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Chapter 1
The Fourier Transform

In this chapter, we shall study some basic properties of the Fourier transform. Sec-
tion 1.1 is concerned with its definition and properties in L'(R"). The case L*(R")

is considered in Section 1.2. The space of tempered distributions is briefly consid-
ered in Section 1.3. Finally, Sections 1.4 and 1.5 give an introduction to the study of
oscillatory integrals in one dimension and some applications, respectively.

1.1 The Fourier Transform in L'(R")

Definition 1.1. The Fourier transform of a function f € L'(R"), denoted by f, is
defined as:

&)= f flx)e 8y, for £ € R", (1.1

Rn

where (x-8) = x & + - + Xa&,.
We list some basic properties of the Fourier transform in L'(R").

Theorem 1.1. Let f € LY(R"). Then:

1. f v F defines alinear transformation from L'(R") to L®(R") with

17 Moo < 511 (1.2)

2 ﬁs continuous.
3. f(EY— 0 gs |&] = oo (Riemann-Lebesgue).
4. If o f(x)= f(x — I} denotes the translation by h € R”, then

(T FIE) = e %D Fig)y, (13)

and
(e=Th FY(E) = (r_ F)E). (1.4)
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2 1 The Fourier Transform

3. If 8,F(x) = flax) denotes a dilation by a > 0, then

@& =a~" fla~'8). (1.5)
6. Let g € L'(R") and f * g be the convolution of f and g. Then,
(F *2)&) = FIEFE). (1.6)
7. Let g € L'(R"). Then,
f F(0g()dy = f SOEGMy. (1.7
Rn Rn

Notice that the equality in (1.2) holds for f = 0,1i.¢., f(O) = ||f loo = I.F 11>

Proof. Itis left as an exercise, o
Next, we give some examples o illustrate the properties stated in Theorem 1.1,

Example 1.1 Let n =1 and f(x) = xumlx) (the characteristic function of the
interval (a, b)). Then,

h
.F(E) — [ o= FFIRE g

p—LMibE _ p=2uiat
2rik
= gtk sin (m(a — b)§) '
nk

Notice that f ¢ L'(R)and that f(E) has an analytic extension f(& +-in}to the whole
plane & +in € C. In particular, if (a,b) = (— k&, k), k € Z¥, then we have

sin (2wkE)
rE

Example 1.2 Letn =1 and lork € Z* define

Xi-kx)(&) =

k+14x, iFxe(=k-1,-k+1]

2, if xe(—k+1,k-1)
gilx) = )
k4+1—x, il xelk=-1k+1)
0, if xe(—k—-0LLk+1)
ie, gklx) = Xi=r1) * Xi-t.x)(x). The identity (1.6) and the previous example show
that
— _sin(2n&)sin (2mkE)

Notice that g € L'(R) and has an analytic extension to the whole plane C.
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Example 1.3 Let n > | and f(x) = e~ with t > 0. Then, changing

variables x — x/+/t and using (1.5), we can resirict ourselves to the case t = 1.
From Fubini’s theorem we write:

oo
"
BT P 1 B _‘2_2_1'_.
fe 477 (x| e g1|(.tEJdr=l_[fe( 4r°x; 'r.IEJL‘,|dxj
- j=1

n oo
1.2 ; 2 Zrdy
= l_[ /8("‘" i T e Al Y

=10
n oo

— ne-ef/-:fe-(L-r.rp.'e,-/z;l dx;
j=1 -0

= P r2gmlER

where in the last equality, we have employed the following identities from complex
integration and calculus:

? T T oode 1
]e—{"_-r.tﬂs,.'!) de = f P tein] s fe—-" ﬁ = m
oo - -0
Hence,
,,-'I?ﬁihz(g) = ﬂ (1.8)
(dmaeyn>

Observe that taking ¢ = 1/4x and changing variables t — 1/167%t we get:

———
e e—l.l'F."-ll’

R ey — o—TIER — a—dnlrl?
e~ThE(E) =™ and W(E)—f TIRh,

respectively.
Example 1.4 Let n =1 and f(x) = e~?"*|, Then,

R res) |
f(f) = JT(""'I)"'Z 0+ |E|1)(n+l]."! ’

where I'(+) denotes the Gamma lunction. See Exercise 1.1 (i).

1
Example 1.5 Let n =1 and f(x) = — Using complex integration one

. C Tl x?
obtains the identity:
f cos (ax)
cos (ax r
fmdx= Ee Jb, a, b =0,

-00



4 1 The Fourier Transform

w0

_ lj cos(277|&'|.r)dr — il
T I+ x2

=0
One of the most important {eatures of the Fourier transform is its relationship with
differentiation. This is described in the following results.

