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Abstract. We study well-posedness for Zakharov-Kuznetsov and modified

Zakharov-Kuznetsov equations in asymmetric spaces. In order to do so, we
extend a theory initiated by Kato in [Kat83] to higher dimensions n ≥ 2. As an

application, we prove a result concerning dispersive blow-up for the modified

Zakharov-Kuznetsov in dimension 2.

1. Introduction and main results

The Zakharov-Kuznetsov (ZK) equation was first formally derived by Zakharov
and Kuznetsov in [ZK74], as an asymptotic limit of the Euler-Poisson system, in
the setting of the ”cold plasma” approximation. This equation describes motion of
plasma in a uniform magnetic field, in a long wave small-amplitude limit, and can
be stated as

(1) ∂tu+ ∂1∆u+ u∂1u = 0, (t, x) ∈ R× Rn.

In [LLS12], this asymptotic limit was rigorously justified. In [HK13], this equation
was shown to be an asymptotic limit for the Vlasov-Poisson system. In the case
n = 1, this equation becomes the well-known Korteweg-de Vries (KdV) equation,
which describes waves on shallow water surfaces. Thus equation (1) can be seen
as a generalisation of the KdV equation in higher dimensions. Note that (1) is not
integrable. However, it possesses conserved quantities (cf [Fam95] for instance).
These equations belongs to the larger class of nonlinear dispersive equations (see
[LP15] for an introduction to the subject). We will focus on the properties of the
initial value problem (IVP) associated to (1), that is

(2)

{
∂tu+ ∂1∆u+ u∂1u = 0 (t, x) ∈ R∗

+ × Rn,

u|t=0 = u0,

and to the IVP associated to the generalised Zakharov-Kuznetsov equation which
can be written as

(3)

{
∂tu+ ∂1∆u+ uk∂1u = 0 (t, x) ∈ R∗

+ × Rn,

u|t=0 = u0,
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where k ≥ 2. These IVPs were studied by many authors for an initial data u0 ∈
Hs(Rn). In [Fam95], Faminskii showed local well posedness for (2) in dimension
2, in the setting Hs, s ∈ Z+. Ever since, a lot of advancements have been made.
Still in the two dimensional case, Linares and Pastor proved local well-posedness
of (3) with k = 2 for s > 3/4 by using smoothing effects in [LP09]. The Fourier
restriction method was also used by Molinet and Pilod in [MP15] and by Grünrock
and Herr in [GH14] to extend local well-posedness of (2) to s > 1/2.

In dimension 3, Molinet and Pilod [MP15] and Ribaud and Vento [RV12] proved
local and global well-posedness for (2) when s > 1. We also mention the recent
works of Kinoshita [Kin21] and Herr and Kinoshita [HK21] in which well-posedness
for (2) was obtained with the Picard iteration method in the best possible setting:
s > −1/4 in dimension 2 and s > (n− 4)/2 when n ≥ 3.

To describe our results, we define the solution of the linear problem associated to
the IVPs (2) and (3) by using a group of unitary operators {V (t)}t∈R. This group
is given explicitely by the formula V (t)u0 = exp(−t∂1∆)u0, or with the Fourier

transform by V̂ (t)u0(t, ξ) = exp(itξ1|ξ|2)û0(ξ).
In [Kat83], Kato studied well-posedness of the IVP associated to the KdV

equation (dimension 1) for an initial datum in Hs ∩ L2
b , where, if b ∈ Rn,

(4) L2
b =

{
f : Rn → R,

∫
Rn

f2(x)e2b·xdx < +∞
}
.

The key property that Kato used for this particular space is that, after pointwise
multiplication by ebx where b > 0, the unitary group of evolution V (t) becomes
parabolic. More precisely, there exists a parabolic semigroup {Ub(t)} such that
ebxV (t) = Ub(t)e

bx (cf section 9 in [Kat83]). Among other results, he proved that
the solution u ∈ C([0,+∞), Hs ∩ L2

b) of the IVP associated to KdV for an initial
datum ϕ ∈ Hs ∩ L2

b , s ≥ 2 exists and is unique, with the map ϕ 7→ u being
continuous in the associated topologies. Furthermore, he proved that the KdV
equation possesses a smoothing property for solution with initial data in this space,
and in fact the solution u belongs to C∞(R∗

