Teoria Espectral

1. KATO-RELLICH THEOREM

Problem. Let A: D(A) CH — H and B : D(B) C H — H be two
linear densely defined. Suppose that A* = A and B C B* such that
D(A) C D(B).

In particular, it makes sense to consider A+ B : D(A) C H — H.
Moreover, it was proved that

A+BC A+ B*C(A+ B)".
The question that arises is under what conditions it holds that
(A+B)"=A+ B.

That problem appears for instance in Quantum Mechanics.
The initial value problem (IVP) for the Schrédinger equation is writ-
ten as

i0u = —Au + Vu = (Ho+V) u,
~— —_———
(1 . 1) multiplication by a real potential symmetric operator
u(0) = ¢ € H%

If the operator were self-adjoint we should show by means of the
Spectral Theorem that the IVP (1.1) is well-posed, or in other words,
the operator Hy + V generates a unitary group. In addition, we could
obtain information on the spectrum of Hy + V.

In order to do this we need of the following notion.

Definition 1.1. Let A: D(A) CH — H and B: D(B) CH — H
be two linear operators. We say that B is bounded in relation to A
(or B is A-bounded) if

(i) D(A) € D(B),

(ii) There exist « > 0 and [ > 0 such that

1Bl < aflgll + BllAdll, Vo e D(A).
The number
Bo = 1inf {5 > 0: (ii) holds}
is called the A-bound related to B.
Exercise 1.2. If A is a closed linear operator and B is a A-bounded
linear operator, show that
(a) Ho = (D(A),[,"]) is a Hilbert space with inner product

[0, 9] = (6,¢) + (A, A).
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(b) B € B(H,).

Example 1.3. Let H = L*(R), A= H, and
B: H'(R™) C L*(R) — L*(R)
1
¢ = _~¢/7
)
then B is A-bounded with A-bound equals zero.

Indeed, D(A) = H?*(R) C HY(R) = D(B) implies (i) in Definition
1.1.
Let € > 0, then || < €|¢]* + +.

Using Plancherel’s identity we have

1Bo|I? = | B = / o) de
R”L
1 —~
< [ (el RO de

<ot | NIEPHOF s +ele) | 190" de.
This implies that
1Bl < cell Al + c(e)llgll, Vo € H*(R).

Since this holds for any € > 0, we deduce that B is A-bounded and
the A-bound of B is equal to zero.

Proposition 1.4. Let A and B be closed linear operators. Suppose
that D(A) C D(B) and p(A) # 0. Then (ii) in Definition 1.1 holds.

Proof. Take z € p(A), then
BA-2)':H =K

is closed. By the Closed Graph Theorem we get B(A — z)~! € B(H).
Next, for all ¢ € D(A)

1Bl = | B(A = 2)(A = 2)¢]
< [1B(A=2)"MlII(A = 2)gll
< c||Ad| + cl=lll¢]l-
0

Exercise 1.5. If B is a closed linear operator, p(A) # 0, prove that
the following statements are equivalent



(1) B is A-bounded.
(2) B(A—2)"' € B(H) for some z € p(A).
(3) B(A—2)7t € B(H) for all z € p(A).

Definition 1.6. Let A be a linear operator such that A C A*. We say
that A is a positive operator if and only if
(Ag,¢) >0 V¢ € D(A).
(i.e. a bilinear form
b, : D(A) x D(A) — C
¢ (Ag, d)
is positive)
A is strictly positive if and only if
(Ap,¢) >0 VYo e D(A).
Remarks 1.7.
(i) A C A* implies that

(Ag, ¢) = (¢, Ag) = (A, ¢) Vo € D(A)
and so (Ap,¢) € R.

(ii) We can define an order relation on positive symmetric operators
as: A > B if and only if A— B > 0.

Definition 1.8. If there exists Ay € C such that A > N\, we say that
A is lower bounded.

