
Teoria Espectral

1. More examples of closed, closable, adjoint,
self-adjoint operators

In these notes are presented some examples and remarks concerning
closed, closable, adjoint, self-adjoint unbounded linear operators.

Example 1.1. It is easy to construct, using an algebraic basis, a lin-
ear operator whose domain is the entire Hilbert space, but which is
unbounded. (We are of course assuming that the Hilbert space is infi-
nite dimensional.) By the closed graph theorem, this operator cannot
be closed. So it provides an extreme example of an operator which is
not closable.

Example 1.2. It is also possible for an operator to have many closed
extensions. Here is an example. The Hilbert space is H = L2(R) and
the operator is

D(A) = {f ∈ C∞0 (R) :
∫ ∞
−∞

f(x) dx =

∫ ∞
−∞

x f(x) dx = 0}

A(f)(x) = (1 + x2)f(x).

If one takes Fourier transform, this operator becomes the differential

operator − d2

dξ2
+ 1 with “initial conditions” f̂(0) =

df̂

dξ
(0) = 0.

Set

p0(ξ) =
1

1 + ξ2
, p1(ξ) =

ξ

1 + ξ2
.

Then the closure of A is{
D(A) = {f ∈ L2(R) : (1 + ξ2)f ∈ L2(R), (1 + ξ2)f ⊥ p0, p1}
(Af)(ξ) = (1 + ξ2)f(ξ).

Choose any nonzero p, q ∈ span{p0, p1} and a nonzero p⊥ ∈ span{p0, p1}⊥
which is perpendicular to p. The following are all closed extensions of
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A.{
D(A1) = {f ∈ L2(R) : (1 + ξ2)f ∈ L2(R), (1 + ξ2)f ⊥ p}
(A1f)(ξ) = (1 + ξ2)f(ξ),{
D(A2) = {f ∈ L2(R) : (1 + ξ2)f ∈ L2(R)}
(A2f)(ξ) = (1 + ξ2)f(ξ),{
D(A3) = D(A1) = {α p⊥

1+ξ2
+ f : α ∈ C, (1 + ξ2)f ∈ {p0, p1}⊥}

A3(α
p⊥

1+ξ2
+ f) = α q + (1 + ξ2)f.

Example 1.3. The following example shows that it is possible to have
D(T ∗) = {0}. Let

(i) H = L2(R),
(ii) {en}n∈N be an orthonormal basis for H and
(iii) for each k ∈ N, fk(x) = eikx. Note that fk /∈ H.

We define the domain of T to be D(T ) = B0(R), the set of all
bounded Borel functions on R that are compact support. This domain
is dense in L2(R). For ϕ ∈ D(T ),

Tϕ =
∞∑
n=1

[ ∫ ∞
−∞

fn(x)ϕ(x) dx
]
en.

1. We first check that T is well-defined. Let ϕ ∈ D(T ). Then there is
some integer m such that ϕ(x) vanishes outside of [−mπ,mπ]. Then,
for each k ∈ Z,

∫ ∞
−∞

fk(x)ϕ(x) dx =

∫ mπ

−mπ
fk(x)ϕ(x) dx =

∫ π

−π
eikmtmϕ(mt) dt

is the km-th Fourier coefficient of the function mϕ(mt). Since the sum
of the square of all Fourier coefficients is, up to a factor of 2π, the L2

norm of mϕ(mt), which is finite, so T is well-defined.

2. We now check that D(T ∗) = {0}. Let ψ ∈ T ∗ and ϕ ∈ D(T ) =
B0(R). Choose an m ∈ N with ϕ(x) vanishing except for x in [−mπ,mπ].
Then
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〈ϕ, T ∗ψ〉 = 〈Tϕ, ψ〉

=
∞∑
n=1

[ ∫ ∞
−∞

fn(x)ϕ(x) dx
]
〈en, ψ〉

=
∞∑
n=1

〈ϕ, 〈en, ψ〉fn〉.

Since∫ mπ

−mπ
fk(x) fl(x) dx =

∫ mπ

−mπ
ei(l−k)x dx =

{
2mπ if k = l,

0. if k 6= l.

The series
∞∑
n=1

〈en, ψ〉fn converges in H and

〈ϕ, T ∗ψ〉 =
〈
ϕ,

∞∑
n=1

〈en, ψ〉fn
〉

This is true for all bounded Borel functions ϕ supported in [−mπ,mπ]
so that

T ∗ψ =
∞∑
n=1

〈en, ψ〉fn a.e. on [−mπ,mπ]

and

∞ > ‖T ∗ψ‖L2 ≥ ‖T ∗ψ‖L2([−mπ,mπ]) =
∞∑
n=1

|〈en, ψ〉|2(2mπ).

Since this is true for all m, we must have 〈en, ψ〉 = 0 for all n ∈ N
and hence ψ ≡ 0.

We recall the following notion.