Proposition 1.1. Suppose x; f € L'(R"), where x; denotes the kth coordinate
of x. Then, f isdifferentiable with respect to & and

-~

a .——-:"--.
—f(E) = (= 2mixe fON(E). (1.9)
Ak
In other words, the Fourier transform of the product x; f(x) is equal to a multiple
of the partial derivative of (&) with respect to the kth variable.
To consider the converse result, we need to introduce a definition.

Definition 1.2, Let | < p < co. A function [ € LF(R®) is differentiable in
LP(R") with respect to the kth variable, if there exists g € L7”(R") such that

f‘f(.r + hey) — f(x) p
2 h

—gx) dx—0 as i — 0,

where e has kth coordinate equals 1 and O in the others. If such a function g exists
(in this case it is unique), it is called the partial derivative of f with respect to the
kth variable in the L”-norm.

Theorem 1.2, Let f € L'(R") and g beits partial derivative with respect to the
kth variable in the L'-norm. Then, (&) = 2mik, f(E).

Proof. Properties (1.2) and (1.4) in Theorem [.1 allow us to write
(1 - o~ 2wihik rnl)
h :

then take 1 — 0 1o obtain the result, (,
From the previous theorems it is easy to obtain the formulae:

|5 - Fe)

P(D)f(E) = (P(=2mix) f(x))"(£), 010)
(B(DYf)E) = PQriE)FL&),

where P isapolynomial in i variables and P(D) denotes the differential operator
associated to P.
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Now we turn our aticntion to the following question: Given the Fourier transform
f of a function in  L'(R"), how can one recover f?
Examples 1.3-1.5 suggest the use of the formula

fw) = [ Fiereioe.

Unfortunately, (&) may be nonintegrable (see Example 1.1). To avoid this problem,
one needs to use the so called method of summability (Abel and Gauss) similar to
those used in the study of Fourier serics. Combining the ideas behind the Gauss
summation method and the identities (1.4), (1.7), (1.8), we obtain the following
equalities:

=P g lx- x| e
f(x) = lim @y 7 * flo) = lim f @ SOy
) —I~Il4f
&n

— |lm f(e.:rrls E)p=iEl? YOV f(Ody

= }i_l;l'(l) '[elTI'lfl'ﬁe-"ﬂ"llﬂ'f()’:)dg‘
R"

where the limit is taken in the L'-norm.

Thus, if f and f are both integrable, the Lebesgue dominated convergence
theorem guarantees the point-wise equality. Also, if f € L'(R") is conlinuous at
the point xp , we get:

=134

flxo) = im @nnyE

* (xo) = fimy f"lﬁ“""“e-h’naﬁf(%‘)dé_

1’!
Collecting this information, we get the following result.

Proposition 1.2, Let f € L'(R"). Then,
f(x) = lim f eP I Slemiae AR F ()it
Rn

where the limit is taken in the L'-norm. Moreover, if f is continuous at the point
Xo , then the following point-wise equality holds:

oy =ty [

Bn
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Let f, e L\(R"). Then,

flx) = f e FEVIE,  almost everywhere x € R".
Rn

From this result and Theorem 1.1 we can conclude that
A LNRY — CoolRM

is a linear, one-lo-one (Exercise 1.6 (i), bounded map. However, it is not surjective
(Exercise 1.6 (iii)).

1.2 The Fourier Transform in L2(R")

To define the Fourier transform in L?*(R"), we shall first consider that L'(R") N
L*(R™) is adense subset of LYBR") and LARM).

Theorem 1.3 (Plancherel). Let f € L'(R") N L2(R"). Then, fe LYR") and

1702 =111 a1

Proof. Let g(x) = —x. Using Young's incquality (1.39), (1.6), and Exercisc 1.7
(ii), it follows that

frg e L'(R")NCo(R") and (f * gXE) = FIE)FE).

Since E:Gr) ,we find that (f*g)= |j"h|2 > 0. Hence, (f *g) € L'(R") (see
Exercise 1.7 (iii}). Proposition 1.2 shows that

(f *g)0) = f(f*g)(-f)d's‘,
Rn

and

IFIE = f FeRNE)dE = ( % £)0)
R'l

- f F(0)8(0 — x)dx = f FEfeyds = 112
Rn =]

O
This result shows that the Fourier transform defines a linear bounded operator from
L' (RN LYR") to L3*(R"). Indeed, this operator is an isometry. Thus, there is
a unique bounded extension F defined in all L2(R"). F is called the Fourier
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transform in L%*(R"). We shall use the notation f F(f) for felL? (]R")
In general, the definition f is realized as a limit in L* of the sequence {h,}
where {h;} denotes any sequence in L'(B") N L3(R") that converges to f in
the Lz-nonn. It is convenient to take /; equals f for {x| < j andto have 4
vanishing for |x] > j. Then,

EI(‘E) = f fx)e M gy = fhl.(.t)e'l‘"'(»ff)dx

x| =j B

and so, . N
hiE) = f(&) inlL? as j— oco.

