ≥ B if and only if A−B ≥ 0.

Definition 1.8. If there exists λ0 ∈ C such that A ≥ λ0, we say that
A is lower bounded.

Exercise 1.9. Let A : D(A) ⊂ H→ H such that A = A∗ and M ∈ R.
Show that A ≥M if and only if (−∞,M) ⊂ ρ(A).

From this we can see that a self-adjoint operator is lower bounded if
and only if its spectrum is bounded below.

Theorem 1.10 (Kato-Rellich Theorem). Let A : D(A) ⊆ H → H be
a linear self-adjoint operator and let B : D(B) ⊆ H → H be a linear
symmetric operator. Suppose that B is A-bounded with lower bound
β < 1. Then

A+B : D(A) ⊆ H→ H

is a self-adjoint operator.
In addition, if there exists M ∈ R so that A ≥ M , then there exists

M̃ ∈ R such that A+B ≥ M̃ .
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Proof. We divide the proof is two parts.

First Part. We use the basic criteria for self-adjointness. We have to
prove that there exists λ > 0 such that

R(A+B ± iλ) = H.

We first observe that A = A∗ implies that iλ ∈ ρ(A), for all λ > 0.

We write

A+B ± iλ = (I +B(A± iλ)−1)(A± iλ).

It is sufficient to show that I+B(A±iλ)−1 is surjective. To prove that it
is enough to show that there exists λ > 0 such that ‖B(A± iλ)−1‖ < 1
employing Neumann series.

Let φ ∈ D(A). By the hypotheses B is A-bounded with A-bound
β0 < 1, there exist 0 < β < 1 and α > 0 such that

(1.2) ‖Bφ‖ ≤ α ‖φ‖+ β ‖Aφ‖.
Let ψ ∈ H, since (A ± iλ) is surjective there exists φ ∈ D(A) such

that (A± iλ)φ = ψ. This implies that

(1.3) ‖B(A± iλ)−1ψ‖ = ‖Bφ‖ ≤ α‖φ‖+ β ‖Aφ‖.
In addition,

‖ψ‖2 = ‖(A± iλ)φ‖2 = ((A± iλ)φ, (A± iλ)φ) = ‖Aφ‖2 + λ2‖φ‖2.
As a consequence,

(1.4)

{
‖Aφ‖ ≤ ‖ψ‖,
‖φ‖ ≤ 1

λ
‖ψ‖

Combining (1.4) with (1.3) we obtain

‖B(A± iλ)−1ψ‖ ≤
(α
λ

+ β
)
‖ψ‖ < ‖ψ‖

whenever λ is chosen sufficiently large.

Second Part. We know that A = A∗ and (A+B)∗ = A+B. From the
Exercise 1.9, A ≥ M yields that (−∞,M) ⊂ ρ(A). We would like to

find M̃ so that (−∞, M̃) ⊂ ρ(A+B). We left this as an exercise. �

Remark 1.11. It is not possible to improve the condition β0 < 1. For
instance, if we choose B = −A then β0 = 1, where A is an unbounded
operator. Indeed, we have A + B : D(A) ⊆ H → H, A + B = 0 but
0H : H → H is symmetric which implies that A + B is not maximal
symmetric and thus A+B is not a self-adjoint operator.
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As a consequence of the second part of the Kato-Rellich Theorem
we derive

Let A : D(A) ⊆ H → H be such that A∗ = A and let B : D(B) ⊆
H→ H be closed linear operator such that B ⊂ B∗.

Definition 1.12. B is called relatively compact to A, or B is A-
compact, if there exists z ∈ ρ(A) such that

B(A− z)−1 ∈ K(H) = {L ∈ B : L is a compact operator}

Remark 1.13. We already saw that if B is A-compact, then B is A-
bounded.

Theorem 1.14. Let A = A∗ and let B be an A-compact operator.
Then B is A-bounded operator with A-bound equals zero.

Definition 1.15. Let A = A∗ be a linear operator. The discrete
spectrum of A is the set in C given by

σd(A) = {λ ∈ Vp(A) : λ is isolated with finite multiplicity}.
The essential spectrum of A is the set in C given by σe(A) =

σ(A)\σd(A).

Theorem 1.16 (Theorem of Kato-Rellich (II)). Let A = A∗ and B ⊆
B∗ such that B is A-compact. Then A + B is a self-adjoint operator
and σe(A+B) = σe(A).

1.1. Application. A quantum particle of mass m interacting with a
potential (real measurable) V in R3 is described by the Schrödinger
equation,

(1.5) i/h ∂tu = − /h2

2m
∆u+ V (x)u

where /h = h
2π

is the Plank constant and u(x, t) ∈ C.
The quantity |u(x, t)|2 is a probability density of distribution of the

particle at instant t. That is, if u(x, 0) = φ(x) and S is a measurable
set in R3, then

P (S) =
1

‖φ‖2

∫
S

|u(x, t)|2 dx

is the probability to find a particle in the set S.