+ × R).
Here, we generalize these results for the Zakharov-Kuznetsov and modified Zakharov-

Kuznetsov equations in dimension n ≥ 2, by using a similar method. Our first result
covers well-posedness in Hs ∩ L2

b for (2) and (3):

Theorem 1. Let n ≥ 2, u0 ∈ Hs0∩L2
b for some s0 > n/2 and b1 > (

∑n
k=2 b

2
k/3)

1/2.
Then there is a unique solution to (2) or (3) such that u ∈ C([0,∞);Hs0 ∩ L2

b)
with the map u0 7→ u continuous in the associated topologies. Moreover, eb·xu ∈
C((0,∞), Hs) for any s < s0 + 2.

For solutions of the KdV equation, see [ILP12] and [KF84].
We also extend the smoothing property discovered by Kato in this particular

setting. For the Zakharov-Kuznetsov and the generalised Zakharov-Kuznetsov
equation, we obtain the following result:

Theorem 2. Let n ≥ 2, k ≥ 1, s0 > n/2 and u ∈ C([0,∞), Hs0) be the solution to
(2) if k = 1 and to (3) if k ≥ 2. If u0 ∈ Hs0 ∩ L2

b , with b ∈ Rn as in Theorem 1,
then eb·xu ∈ C((0,∞), H∞) with the following estimates: for any T > 0, s ≥ 0 and
β > nk/2,

(5) ∥eb·xu(t)∥Hs ≤ Ct−βs/2, 0 < t ≤ T,



ZK IN ASYMETRIC SPACES 3

and for every α ≥ 3β, α > β(1 + kn/2),

(6) ∥(d/dt)leb·xu(t)∥Hs ≤ Ct−(βs+αl)/2, l = 1, 2, 3, . . .

Nonlinear dispersive equations are also known to exhibit what is called a dispersive
blow-up: a smooth and bounded initial datum with finite energy can result in
a solution which develops pointwise singularities in finite time. This focusing
phenomenon is caused by the linear operator which possesses an unbounded dispersion
speed. In an unbounded domain, it is then possible that infinitely many waves,
initially spatially dispersed, come all together at the same point after a finite
time, resulting in a blow-up. Bona and Saut initiated the mathematical study
of dispersive blow-up for generalized KdV in [BS93]. We mention [LPS17] for an
improvement of their result, and [LPD21] for a more recent study.

Dispersive blow-up was also studied for other nonlinear dispersive equations.
In [BPSS14], Bona, Ponce, Saut and Sparber studied dispersive blow-up for the
nonlinear Schrödinger equation. In [HT16], the pointwise notion of dispersive blow-
up is extended in higher dimension n ≥ 2 to larger sets such as lines or spheres for
the nonlinear Schrödinger equation.

As an application of our previous results, we exhibit an example of dispersive
blow-up in the setting n = 2, k = 2. This example extends Theorem 1.3 from
[LPD21].

Theorem 3. Let p > 2 and s ∈ N, s ≥ 2. For any t∗ ∈ R∗, there exists u0 ∈
Hs(R2)∩W s,p(R2)∩C∞(R2) such that the corresponding solution of (3) with k = 2
is global in time and satisfies

(1) u ∈ C(R, Hs(R2)) and
(2) ∥u(t∗)∥W s,p blows up on the whole line {0}×R, in the following sense: for

any U ⊂ R2 neighborhood of some (0, y) ∈ {0}×R, ∥∂s
xu(t

∗)∥Lp(U) = +∞.
(3) The non linear part of the solution stays bounded, i.e. for every t ∈ R,

∥u(t)− V (t)u0∥W s,p < +∞.

Note that dispersive blow-up was initially defined for the W s,∞(R2) norm caused
by the highest derivative, cf for instance [BS93]. However, our proof here only works
in the setting W s,p(R2) with p < ∞. In fact, we can almost prove the same theorem
in the W s,∞(R2) setting. The missing part is that in the latter case, the smoothing
effect on the nonlinear term defined hereafter in the proof is not sufficient to prove
that the blow-up is caused by the linear part of the solution (third property of the
solution in Theorem 3).

