Teoria Espectral

1. MORE EXAMPLES OF CLOSED, CLOSABLE, ADJOINT,
SELF-ADJOINT OPERATORS

In these notes are presented some examples and remarks concerning
closed, closable, adjoint, self-adjoint unbounded linear operators.

Example 1.1. [t is easy to construct, using an algebraic basis, a lin-
ear operator whose domain is the entire Hilbert space, but which is
unbounded. (We are of course assuming that the Hilbert space is infi-
nite dimensional.) By the closed graph theorem, this operator cannot
be closed. So it provides an extreme example of an operator which is
not closable.

Example 1.2. It is also possible for an operator to have many closed
extensions. Here is an example. The Hilbert space is H = L*(R) and
the operator is

DA = {f e GF®): [ fwido= [ af@dr=0)

A(N) (@) = (1 +2%)f ().

If one takes Fourier transform, this operator becomes the differential

d? ~ d
operator T + 1 with “initial conditions” f(0) = dif( ) =0.
Set
1 §

Then the closure of A is

D(A) ={f € L*(R) : (1 + &) f € L*(R), (1 + &) f L po,p1}
(Af)(©) = (1 + &) f(&)-

Choose any nonzero p, q € span{pg, p1} and a nonzero p* € span{po, p1 }*

which 1s perpendicular to p. The following are all closed extensions of
1
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{f e L’(R): (1+&)f € L*(R), (1 +&)f L p}

A.
D(Ay) (
(Af)(§) = (1 + &) f(E),
D(Ay) ={f € L*(R) : (1 + &)f € L*(R)}
(A2f)(§) = (1 + &) f (),
{D(Ag) D(A)) ={aZg + fra€C,(1+&)f € {po,p1}*}
Agatz + ) =agq+ (1 +&)f.

Example 1.3. The following example shows that it is possible to have
D(T*) ={0}. Let
(i) H = L*(R),
(i) {en}tnen be an orthonormal basis for H and
)

(iii) for each k € N, fi.(z) = e™**. Note that f), & H.
We define the domain of T to be D(T) = Bo(R), the set of all

bounded Borel functions on R that are compact support. This domain
is dense in L*(R). For ¢ € D(T),

1o =3[ [ h@etdde,

1. We first check that T is well-defined. Let ¢ € D(T). Then there is
some integer m such that ¢(x) vanishes outside of [—mm, mn]. Then,
for each k € Z,

/ R@e@)de = [ fule)ele) de = / " Mt (i) di

—mm -

is the km-th Fourier coefficient of the function me(mt). Since the sum
of the square of all Fourier coefficients is, up to a factor of 2, the L?
norm of my(mt), which is finite, so T is well-defined.

2. We now check that D(T*) = {0}. Let v € T* and ¢ € D(T) =
Bo(R). Choose anm € N with ¢(x) vanishing except for x in [—mm, mn].
Then



(o, T*Y) = T<p V)

/ Fo@)o(@) da) (en, )

Méﬂ [

(0, (en, ) fu)-

N
I
—

Since

mn mr mr if k=1
dr = z(l—k)md _ )
_mﬂf’“( ©) @) dx /_me S T )

The series > {en, V) fn converges in H and

n=1

(0. Ty = (@, Y {en V) fn)

This is true for all bounded Borel functions ¢ supported in [—mm, mm]
so that

T = Z(en,qb)ﬁ a.e. on [—mm, mm|

and
oo > ||T‘*77Z}||L2 Z ||T*77Z)||L2([—m7r,m7r] Z| 6n7 Zmﬂ-)

Since this is true for all m, we must have {(e,, 1) = 0 for alln € N

and hence ¥ = 0.

We recall the following notion.

Definition 1.4. Let f be a complex valued function defined on [, f3]
where —o0o < a < B < o0. [ is said absolutely continuous if there
exists an integrable function g on [a, 8] such that

) = [ gte)dr+ (o).

Observe that f is continuous on |«, 5] and differentiable a.e. with
f'(z) = g(x) a.e on [a, B]. But it is not necessarily in L*[(«, B)]. This
can be seen by taking the function f(z) = z'/? in L*([0,1]). We denote
the set of all absolutely continuous functions on [«, B] by AC([«, B]).
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Example 1.5. We consider three different Hilbert spaces:

Hy
Hy = L*(Ja,00)), —00 < a < oo,
Hs = L*((—00,00)).
We consider the operators T; : D; C H; — H;, j =1,2,3 defined as
Di={g9g€eH,:9=f ae for f e AC([a, ]), f(a) =0 = f(B), and
fe L*([e, B))}
Dy={geH,:9=f a.e. forfeAC([a,p)), for each 5 > «, f(a) = 0,
and f' € L*([a, B])}
Ds={geH,:9=fae. forfe AC(|a,]), for each — o0 < a < < 0
and f" € Hy}

L*([a,f]), —co<a<f<oo,

with
Tig=f, j=12.3.

We will show that

(1) The linear operators T; are unbounded symmetric operators in
H,, 5 =1,2,3.

(2) T3 is a self-adjoint operator.

(3) T1 and Ty are not self-adjoint operators.

(4) T, =T, j=1,2,3.

First we notice that ﬁ] = H;, for each j = 1,2,3. To show this
for Dy we recall that the linear subspace spanned by the set {x* : k =
0,1,2,...} is dense in L*([a, B]) because of the class of all complex
polynomials is dense in L*(|a, B]). On the other hand, z* € Dy since
each z* can be approzimated in L*([c, B]) by a function f in Dy. For
instance, for € > 0 suitable, we can take f as being

(a+e)f etz —a), a<zr<a+te,
flz) = z*, ate<x<pf—e,
—(B—efet(@—-p), B-e<z<p.
This means Dy :_9{1. o
To show that Dy = Hy and D3 = Hs. We notice that the linear
subspace spanned by the set {x* e 2 | =0, 1,2,...} is dense in
L?((—o00,00)) and in consequence their restrictions to [, 00) are dense

in L*([,00)). We then can approzimate each x* e="*/2 by a function
in Dy or D3, respectively.