Exercise 1.17. Verify that ‖u(·, t)‖ = ‖φ‖ for all t ∈ R holds.

We can normalize the equation (1.5) and write it in the equivalent
form

i∂tu = Hu
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where H = H0 + V . H is called the Hamiltonian and H0 is called the
free Hamiltonian.

We will show that H = H∗.

Remark 1.18. Notice that

d

dt
‖u(t)‖2 = (∂tu, u) + (u, ∂tu)

then
−i(u, ∂tu) = (u, i∂tu) = (u,Hu) = (Hu, u)

which implies

d

dt
‖u(t)‖2 = i(Hu, u)− i(u,Hu) = 0.

Proposition 1.19. Let V : R3 → R be a measurable, if V ∈ L2(R3) +
L∞∞(R3). (i.e. there exist V1 ∈ L2(R3) and V2 ∈ L∞∞ with V = V1 +V2),
then V is H0-compact.

Above we use the notation

L∞∞(R3) = {f ∈ L∞(R3) : ∀ε > 0,∃M > 0, such that |f(x)| ≤ ε a.e. |x| ≥M}.

Proof. We shall show that there exists z ∈ ρ(H0) = C\[0,∞) such that
V (H0 − z)−1 is compact.

From Exercise 1.21 if R0(z) = (H0 − z)−1 then

R0(z)f =
1

4π

ei
√
z|x|

|x|
∗ f, for n = 3 where Im

√
z > 0.

Hence

V (Ho − z)−1f(x) = V (x)

∫
R3

ei
√
z|x−y|

4π|x− y|
f(y) dy.

Then

V (H0 − z)−1f(x) =

∫
R3×R3

V1(x)
ei
√
z|x−y|

4π|x− y|︸ ︷︷ ︸
K1(x,y)

f(y) dy

+

∫
R3

V2(X)
ei
√
z|x−y|

4π|x− y|︸ ︷︷ ︸
K2(x,y)

f(y) dy.

and so
V (H0 − z)−1f = TK1f + TK2f.

Next we consider TK1 .
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Notice that

‖K1‖2 =

∫
R3×R3

|V1(x)|2 e
−2Im

√
z|x−y|

|x− y|2
dxdy

=

∫
R3

|V1(x)|2
(∫

R3

e−2Im
√
z|ỹ|

|ỹ|2
dỹ
)
dx

= ‖V1‖2ω(S2)

∫ ∞
0

e−2Im
√
zr dr

≤ c ‖V1‖2.

where we used the change of variable ỹ = x − y and after applying
Fubinni’s theorem we employed polar coordinates.

We conclude that K1 ∈ L2(R3×R3). Thus TK1 is a Hilbert-Schmidt
operator. Therefore it is a compact operator.

Now we study TK2 .
For any ε > 0, there exists Mε > 0 such that |V2(x)| ≤ ε a.e. for

|x| > Mε.
Define

V ε
2 (x) =

{
V2(x), if |x| ≤Mε

0, if |x| ≥Mε.

It is clear that V ε
2 (x) ∈ L2(R3). Then T εK2

= V ε
2 (H0−z)−1 is a compact

operator by using the same analysis for TK1 .
On the other hand,

‖TK2f − T εK2
f‖ = ‖(V2 − V ε

2 )(H0 − z)−1f‖
≤ ‖V2 − V ε

2 ‖‖(H0 − z)−1f‖
≤ ‖V2 − V ε

2 ‖‖(H0 − z)−1‖‖f‖.

Hence

‖TK2 − T εK2
‖ ≤ ‖V2 − V ε

2 ‖‖(H0 − z)−1‖
≤ ε ‖(H0 − z)−1‖ → 0 as ε→ 0.

.
Thus TK2 is also compact (since K(L2(R3)) is closed). Therefore V

is H0-compact. �

Using the Theorem of Kato-Rellich II we deduce then that H = H∗.

Example 1.20. The Coulomb potential V (x) =
α

|x|
, α > 0 belongs to

the class in Proposition 1.19.
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Exercise 1.21. Let H0 = −∆ : H2(Rn) ⊆ L2(Rn) → L2(Rn) be the
free Hamiltonian and let z ∈ ρ(H0) = C \ [0,+∞).

(i) Prove that

R0(z)g := (H0 − z)−1f = Rz ∗ g, ∀g ∈ L2(Rn)

where Rz = ((|ξ|2 − z)−1)
∨
. Check that R0(z) ∈ B(L2(Rn)).

(ii) In case n = 1, prove that

Rz(x) =
ei
√
z|x|

2
√
z
, where Im

√
z > 0.

Hint: Use the Residue Theorem.

(iii) If z = λ + iη with λ ≥ 0, prove that lim
η→0

R0(λ + iη) does not

exist B(L2(Rn)).
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