Example 1.6 Letn = 1and f(x) = —+ ::2‘ Observe that f € L*(R)\ L'(R).

Differentiating the identity in the Example 1.5 with respect to a and taking b = |

we get:
o .
f de =gme ", a=0,
e .

which combined with the previous remark gives:

f(&) = =i sg(g)e™ 1,

A surjective isometry defines a “unitary operator.” Theorem 1.3 alfiems that F is
an isometry. Let us see that F is also surjective.

Theorem 1.4. The Fourier transform defines a unitary operator in L*(R").

Proof. From the identity (§.11) it follows that F is an isometry. In particular, its
image is a closed subspace of L2(R™). Assume that this is a proper subspace of L>.
Then, there exists g # 0 such that

f Fg(dy =0, forany f € LAR").

Using formula (1.7; Theorem 1.7), which obviously extends 1o f, g € L*(R™), we
have that

f FONEMy = [ F)e()dy =0, forany f € L2
Rﬂ‘ L]
Therefore, g(&) =0 almost everywhere, which contradicts

llgllz = Igll2 # 0.
O

Theorem 1.5. The inverse of the Fourier transform F~' can be defined by the
Sformula
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F flx)=Ff(=x), forany fe L*R"). (1.12)
Proof. f"f: f is the limit in the L2-norm of the sequence

filx) = f FiEre e agg,
lEl<j
First, we consider the case where f € LY(R"yn L2(R™). It suffices to verify that this
agrees with F* f, where F7* is the adjoint operator of F (we recall the fact that

for a wnitary operator the adjoint and the inverse are equal). This can be checked as
follows:

Fy = [ o€ de = lim 10 in L@,
R !
and

€. = fs(-f)( ff(&)e’“"“s ) dk)dx

R B*

= f( fg(.t)e“"‘"” E)dx)ﬁ;)’dE =(Fg. /)

R R

forany g € L'(R") N LYR"). Hence f = f.
The general case follows by combining the above result and an argument involving
a justification of passing to the limit. |

1.3 Tempered Distributions

From the definitions of the Fourier transform on L'(R") andon L3(R"), thercisa
natural extension to L'(R") + L2(R"). It is not hard to see that L'(R"®) + L*(R")
contains the spaces L7(R") for I < p < 2. On the other hand, as we shall prove,
any function in LP(R") for p > 2 has a Fourier transform in the distribution
sense. However, they may not be function, they are tempered distributions. Before
studying them, it is convenient to see how far Definition 1.1 can be carried out,

Example 1.7 Letn > 1 and f(x) = &, the delta function, i.e., the measure of mass
one concentrated at the origin. Using (1.1) one finds that

Bo(8) = [&)(—t) e By = 1.
Rn

In fact, Definition 1.1 tells us that if z is a bounded measure, then ji(£) represents
a function in L*(R").



1.3 Tempered Distributions 9

Suppose that given f{x) = | we want to find f('g'). In this case, Definition
1.1 cannol be used directly. It is necessary to introduce the notion of tempered
distribution. For this purpose, we first need the following family of seminorms.,

For each (v, 8) € (Z+)* we denote the seminorm [ - .. defined as:

1 Uy = 1692 flloo-

Now we can define the Schwanz space  S(R"), the space of the C™-lunctions
decaying at infinity, i.e.,

SR") = {p € C®(R") : figllp < oo forany v,B € (Z*)").

Thus, C3°(R") € S(R") (consider f(x) as in Example 1.3).
The topology in S(R") is given by the family of seminorms [ - ll, ). (v, B) €
(Z*+y,

Definition 1.3. Let (¢;} C S(R"). Then, ¢; — 0as j — oo, if for any
(v,8) € (Z*)*" one has that

leillwp —> O as j — co.

The relationship between the Fourier transform and the function space S(R") is
described in the formulae (1.10). More precisely, we have the following result (see
Exercise 1.13).

Theorem 1.6. The map ¢ \— @ is an isomorphism from S(R"} into itself.
Thus, S(R") appears naturally associated to the Fourier transform. By duality, we
can define the tempered distributions S'(R").