5

The operators T, 7 = 1,2,3 are unbounded. We consider for oo < 3
2
and k > ﬁ— the functions fi. defined by
-«

k(x—a), if xe[a,ajL%],
fi@=y2-k@-a), i eclot+iati]
0, if x¢€la+2, 00).

Next we observe that,

) a+2/k ) 2
1= [ P de = o

a+2/k
lifl? = / K2 dz = 2k,

From this we deduce that

IT, el Y2
Il (G2~
Hence the operators are unbounded.

We show next that T; are symmetric. It is done by using integration
by parts. Let f,g € Dy, then

and

B .
(Tuf.0) = (if'g) = i / F(y) 9) dy

—ifly —z/ F(y
= (f,ig') = (f,Thg).

One can verify the same for the operators Ty and T3 by noticing that if
f € Dy then lim f(x) =0 and for f € D3 we have that lirin flz) =
T—00 T—rL00

(1.1)

Next we will compute de adjoint T} de Ty. Let DT be the set
={g€H,:9=f ae where f e AC([o, f]), f € H:}

Notice that (?7) also holds for g € D7, so the domain of T} contains
Dt and TYg = if" for g € Di. We shall show that D(T}) = Dj. This
can be done if we prove that T1 C Ty butTy #Ty. Let f € D} and let
h be the absolutely continuous function given by

h(z) :/szf(s>ds+c
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where C' is a constant selected so that
/ [f(s) +ih(s)]ds = 0.

For every g € D1, integration by parts yields

B8 - B8
/ ig/(s) () ds = (Tig, f) = (9. T ) = / o(s) Tef () ds

Then ,
/ g'(s)[f(s) +ih(s)]ds = 0.

In particular, taking g € Dy given by

o) = [ "L (s) + ih(s)) ds
we get that

B
/ |f(s) +ih(s)[*ds = 0.
That 1s,

f(x) = —ih(x) = —i/ T f(s)ds —i1C, a.e.
and h is absolutely continuous with h'(x) =T} f(z). Thus f € D5.

Using the previous analysis we can prove that T5g = if" on the do-
main

Dy ={geH,:9=fae wherefe AC(|o,f]), B>, [ € Hy}
and T5g =if" on the domain D} = Ds.
Since D} € Dy, D5 € Dy and D5 = Ds. We have that T5 is self-
adjoint and that T7*, T5* and T5* are well-defined.
It remains to prove that Ty =T;* for j = 1,2. In either case we have
T, CT;" CTyf
since Ty C T} . It suffices then to show that DT;* C D;.
Let f € DTJ_M, then for all g € D} we have
(T7f,9) = (f,T; g).
Since T;* C TF, we have T;* f = if’ and then
0=(if,9) - (,ig).



If j =1, this means

/f ds—H/f

(r — o)
f—a)
(B) which implies that f € D;.

€ Dt and then g(z) = (- =) € Dy,

Taking first g(x) = F—a)

we obtain f(a) =0=f

~

If j =2, let g(x) = e~ @~ to yield f(a) = 0. Thus f € Ds.

Remark 1.6. We observe that T7 has uncountably many different self-
adjoint extensions. Indeed, let v € C with |y| =1 and define T, in F;
on

Dy, ={g € L*((a,8)) : g = f a.e. where f € AC(|v, 8]), f' € Hi,
and f(B) = f(a)}

by T,g = if’. Each T, is self-adjoint and extends Ty. For each vy, we
have Ty C T, C T} .

Exercise 1.7. Consider the symmetric unbounded operators Tj, j =
1,2,3 defined in Example ??7. Use the Basic Criteria to show that

(a) T3 is a self-adjoint operator.

(b) T} and T3 are not self-adjoint operators.

Remark 1.8. The sprectrum of a linear operator of A is union of the
three disjoint following sets:

(i) 0,(A) the point spectrum: the set of all eigenvalues.
(i) 0,.(A) the residue spectrum: the set of all X that are not eigen-
values and such that the image of A — T is not dense in X.
(ili) o.(A) the continuous spectrum: the complementary of o,(A)
and o,.(A) it is also the set of X such that A\— A is injective with
dense image, but (A — A)™' is not continuous.

Example 1.9. Here is an example which shows, firstly, that an un-
bounded operator T may have o(T) = 0 and secondly that “just chang-
ing the domain of an operator” can change its spectrum. The Hilbert

space H = L*([0,1]).



(i) If D(T) = ACI0,1] with T f = if’, then o(T) = C.
In fact 0,(T) = C, since, for any X € C, e~ is an eigen-
function for T with eigenvalue .
(i) If D(T) = {f € AC[0,1] : f(0) = 0} with Tf = if’, then
o(T)=0.
Indeed, for any A € C, the resolvent operator (A —T)™! is

(RA(T)0) () = i / " e N1y dt.

(iii) Let a € C be nonzero. If D(T)={f € AC[0,1] : f(0) = af(1)}
with Tf =if’, then o(T) = {—ilna+2krw : k € Z}. Again the
spectrum consists solely of eigenvalues. If X\ = —iln a4+ 2kn for
some k € 7, then e?* is an eigenvalue for T with eigenvalue \.
For X not of the form —ilna+ 2kw for all k € Z, the resolvent
operator (A —T)~1 is

(Ra(T))(x) = i / "G () di

with
i\ ei)\(tfxfl) .
Toaen Trst
G)\(ZL’, t) =
s iA(t—x)
Le if x>t

1 — e’