Definition 1.4. Let f be a complex valued function defined on [α, β]
where −∞ < α < β < ∞. f is said absolutely continuous if there
exists an integrable function g on [α, β] such that

f(x) =

∫ x

α

g(t) dt+ f(α).

Observe that f is continuous on [α, β] and differentiable a.e. with
f ′(x) = g(x) a.e on [α, β]. But it is not necessarily in L2[(α, β)]. This
can be seen by taking the function f(x) = x1/2 in L2([0, 1]). We denote
the set of all absolutely continuous functions on [α, β] by AC([α, β]).
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Example 1.5. We consider three different Hilbert spaces:

H1 = L2([α, β]), −∞ < α < β <∞,
H2 = L2([α,∞)), −∞ < α <∞,
H3 = L2((−∞,∞)).

We consider the operators Tj : Dj ⊂ Hj → Hj, j = 1, 2, 3 defined as

D1 = {g ∈ H1 : g = f a.e. for f ∈ AC([α, β]), f(α) = 0 = f(β), and

f ′ ∈ L2([α, β])}
D2 = {g ∈ H1 : g = f a.e. for f ∈ AC([α, β)), for each β > α, f(α) = 0,

and f ′ ∈ L2([α, β])}
D3 = {g ∈ H1 : g = f a.e. for f ∈ AC([α, β]), for each −∞ < α < β <∞

and f ′ ∈ H2}
with

Tjg = f ′, j = 1, 2, 3.

We will show that

(1) The linear operators Tj are unbounded symmetric operators in
Hj, j = 1, 2, 3.

(2) T3 is a self-adjoint operator.
(3) T1 and T2 are not self-adjoint operators.
(4) Tj = T ∗∗j , j = 1, 2, 3.

First we notice that Dj = Hj, for each j = 1, 2, 3. To show this
for D1 we recall that the linear subspace spanned by the set {xk : k =
0, 1, 2, . . . } is dense in L2([α, β]) because of the class of all complex
polynomials is dense in L2([α, β]). On the other hand, xk ∈ D1 since
each xk can be approximated in L2([α, β]) by a function f in D1. For
instance, for ε > 0 suitable, we can take f as being

f(x) =


(α + ε)k ε−1(x− α), α < x < α + ε,

xk, α+ ε < x < β − ε,
−(β − ε)k ε−1(x− β), β − ε < x < β.

This means D1 = H1.
To show that D2 = H2 and D3 = H3. We notice that the linear

subspace spanned by the set {xk e−x2/2 : k = 0, 1, 2, . . . } is dense in
L2((−∞,∞)) and in consequence their restrictions to [α,∞) are dense

in L2([α,∞)). We then can approximate each xk e−x
2/2 by a function

in D2 or D3, respectively.
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The operators Tj, j = 1, 2, 3 are unbounded. We consider for α < β

and k ≥ 2

β − α
the functions fk defined by

fk(x) =


k (x− α), if x ∈ [α, α + 1

k
],

2− k(x− α), if x ∈ [α + 1
k
, α+ 2

k
],

0, if x ∈ [α + 2
k
,∞).

Next we observe that,

‖fk‖2 =
∫ α+2/k

α

|fk(x)|2 dx =
2

3k
.

and

‖if ′k‖2 =
∫ α+2/k

α

k2 dx = 2k.

From this we deduce that

‖Tjfk‖
‖fk‖

=
(2k)1/2

( 2
3k
)1/2
≥ k.

Hence the operators are unbounded.
We show next that Tj are symmetric. It is done by using integration

by parts. Let f, g ∈ D1, then

(T1f, g) = (if ′, g) = i

∫ β

α

f ′(y) g(y) dy

= i f(y) g(y)
∣∣∣β
α
− i
∫ β

α

f(y) g(y) dy

= (f, ig′) = (f, T1g).

(1.1)

One can verify the same for the operators T2 and T3 by noticing that if
f ∈ D2 then lim

x→∞
f(x) = 0 and for f ∈ D3 we have that lim

x→±∞
f(x) = 0.

Next we will compute de adjoint T ∗1 de T1. Let D∗1 be the set

D∗1 = {g ∈ H1 : g = f a.e. where f ∈ AC([α, β]), f ′ ∈ H1}

Notice that (??) also holds for g ∈ D∗1, so the domain of T ∗1 contains
D∗1 and T ∗1 g = if ′ for g ∈ D∗1. We shall show that D(T ∗1 ) = D∗1. This
can be done if we prove that T1 ⊂ T ∗1 but T1 6= T ∗1 . Let f ∈ D∗1 and let
h be the absolutely continuous function given by

h(x) =

∫ x

α

T ∗1 f(s) ds+ C
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where C is a constant selected so that∫ x

α

[f(s) + ih(s)] ds = 0.

For every g ∈ D1, integration by parts yields∫ β

α

ig′(s) f(s) ds = (T1g, f) = (g, T ∗1 f) =

∫ β

α

g(s)T ∗1 f(s) ds

= g(s)h(s)
∣∣∣β
α
−
∫ β

α

g′(s)h(s) = i

∫ β

α

ig′(s)h(s).