Definition 1.4. We say that  : S(R") — C delfines a tempered distribution, i.e.,
¥ e S'(R")if:

1. ¥ is linear.
2. ¥ is continuous, i.e., if for any {g;} € S(R") such that ¢; — Qas j — o0,
then the numerical sequence ¥(p;) — 0 as j — oo.

It is easy to check that any bounded function f defines a tempered distribution ¥,
where

Yr(p) = ff(.r)ga(.r)dt, forany ¢ € S(R"). (1.13)
Eil

In fact, this identity allows us to see that any locally integrable function with poly-
nomial growth at infinity defines a tempered distribution. In particular, we have the
LP(R") spaces with |1 < p < oo. The lollowing example gives us a tempered
distribution outside these function spaces.

Example 1.8 In S'(R), define the principal value function of 1/x, denoted by

p.v. e by the expression
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oo 48]
p.v. (¢} =lim f ——dx,

exx|<lfe

forany ¢ € S(R). Since 1/x is an odd function,

DY, (p) f o) =0, 4 j LI (1.14)
X X X
lxf=<1 |x]=1
Therefore,
l '
|p.v. ;uo)l < 219 lloo + 2/ ¢l oo (1.15)

and conscquently, p.v. % e S'(R).
Now, givena ¥ € S'(R"), its Fourier transform can be defined in the following
natural form.

Definition 1.5. Given ¥ € S'(R"), its Fourier transform ¥ e S'(R™) isdefined
as:

F(p) = w(@), forany ¢ € S(R™). (1.16)
Observe that for £ € LY(R™) and ¢ € S(R"), (1.7), (1.13), and (1.16) tell us
that
Pi(p) = W) = f FO)@(x)dx = f Flop(x)dx = w7(p).
Rn En

Therefore, for f € L'(R*)+ L*(R") one has that E;f = ¥ . Thus, Definition 1.5
is consistent with the theory of the Fourier transform developed in Sects. |.1 and 1.2,

Example 1.9 Let f(x) =1 e L®(R") ¢ S'(R"). Using the previous notation, for
any ¢ € S(R") it follows that

&\ (p) = ¥, () = f I §(x)dy = 9(0) = f dp(x) @(x)dx = So(p).
R R"
Hence T= do. We recall that in Example 1.7 we already saw that 3}; =1.

Next we compute the Fourier transform of the tempered distribution in Exam-
ple 1.8.

Example 1.10 Combining Definition 1.5, Fubini's theorem, and the Lebesgue
dominated convergence theorem we have that for any ¢ € S(R),
v I( ) v l(’“) lim f
V. =(¢) = p.v. — = li
p-v. Sl¢ p-v. T@ TS

e<|r|<l/e

@dx
x

o0

T | Ag=tixy 1.,
—lg;}} f x( f w(3)e d))dx

e<|x)elfe -0
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=3 e-erixy
= lim f so(.v)( / . cir) dy
-0 e<it]<le
%) Ixixy
g em
= foug [ e
-0 e<|r|<l/e
B
= —ix]sgn()’) e(y)dy,
—ed

where achange of variables and complex integration have been used to conclude that

=2riry o , e
lim j ¢ dy = —Zi[de = —Zisgn(y)f Sm(ﬂdx
€l0 x X X
e<)x|<l/e [} i}
=—im sgn(y).
This yields the identity:
i '
p.v. ;(E) = —inm sgn(§).

The topology in S’(R") can be described in the fotlowing form.

Definition 1.6. Let {¥;} C S'(R"). Then, ¥; — Qas j — oo in S'(R"),if for
any ¢ € S(R") it follows that ¥;(p) — Oas j — 0.

As a consequence of the Definitions 1.4, 1.6, we get the next extension of
Theorem 1.6, whose proof we leave as an exercise.

Theorem 1.7. The map F: ¥ > ¥ isan isomorphism from S'(R") into itself.

Combining the above results with an extension of Example 1.3 (see Exercise 1.2),
we can justify the following computation related with the fundamental solution of
the time-dependent Schridinger equation.

Y TS
Example 111 e 77155 = lim e—d7 letinlkl® in S"(R™),
e~=0"

From Exercise 1.2, it follows that
— e—|e|’,'-lqs+m
(e TN =
Taking the limit € — 0%, we obtain:
261

Sty ) = e
(e ) = o

(1.17)
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As an application of these ideas, we introduce the Hilbert transform.

Definition 1.7. For ¢ € S(R), we dehine its Hilbert transform H{yp) by

| 1 1 1
H(p)(») = pd e (p(y = = g ;*w(.\').

From (1.14) and (1.15) it is clear that H(w)(y) is defined forany y € R anditis
bounded by g(¥) = aly| + b, with a,b > 0 depending on ¢. In particular, we have
that H(g) € S'(R). Let us compute its Fourier transform.