Exercise 1.9. Let A: D(A) C H — H such that A = A* and M € R.
Show that A > M if and only if (—oo, M) C p(A).

From this we can see that a self-adjoint operator is lower bounded if
and only if its spectrum is bounded below.

Theorem 1.10 (Kato-Rellich Theorem). Let A : D(A) C H — H be
a linear self-adjoint operator and let B : D(B) C H — H be a linear
symmetric operator. Suppose that B is A-bounded with lower bound
B < 1. Then

A+B:D(A)CH—-H
1s a self-adjoint operator.
__In addition, if there exists M € R so that A > M, then there exists
M € R such that A+ B > M.
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Proof. We divide the proof is two parts.

First Part. We use the basic criteria for self-adjointness. We have to
prove that there exists A > 0 such that

R(A+ B+i)) =%
We first observe that A = A* implies that i\ € p(A), for all A > 0.
We write
A+BEir=(I+BA+iN) ) (A£i)).

It is sufficient to show that I+ B(A4i\)~! is surjective. To prove that it
is enough to show that there exists A > 0 such that ||B(A+i\)7!| < 1
employing Neumann series.

Let ¢ € D(A). By the hypotheses B is A-bounded with A-bound
Bo < 1, there exist 0 < 8 < 1 and a > 0 such that

(1.2) 1Bol| < aligll + 8| Adll

Let ¢ € H, since (A £ i) is surjective there exists ¢ € D(A) such
that (A £i\)¢ = 1. This implies that

(1.3) IB(A £\ ] = [Bo]l < alloll + Bl Ag].

In addition,

[9[1* = (A £ iX)el* = (A £ M), (A £ iN)g) = | Ap|* + A*||g||".

As a consequence,

146] < 1],
14
-4 {||¢|| < 1yl

Combining (1.4) with (1.3) we obtain
N [0
IBA Nl < (5 +8) Il < ¢

whenever A is chosen sufficiently large.

Second Part. We know that A = A* and (A+ B)* = A+ B. From the
Exercise 1.9, A > M yields that (—oo, M) C p(A). We would like to

find M so that (—o0, M) C p(A+ B). We left this as an exercise. [

Remark 1.11. It is not possible to improve the condition 5y < 1. For
instance, if we choose B = —A then By = 1, where A is an unbounded
operator. Indeed, we have A+ B : D(A) CH — H, A+ B =0 but
Ox : H — H s symmetric which implies that A + B is not mazximal
symmetric and thus A+ B is not a self-adjoint operator.
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As a consequence of the second part of the Kato-Rellich Theorem
we derive

Let A: D(A) C H — H be such that A* = A and let B : D(B) C
H — H be closed linear operator such that B C B*.

Definition 1.12. B is called relatively compact to A, or B is A-
compact, if there exists z € p(A) such that

B(A—2)"'eX(H)={L € B:L isacompact operator}

Remark 1.13. We already saw that if B is A-compact, then B is A-
bounded.

Theorem 1.14. Let A = A* and let B be an A-compact operator.
Then B is A-bounded operator with A-bound equals zero.

Definition 1.15. Let A = A* be a linear operator. The discrete
spectrum of A is the set in C given by

ga(A) = {X € V,(A) : X is isolated with finite multiplicity}.
The essential spectrum of A is the set in C given by o.(A) =
og(A)\oy(A).

Theorem 1.16 (Theorem of Kato-Rellich (II)). Let A = A* and B C
B* such that B is A-compact. Then A+ B is a self-adjoint operator
and 0.(A+ B) = 0.(A).

1.1. Application. A quantum particle of mass m interacting with a
potential (real measurable) V' in R?® is described by the Schrodinger
equation,

(1.5) ifh O = —%Au + V(z)u

where Ji = 2 is the Plank constant and u(z,t) € C.
The quantity |u(x,t)|? is a probability density of distribution of the
particle at instant ¢. That is, if u(z,0) = ¢(z) and S is a measurable

set in R?, then

1 2
P(S) = ”(b||2/s|u(x,t)\ dx

is the probability to find a particle in the set S.
Exercise 1.17. Verify that ||u(-,t)|| = ||¢|| for all t € R holds.