Then ∫ β

α

g′(s) [f(s) + ih(s)] ds = 0.

In particular, taking g ∈ D1 given by

g(x) =

∫ x

α

[f(s) + ih(s)] ds

we get that ∫ β

α

|f(s) + ih(s)|2 ds = 0.

That is,

f(x) = −ih(x) = −i
∫ x

α

T ∗1 f(s) ds− i C, a.e.

and h is absolutely continuous with h′(x) = T ∗1 f(x). Thus f ∈ D∗1.

Using the previous analysis we can prove that T ∗2 g = if ′ on the do-
main

D∗2 = {g ∈ H1 : g = f a.e. where f ∈ AC([α, β]), β > α, f ′ ∈ H2}
and T ∗3 g = if ′ on the domain D∗3 = D3.

Since D∗1 ( D1, D
∗
2 ( D2 and D∗3 = D3. We have that T ∗3 is self-

adjoint and that T ∗∗1 , T ∗∗2 and T ∗∗3 are well-defined.

It remains to prove that Tj = T ∗∗j for j = 1, 2. In either case we have

Tj ⊂ T ∗∗j ⊂ T ∗j

since Tj ⊂ T ∗j . It suffices then to show that DT ∗∗j
⊂ Dj.

Let f ∈ DT ∗∗j
, then for all g ∈ D∗j we have

(T ∗∗j f, g) = (f, T ∗j g).

Since T ∗∗j ⊂ T ∗j , we have T ∗∗j f = if ′ and then

0 = (if ′, g)− (f, ig′).
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If j = 1, this means

0 = i

∫ β

α

f ′(s) g(s) ds+ i

∫ β

α

f(s) g′(s) ds

= if(s) g(s)
∣∣∣β
α
= i[f(β) g(β)− f(α) g(α)].

Taking first g(x) =
(x− α)
(β − α)

∈ D∗1 and then g(x) =
(β − x)
(β − α)

∈ D∗1,

we obtain f(α) = 0 = f(β) which implies that f ∈ D1.

If j = 2, let g(x) = e−(x−α) to yield f(α) = 0. Thus f ∈ D2.

Remark 1.6. We observe that T1 has uncountably many different self-
adjoint extensions. Indeed, let γ ∈ C with |γ| = 1 and define Tγ in H1

on

DTγ = {g ∈ L2((α, β)) : g = f a.e. where f ∈ AC([α, β]), f ′ ∈ H1,

and f(β) = γ f(α)}

by Tγg = if ′. Each Tγ is self-adjoint and extends T1. For each γ, we
have T1 ⊂ Tγ ⊂ T ∗1 .

Exercise 1.7. Consider the symmetric unbounded operators Tj, j =
1, 2, 3 defined in Example ??. Use the Basic Criteria to show that

(a) T3 is a self-adjoint operator.
(b) T1 and T2 are not self-adjoint operators.

Remark 1.8. The sprectrum of a linear operator of A is union of the
three disjoint following sets:

(i) σp(A) the point spectrum: the set of all eigenvalues.
(ii) σr(A) the residue spectrum: the set of all λ that are not eigen-

values and such that the image of λ− T is not dense in X.
(iii) σc(A) the continuous spectrum: the complementary of σp(A)

and σr(A) it is also the set of λ such that λ−A is injective with
dense image, but (λ− A)−1 is not continuous.

Example 1.9. Here is an example which shows, firstly, that an un-
bounded operator T may have σ(T ) = ∅ and secondly that “just chang-
ing the domain of an operator” can change its spectrum. The Hilbert
space H = L2([0, 1]).
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(i) If D(T ) = AC[0, 1] with Tf = if ′, then σ(T ) = C.
In fact σp(T ) = C, since, for any λ ∈ C, e−iλx is an eigen-

function for T with eigenvalue λ.

(ii) If D(T ) = {f ∈ AC[0, 1] : f(0) = 0} with Tf = if ′, then
σ(T ) = ∅.

Indeed, for any λ ∈ C, the resolvent operator (λ− T )−1 is

(Rλ(T )ψ)(x) = i

∫ x

0

e−iλ(x−t)ψ(t) dt.

(iii) Let α ∈ C be nonzero. If D(T )={f ∈ AC[0, 1] : f(0) = αf(1)}
with Tf = if ′, then σ(T ) = {−i lnα+ 2kπ : k ∈ Z}. Again the
spectrum consists solely of eigenvalues. If λ = −i lnα+2kπ for
some k ∈ Z, then eiλx is an eigenvalue for T with eigenvalue λ.
For λ not of the form −i lnα+2kπ for all k ∈ Z, the resolvent
operator (λ− T )−1 is

(Rλ(T )ψ)(x) = i

∫ x

0

Gλ(x, t)ψ(t) dt

with

Gλ(x, t) =


iλ eiλ(t−x−1)

1− αe−iλ
, if x < t,

i eiλ(t−x)

1− αe−iλ
, if x > t.