Example 1,12 From Example 1.10 and the identity

11 o
P ;X|€<|.\'|<I/6} *90)()') in S(R)

He)() = lim (

it follows that

p———

IR . _
lim (= = fieateizel *¢) () = =i sgn(€) BL&).
This implies that
Hip)(&) = —i sgn(6) (&), forany ¢ € S(R). (1.18)

Theidentity (1.18)allows us toextend the Hilbert transform as an isometryin L*(R).
It is not hard to sec that

IH@z = llellz and  H(H(p) = —p.

Other properties of the Hilbert transform are deduced in the exercises in Chaps. 1
and 2.

In Definition 1.7, we have implicitly utilized the following result, which is
employed again in the applications at the end of this chapter.

Propusition 1.3. Let ¢ € S(R") and ¥ € S'(R"). Define
¥ ox p(x) = P (p(x — ). (1.19)

Then,
v e CORMYNS'(RY)

and
Vrp=0g, (1.20)

where U@ e S(R") is defined as FG(p) = ¥ (F) forany ¢ € S(R").

Proof. Itis left as an exercise. )



1.4 Oscilimory Integrals in One Dimension 13

1.4 Oscillatory Integrals in One Dimension

In many problems and applications the following question arises:
What is the asymptotic behavior of (X)) when A — oo, where
b

1) = f e £ (x)dx, (1.21)

a

and ¢ is a smooth real-valued function, called the “phase function,” and f isa
smooth complex-valued function?

We shall see that this asymptotic behavior is determined by the points t , where
the derivative of ¢ vanishes, k.e., ¢'(¥)=0.

Proposition 14. Let f € C3F([a,b]) and ¢'(x) # O forany x € [a,b]. Then
3
I(A) = fe‘“*-”'f(.r)dx =007, as A= o0 {1.22)

forany ke Zt,

Proof. Define the differential operator

which satisfies
d f e .
i e ki alhdy — Hihd
L'(f)= o (_iltp’) and L") = "%,

where L' denotes the adjoint of £. Using integration by parts it lollows that

b b
[e”“‘fdr:fﬁ"(e"“"’)fdr

[
=(—l)"fe“‘¢(£')"fdx= oL %), asA — oc.

O

Proposition 1.5. Let k € Z* and |¢p™(x)| = 1| forany x € [a,b] with ¢'(x)
maonotonic in the case k = 1. Then,

b
| f e“““”dxl < VE, (1.23)

o
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where the constant ¢, is independent of a,b.

Proof. For & = 1, we have that
b

[ h
. . 1,0 a1 d gl
P og ird — il _ ivp
fe d.r—fﬁ(e Ydx = v € i fe i dr(qb’)dr
o

]

L'

d

Clearly, the first term on the right-hand side is bounded by 24", On the other hand,
the hypothesis ol monotonicity on ¢’ guarantees that

b b
|[eaz@el =1 [ IZE)e

_ ll 1 | - 2
Ao ¢! T
This yiclds the proof of the case k = 1.

For the proof of the case k& = 2, induction in & is used. Assuming the resuli
for k, we shall prove it for k + 1. By hypothesis, 1¢*+"(x)| = I. Let xo € [a, 5]
be such that

I6®(xo)] = min [¢*(x)].

If 9% xo) = 0, outside the interval (xg — 8, xp + &), one has that |p%'(x)| > &,
with ¢ monotonic if k£ = 1. Splitting the domain of integration and applying the
hypothesis we obtain that

Ag=4 b
| f e”‘"’mdxl + | ] e"“’mdxl < ()5,
a Tot+d

A simple computation shows that

xp+4
| f eiA¢(x)d_t| < 26.

X=a

Thus,
b
| f efW’dxl < cx(A8)V* 425,
a
If ¢**xg) # 0, then xg = a or b and a similar argument provides the same

bound. Finally, taking § = A"+ we complete the proof. u|

Corollary 1.1 (van der Corput). Under the hypotheses of Proposition 1.5,

b
|f e”‘"“)f(.r)dxl < A Vk (N lleo + NS M1) (1.24)
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with ¢y independent of a, b.
Proof. Define

X
G(x) = f e gy,

4]

By (1.23) one has that
IG)I < e d”VE.

Now using inlegration by parts we obtain:
b b " b
|f e f | = |f ¢'rax| =|@Gn| + |f Gf'dx|
a a ! o
<™ (1 Flloo + 1£') -

Next, we shall study an application of these results,
Proposition 1.6. Ler B € [0,1/2] and I4(x) be the oscillatory integral

o0

1i(x) = / ) [pifdy. (1.25)

-0
Then, Iy € L=(R).
Proof. First, we fix @ € C™(R) such that

_ )L if g > 2
woln) = [o. if |nl < 1.