The paper is organised as follows: in section 2, we give the notations and state
a set of useful results that we will need. In section 3, we prove some preliminary
results concerning the space L2

b . In particular, we show that the linear group of
evolution operators {V (t)} becomes parabolic after multiplication by an exponential
function. Section 4 is devoted to the proof of Theorem 1. In section 5, we prove
Theorem 2. Section 3, 4 and 5 are greatly inspired of sections 9, 10 and 11 in
[Kat83]. In section 6, we give two examples of linear dispersive blow-up for the
group {V (t)}, and then we prove Theorem 3.

2. Notations and some helpful results

Notations: Let n ∈ N∗. If x ∈ Rn, we denote x = (x1, . . . , xn). If 1 ≤ j ≤ n, we
denote ∂j = ∂/∂xj the partial derivative relative to xj . We denote the Laplacian
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operator by ∆ = ∂2
1 + · · ·+ ∂2

n and the gradient operator ∇ = (∂i)1≤i≤n. If s ∈ R,
Hs(Rn) or Hs is the Sobolev space of order s, endowed with the norm ∥ · ∥Hs . If
1 ≤ p ≤ ∞, we denote Lp(Rn) or Lp the Lebesgue associated with p, endowed with
the norm ∥ · ∥p. If b = (b1, . . . , bn) ∈ Rn we denote b · x = b1x1 + · · ·+ bnxn.

Preliminary results: we use the following propositions to estimate products in
Sobolev spaces (see [BH15] and [Tao06], [KP88] respectively):

Proposition 1. Let s, s1, s2 ∈ R and n ∈ N.
• s ≥ 0

If s ≥ 0, min(s1, s2) ≥ s and s1 + s2 − s > n/2 then there exists a
constant C > 0 such that for any (u, v) ∈ Hs1 ×Hs2 the pointwise product
uv belongs to Hs with ∥uv∥Hs ≤ C∥u∥Hs1∥v∥Hs2 .

• s < 0
If s < 0, 0 > min(s1, s2) ≥ s, s1 + s2 − s > n/2 and s1 + s2 ≥ 0, then

there exists a constant C > 0 such that for any (u, v) ∈ Hs1 × Hs2 the
pointwise product uv belongs to Hs with ∥uv∥Hs ≤ C∥u∥Hs1 ∥v∥Hs2 .

Proposition 2. If s ≥ 0 and f, g ∈ Hs ∩ L∞, then fg ∈ Hs with

∥fg∥Hs ≤ C (∥f∥Hs∥g∥∞ + ∥f∥∞∥g∥Hs) .

The following lemma is an oscillatory integral estimate (see Lemma 2.3 in [LP09]).

Lemma 1. Let n = 2. For any t ̸= 0 and u0 ∈ L1(R2), the following estimate
holds:

∥V (t)u0∥∞ ≤ |t|2/3∥u0∥1.

Finally, this nonlinear smoothing effect comes from Proposition 1.4 of [LPD21]:

Proposition 3. Fix k ≥ 2. Let v0 ∈ Hs(R2), s ∈ N∗ and v ∈ C([−T, T ], Hs(R2)
the local solution of (3). Then

z(t) =

∫ t

0

V (t− t′)vk∂1v(t
′)dt′ ∈ C([−T, T ], Hs+1(R2).

3. The space L2
b

Here we follow the proof of Kato in [Kat83] for the dimension 1 and try to adapt
it for higher dimensions.

The proof of Kato is based on the following commutation property: for f ∈
D′, eb·x∂if = (∂i − bi)e

b·xf . Hence, in dimension 1, the operator ∂3
1 of (1) becomes

parabolic when b > 0. The following lemma generalizes this property in dimension
n.

Lemma 2. Let b ∈ Rn such that b1 > 0 and
∑n

k=2 b
2
k < 3b21. Define the semigroup

(7) Ub(t) = exp

[
−t(∂1 − b1)

n∑
k=1

(∂k − bk)
2

]
, t ≥ 0.

Then {Ub(t) : t > 0} is an infinitely differentiable semigroup on Hs for each s ∈ R,
with

(8) ∥∂αUb(t)∥ ≤ Cαt
−|α|/2 exp(b1|b|2t), α ∈ Nn,

(9) ∥(d/dt)Ub(t)∥ ≤ C(t−3/2 + 1) exp(b1|b|2t).
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Ub(t) is bounded from Hs to Hs′ , with

(10) ∥Ub(t)∥B(Hs,Hs′ ) ≤ C(t−(s′−s)/2 + 1) exp(b1|b|2t), s ≤ s′.