We can normalize the equation (1.5) and write it in the equivalent
form

10u = Hu
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where H = Hy + V. H is called the Hamiltonian and H, is called the
free Hamiltonian.
We will show that H = H*.

Remark 1.18. Notice that
d
@I = @, ) + (u, o)
then
—i(u, Qpu) = (u,i0u) = (u, Hu) = (Hu,u)
which implies
d
EHU(t)Hz = i(Hu,u) —i(u, Hu) = 0.

Proposition 1.19. Let V : R — R be a measurable, if V € L*(R3) +
LE(R3). (i.e. there exist Vi € L*(R3) and Vo € LY with V =V, + V3),
then V' is Hy-compact.

Above we use the notation

LE(R?) = {f € L>(R?) : Ve > 0,IM > 0, such that |f(z)| < e a.e. |x| > M}.

Proof. We shall show that there exists z € p(Hy) = C\[0, 00) such that
V(Hy — 2z)7! is compact.
From Exercise 1.21 if Ry(z) = (Ho — 2)~! then

1 eiVzll
Ro(2)f = ———x f, forn =3 where Imy/z > 0.
A |x|
Hence
V(H, - 2)" % )
(Ho —2)" f(z) = (x)/]RSmf(y) Y.
Then
V(Hy - 2)" V@) )
(o275 = [ Vi) s dy
K:(;y)
oy €Y ]
+/]R3 o )mf(y) y.
Kza:y)
and so

V(HO — Z)_lf = TKlf + TK2f.

Next we consider Tk, .



Notice that

1K= W@
R3xR3
—2Imy/z[g|
_ |V1(x)|2</ Sy di) de
R3

= VilPu(s?) [ e

< e[l

|2 6—21m\/5|x—y\

where we used the change of variable § = x — y and after applying
Fubinni’s theorem we employed polar coordinates.

We conclude that K; € L?(R3 x R3). Thus Tk, is a Hilbert-Schmidt
operator. Therefore it is a compact operator.

Now we study Tk,.

For any € > 0, there exists M, > 0 such that |V3(z)| < € a.e. for
\z| > M.

Define

Vo(z), if |z| < M,
Vi(z) =
2(®) { 0, if || > M.

It is clear that Vi (x) € L*(R*). Then Tf, = V5 (Hy—z)"" is a compact
operator by using the same analysis for Tk, .

On the other hand,
| Txo f = iy fll = |(Va = Vi) (Ho — 2) 7 £
< Ve = V5l (Ho — ) £
< Vo = VSIllI(Ho = 2) A
Hence
1Tk, — Th Il < IV = V5 [[|(Ho — 2) 7|
<el[(Hy—2)' =0 as e —0.

Thus Tk, is also compact (since K(L?(R?)) is closed). Therefore V
is Hy-compact. O

Using the Theorem of Kato-Rellich II we deduce then that H = H*.

Example 1.20. The Coulomb potential V(x) = <

x|’

a > 0 belongs to

the class in Proposition 1.19.
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Exercise 1.21. Let Hy = —A : H*(R") C L*(R") — L*(R"™) be the
free Hamiltonian and let z € p(Hy) = C\ [0, +00).

(i) Prove that
Ro(2)g = (Hy—2)"'f =R, x g, Vg € L*(R")

where R, = ((|€]> — 2)™1)" . Check that Ry(z) € B(L*(R™)).
(ii) In case n =1, prove that

eVl
Ve

Hint: Use the Residue Theorem.

R.(x) = where Imy/z > 0.

(iii) If z = A+ in with A > 0, prove that lir% Ro(X +in) does not
n—
exist B(L*(R™)).
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