Observe that (1 — go)(me'™ |7l € L'(R), therefore its Fourier transform belongs to
L*=(R). Thus, it suffices to consider

=]

vy = fe"‘“'*”"’ (nl* eo(n)d .

-0
For x > =3, the phase function @,(n) = x5 + 5*, in the support of g, satisfics
9. (0] = lx + 30°| = (x| + |al).

In this case, integration by parts lcads to the desired result.
For x < —3, we consider the funclions (g, ¢2) € C§° x C* such that

o7 + () =1 with
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x
suppp; C A = [n Dl 307 < %I

and
: . 2 [x]

¢ =0 in B=|r}.|x+3q|<T :

and we split the integral 75(x) in two picees,
GG EATHE
where
o0
THEOE /e"”"“”Inl”sﬂo(n)w(n)dn. for j=12.
-0

When 2(7) # 0, the triangle inequality shows that
’ 3
I6x (= Lx + 307 2 el + 1),

Integration by parts leads to

[ +]
¥ inl” d ) o
D2l = 5 (n)—e' ) gpl < 100.
{50 I-[o ¢;(n)wo(n)w.(n)dne 0| =

Now, if € A, we have that

on| = il = 11",

Thus (1.24) {van der Corput) and the form of ¢y, ¢, guaraniee the existence of a
constant ¢ independent of x < —3 such that

o0

- : 3 -
e = [ e inontmonn) da < c 1=,
—0o

1.5 Applications

Consider the initial value problem (IVP) for the linear Schridinger equation:

du = i Au,

u(x,0) = up(x), (1.26)
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x € R", t € R. Taking the Fourier transform with respect to the space variable x
in {(1.26) we obtain:

Gag, D) = 0, 1) = [AuE, 1) = —4ni|EFRE. 1)
T(E, 0) = Tip(£).

The solution of this family of ordinary differentiat equations (ODE), with parameter
&, can be written as:

N = o=l lszo(l}).

By Proposition 1.3 it follows that

u(x, 1) = (e —4.‘rlr'l'E.3"“.‘0(&-))‘-' - (e-4le'li5|:)~.-' * tig(X)
o (1.27)
i

.
=4t
=k ug(x) = e (),

Eriry'=

where we have introduced the notation e*2 which is justified in Chapter 4.
Next, we consider the IVP associaled 1o the linearized Korteweg—de Vries (KdV)

equation:

Jv+dv=0,
v O (1.28)
v{x,0) = vp{x)
for t,x € R, The previous argument shows that
V(x,0) = 5, % volx) = (%7 "' F)Y = V(1)g(x), (1.29)
where the kernel §;(x) is defined by the oscillatory integral:
o0
Si(x) = f 2zt BTl g (1.30)
-0
After changing variables,
1 x
Six)=— Ai| —= |, 1.31
=7z 4 (75) (=
where Ai(-) denotes the Airy lunction:
l (=)
Ai(x) = — f PLUSERE TS (1.32)
2
—0

By combining Proposition 1.6 (with # = 0) and a new change of variable we find
that

Sillee < cle| . (1.33)
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Moreover, if 8 € [0, 1/2], then
1Df S lieo < clej=F*DA, (1.34)
Hence, using Exercise 1.6 it follows that
1LV ()vollos = 1DFS; % vollas < clt| ™2 gy, (1.35)

where Df = Df = (= AY*/? denotes the homogeneous fractional derivative of
order 8, i.e.,

D f(x)y = (@mIED FEN"(x). (1.36)
Notice that the derivative of the phase function in (1.32) ¢(&) = £x + &% /3 does not
vanish for x > 0, i.e., [¢'(€)| = |x + £*| > ||, so using Proposition 1.4 one sees
that Ai(x) has fast decay for x > 0. In fact, one has (see [Ho2] or [SS8]) that

P Py a— a7

o -(l+_t_)|/" 1 uel

and

AV < (1 + x) Pemert (1.38)

where x, = max[x; 0} and x. = max{—x;0}.
Hence, (1.34) with 8 = 1/2 can be seen as an interpolation between (1.37) and
(1.38) and the scaling.

Remark 1.1. The relevant references used in this chapter are the books [SW], [S2],
[S3]. [Sa], [Du], and [Rd].