Proof. In Fourier, Ub(t) acts like a multiplication by the factor

λ(t, ξ) = exp

[
−t(iξ1 − b1)

n∑
k=1

(iξk − bk)
2

]
.

Developing the products gives

|λ(t, ξ)| = eb1|b|
2t exp[−tθ(ξ)]

with θ(ξ) = 2ξ1ξ · b+ b1|ξ|2. Denote ξ̃ = (ξ2 . . . , ξn) and b̃ = (b2, . . . , bn). For every
b1 > ϵ > 0, we get using Cauchy-Schwarz inequality

θ(ξ) = 3b1ξ
2
1 + b1|ξ̃|2 + 2ξ1ξ̃ · b̃ ≥ 3b1ξ

2
1 + b1|ξ̃|2 − 2|ξ̃||b̃||ξ1|

≥ 3b1ξ
2
1 + b1|ξ̃|2 − (b1 − ϵ)|ξ̃|2 − ξ21 |b̃|2/(b1 − ϵ)

= ϵb1|ξ̃|2 +
3b21 − |b̃|2 − 3b1ϵ

b1 − ϵ
ξ21 .

By choosing 0 < 3b1ϵ < 3b21 − |b̃|2, we obtain that there is C > 0 such that
θ(ξ) ≥ C|ξ|2. Hence the semigroup Ub is parabolic and the results follow. □

Lemma 3. Let

(11) eb·xu ∈ L∞([0, T ];L2), eb·xf ∈ L∞([0, T ], H−1),

(12) du/dt+ ∂1∆u = f, 0 < t < T.

Then one has

(13) eb·xu ∈ C([0, T ], L2) ∩ C((0, T ], Hs) for every s < 1,

(14) eb·xu(t) = Ub(t)e
b·xu(0) +

∫ t

0

Ub(t− t′)eb·xf(t′)dt′.

and the following estimate, for 0 < s < 1 and 0 < t ≤ T :

∥eb·xu∥Hs ≤ Ct−s/2
(
∥eb·xu∥L∞([0,T ],L2) + ∥eb·xf∥L∞([0,T ],H−1)

)
.

Proof. By multiplying the equation by eb·x and using the commutation property,
we obtain

(15) (d/dt)eb·xu+ (∂1 − b1)

n∑
k=1

(∂k − bk)
2eb·xu = eb·xf.

This gives the integral form of the equation. We can then use Lemma 2 to obtain
that ∥Ub(t − t′)∥B(H−1,Hs) ≤ C(1 + (t − t′)(−1−s)/2), which is integrable if s < 1.
We can then bound the nonlinear integral term by

∥
∫ t

0

Ub(t− t′)eb·xf(t′)dt′∥s ≤ CT + C

∫ t

0

(t− t′)(−1−s)/2dt′

and the change of variables r = t′/t shows that the last integral is bounded on [0, T ]
as a function of t. The estimate follows. □



6 É. DELÉAGE AND F. LINARES

Lemma 4. Let n ≥ 2, T > 0 and

(16) du/dt+ ∂1∆u+ a(t)∂1u = 0, 0 ≤ t ≤ T,

where a ∈ C([0, T ], Hs0) for some s0 > n/2. If eb·xu ∈ L∞([0, T ], L2), then eb·xu ∈
C((0, T ], Hs) for any s < s0 + 2, with the estimate

∥eb·xu∥Hs ≤ C(∥eb·xu∥L∞([0,T ],L2), ∥a∥L∞([0,T ],Hs0 ))t
−s′/2, 0 < t ≤ T.

Proof. We want to apply the previous lemma, with f = −a(t)∂1u. Since eb·xu ∈
L∞([0, T ], L2), we get that eb·x∂1u ∈ L∞([0, T ], H−1), hence by Proposition 1, since
s0 > n/2, eb·xf = −a(t)eb·x∂1u ∈ L∞([0, T ], H−1). The previous lemma then gives
that eb·xu ∈ C((0, T ], Hs) for every s < 1 with

eb·xu(t) = Ub(t)e
b·xu(0)−

∫ t

0

Ub(t− t′)eb·xa(t′)∂1u(t
′)dt′

and we obtain the estimate for every s < 1. Now we fix s ∈ [1/2, s0 + 3/2) and
show that if the result is true for s − 1/2, then it is also true for s. We first note
that ts/2u solves

d

dt
ts/2u− s

2
ts/2−1u+ ∂1∆ts/2u+ ts/2a(t)∂1u = 0.