1.6 Exercises

1.1 i) Let n=1 and f(x)=e~>"I. Show that

- Cl(n+ 1)/2] |
f(E) = Tt )2 (1 +|E|2)(n+ll/2'

Hint: From the formula of Example 1.5 with a = 8 and b = | one sees

that
b = _j‘ cos(,Bt)
T+x2
which, combined with the equaluy.
20 o0
! f “+ D gp, yields e F = f 2 Bl g,
1+ x2 J s J,TJ

Use this identity to obtain the desired result.



1.6 Exercises 19

(i)

1.2 (i)

(i)

Let n=1 and f(x})= -l-——-l-—’-—., Show that

Tl +x%)

. !
HOE Ee“"*'(brl&l +1).

Hint: Differentiate the identity in Example 1.5.
Prove the following extension in §'(R") of formula (I.8):

@ExE) = (ZY e, Rea 20, a 20,

where ./ is defined as the branch with Rea > 0.
Hint: Use an analytic continuation argument.
Show that if @ = 1 + i1, then

(E)"’ ze-nll.n’/a

1.1
a pep(l+0% 0 T<p<oo, 120,

and
. l<a <
lle ly ~cy 1=g =<0,
where f(¢) ~ g(1), for f,g > 0, means that there exists ¢ > 1 such that

T fy g <cfu), vi>0.

1.3 Prove Young's inequality: Let f € L"(R"), 1 < p <oo,and g € L'(R").
Then, f*g e LA(R") with

If*gllp = NfFilplglh- (1.39)

1.4 Prove the Minkowski integral inequality. If 1 < p < oo, then

(f|ff(.r._\')dr|pd.\') ws] ([lf(x,)‘)lpdy) N de.  (1.40)

L Eil R’l 'q'f

Observe that the proof of the cases p = 1,00 is immediate.
1.5 Let f € LP((0,00)),1 < p <00, f 20

0]

(i)
(iii)

Prove Hardy’s inequality:

oo | x r , I oo
f ;ff(s)ds de < (-’-)—_—-l-) j(f(x))”dx. (1.41)
0 0 o

Prove that equality in (£.41) holds if and only if f = 0, a.e., and that the
constant ¢, = p/(p — 1) is optimal in (1.41).

Prove that (1.41) fails for p = 1 and p = oco.

Hint: Assuming f € Co((0, 00)) define
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F(.t):%ff(s)ds,so.t F'=f—F.
0

Use integration by parts and the Hélder inequality to obtain (1.41).
1.6 Consider the Fourier transform ™ as a map from L' (R") into L®(R").

(iy Provethat ™ is injective.

(ii)  Prove that the image of ™ , i.e., LV(R"), is an algebra with respect to
the point-wise multiplication of lunctions.

(iii) Prove that LY(R") € Coo({R"), where Coo{R") denotes the space of
continuous functions vanishing at infinity.
Hint: From Example 1.2 we have that ||gi [l = 2 and

lim [|gi(l; = oc.
koo

Apply the open mapping theorem to get the desired result.

1.7 (i)  Prove the following generalization of (1.6) in Theorem 1.1:
IffeL'®)andg € L'(R"), 1 < p <2, then (F*g)&) =
HGHG) |

(i) If fel(R", gelP(R),with I/jp+1/p'=1,1<p <00,
then f *g € Coo(R"). What can you affirm if p = 1,007 _

(iii) I f e L'(R™), with f continuous at the point 0 and f > O, then
FeL\®M.
Hint: Use Proposition 1.2 and Fatou’s lemma.

1.8 Show that
°F sin? °F sin? x I
SN~ Xx T sin
/ 5 dx = E and f .tJ dx = T

Hint: Combine the identities (1.7), (1.11), and Example 1.1.
1.9 Foragiven f € L%*(R") prove that the following stalements are equivalent:
(i} gelLl*RYisthe partial derivative of f € LY(R™) with respect to the
kth variable according to Definition 1.2.
(ii) ‘There exists g € L3(R") such that

f F(x)3gdlx)dr = — f g{x)(x)dx (142}
R

Re

for any ¢ € CG°(R"). In general, if (1.42) holds for two distributions
f, g, then one says that g is the kth partial derivative of f in the
distribution sense.

(iii) 'There exists { f;} C C§°(R") such that

Wfi=fllz=—>0 as j— o0,

and {d,, f;) is a Cauchy sequence in L%(R").
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(iv)  EF(E) € LAR™),
)

dx < 00,

sup

h>0 ]

/’ 'f(.r +he) — f)°

Rﬂ
For p s 2, which of the above statements are still equivalent?

1.10 (Paley—Wicner theorem) Prove that if f € Cg°(R") with supportin {x € R" :
lx| < M}, then f(§) can be extended analytically to C*, Moreover, il
k € Z* one has that

el‘rMIn.

L ), .

V&= s e T
Prove the converse, i.c., if F(& -+ i#) is an analytic function in C” satisfying
(1.43), then F is the Fourier transform of some f € C5°(R") with support in
fxeR":|xj< M}.

1.11 Show that if f € L'(R"), f # 0, with compact supporl, then for any € > 0,
f & Li(ef"dv).

1.12 Prove that given k € Z* and a, € R, witha = (a,...,q,) € N,
lee| = ay + -+ + @y <k, there exists f € CF°(R") such that

forany & +in e C". (1.43)

f.r"f(x)dx = g.
mﬂ
Hint: Use Exercise 1.10.
1.13 (1) Provethatifl f,g € S,then fxgeS.
(ii)  Prove that the Fourier transform is an isomorphism from & into itself.
(ii)  Using the results in Section 1.3, find explicitly ¥ = |x|? € §'(R").
(iv) Prove Proposition 1.3.
1.14 In this problem we shall prove that

——

#(E) =Tes IEI% foro = (0,n)

as a tempered distribution, i.e., Y¢ € S(R")
1 _ |
f = @) dx = Cpa f e e(E)dt, (1.44)
lx] 1§

where cpe =71 M(N/2 — af2)/ M (@/2).
(i) Combining the Parseval identity and Example 1.3 show that for § = 0

f e Bleyde = 577 f e KA p(x) dr. (1.45)

(ii) Prove the formula
o0

j ek - gs lfl’;ﬂ forany g > 0. (1.46)

1]
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(iii) Multiply both sides of (1.45) by T ~', intcgrate on &, use Fubini's
theorem and (1.46) to get (1.44).

1.15 Prove the following identities, where H denotes the Hilbert transform:

() H(fg) =H(f)g + fH(g) + HH(HHE)).

X+
xr—1
a X

(iii) H(r3+az) = Tra a0,

1.16 Prove that il ¢ € S(R), then H(p) € L'(R) ifand only if $(0)=0.

. 1
(i)  Hix—in)x) = P log

1,17 Consider the function f,(x) = , _r 3

(i) Ifa = 0 prove that the principal value function of f,(x),

x? 10 x?
e<la-x?|<lfe

p.v. al (v) = lim f al w(x)dr,
Q- € a—

with ¢ € S(R) defines a tempered distribution. Moreover, prove that if

X

ﬁ(E):Li{'J f et

a—Xx-
e=lu—x2|<lfe

then
1 Falloe < M, (1.47)

where the constant M is independent of a.

Hini: Observe thatifa = 0, f,{x) is just a multiple of the kernel 1/x of
the Hilbert transform H. If a > 0, then f,(x) can be writien as sum of
iranslations of the kernel of the Hilbert transform H. Since the Hilbert
transform satisfies a similar result, (1.47) follows in both cases. (See
Example 1.10).

(ii) Show that (1.47) is also satisfied ifa < 0.
Hint: Use Example 1.6.

1.18 Consider the IVP associated to the wave equation

87w — Aw =0,
w(x,0) = f(x), (1.48)
gw(x,0) = g(x),

x € R", r € R. Prove that
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()

(ii)

(iii)

(iv)

{v)

(vi)

If f.g e CP(R") are real-valued functions, then using the notation in
(1.29), the solution can be described by the following expression:

wix, 1) = U0V f + U(t)g = cos(Dr) f + S'":)D')g. (1.49)

with Dh(£) = 27 1E| I(E) (see (1.36)).

IT £, g are supported in {x € R® : |x| < M), show that w(.,1) is
supported in {x € R* : |x] < M +1).

Assuming n = 3 and f = 0, prove that

1
wix, )= — glx + y)dS,.
ant Jyyi=1

Hint: Derive and apply the following identity:

sin (2 |E|#)

eEX S = dmt 5 E]
T

{lxl=1]

If g € C(R?) is supported in (x € R : |x| < M), where is the support
of w(-,1)?
Assuming n = 3 and g = 0, prove that

|
W= s f [fCr+ )+ Vflx+y)-y1dS.. (150

NE)

If E(n= f((ﬂ,w)2 + |Vw|?)(x, )dx, then prove thatforany r e R,
Rll

En=Ey= f(g2 + |V fP)x) .

Hint: Use integration by parts and the equation.
{Brodsky [Br}) Show that

lim [(a,w)z(x,t)d.r = é.
t—o0 2
Rn

Hint: Use the Riemann-Lebesgue lemma (Theorem 1.1(3)).

1.19 Consider the IVP (1.28) with initial data vo € C§*(R). Prove that forany ¢ # 0
v{-, 1) does not have compact support.