Hence we obtain the following integral equation, for 0 < t ≤ T (note that the initial
value of ts/2eb·xu(t) is zero since eb·xu(0) ∈ L2):

ts/2eb·xu(t) =

∫ t

0

Ub(t− t′)
[s
2
(t′)s/2−1eb·xu(t′)− (t′)s/2a(t′)eb·x∂1u(t

′)
]
dt′.

Hence by using the properties of the semigroup Ub we obtain

ts/2∥eb·xu∥Hs ≤C

∫ t

0

[
(t− t′)−1/4(t′)s/2−1∥eb·xu∥Hs−1/2

+(t− t′)−3/4(t′)s0/2∥a(t′)eb·x∂1u(t′)∥Hs−3/2

]
dt′.

Now by hypothesis the first term can be estimated by

(t− t′)−1/4(t′)s/2−1∥eb·xu∥Hs−1/2 ≤ C(t− t′)−1/4(t′)−3/4

which is integrable, with an integral bounded for t ∈ [0, T ], and the second one by

(t− t′)−3/4(t′)s/2∥a(t′)eb·x∂1u(t′)∥Hs−3/2

≤C(t− t′)−3/4(t′)s/2∥a(t′)∥Hs∥eb·x∂1u∥Hs−3/2

≤C(t− t′)−3/4(t′)s/2∥eb·xu∥Hs−1/2 ≤ C(t− t′)−3/4(t′)1/4

which is also integrable, with a bounded integral. Here we used again Proposition
1 and the hypothesis on ∥eb·xu∥Hs−1/2 . This concludes the proof. □

4. Proof of Theorem 1

Let s0 > n/2 and b ∈ Rn such that b1 > (
∑n

k=2 b
2
k/3)

1/2. In this section, we
show well-posedness of (2) and (3) in Hs0 ∩ L2

b . As a consequence of the well
posedness theory in Hs0 , we already know that there exists a unique solution in
C([0, T ], Hs0), which is global if the norm of the initial data is sufficiently small. To
simplify computations, we will restrict ourselves to the setting of global solutions,
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but the results stay true in the general case. Here, it is enough to show that
eb·xu(t) ∈ L2. In the following, we fix k ≥ 1.

Again, we follow Kato and introduce the bounded weight functions

(17) q(x) =
eb·x

(1 + ϵe2b·x)1/2
, r(x) =

eb·x

1 + ϵe2b·x
, p(x) = q(x)2

depending on a parameter ϵ > 0. Both q and r are L∞ functions with the L∞ norm
proportional to ϵ1/2, and both tend monotonically to eb·x as ϵ ↓ 0. We note several
properties of these functions required in the sequel:
(18)
∂ip = 2bir

2, |∂i∂jp| < 4|bibj |r2, |∂i∂j∂kp| < 8|bibjbk|r2, |∂ir| < |bi|r.
We now take u the solution of the problem in Hs, multiply equation (1) (or (3))

by 2pu and integrate over Rn to obtain

(19)
d

dt

∫
pu2 = −2

∫
pu(∂1∆u+ uk∂1u).

Integrations by parts give that

(20)

∫
puk+1∂1u = − 1

k + 2

∫
(∂1p)u

k+2

and

(21)

∫
pu∂1∆u = −1

2

∫
(∂1∆p)u2 − 2(∂1u)∇p · ∇u− (∂1p)|∇u|2.

Now, using (20) leads to

(22)

∫
−2(∂1u)∇p · ∇u− (∂1p)|∇u|2 = −2

∫
r2[b1|∇u|2 + 2(∂1u)b · ∇u].

Note that b1|∇u|2 +2(∂1u)b · ∇u = θ(∇u) ≥ C|∇u|2, where C > 0, in virtue of the
condition on b (see the proof of Lemma 2 for the definition and properties of θ).
Using again (20) and putting everything together yields

(23)
d

dt

∫
pu2 < 8b1|b|2

∫
r2u2 +

4

k + 2
b1

∫
r2uk+2 − C

∫
r2|∇u|2.

Since u ∈ Hs0 with s0 > n/2, u ∈ L∞. Finally, we get

(24)
d

dt
∥qu∥22 ≤ K(∥u∥Hs0 )∥ru∥22 ≤ K(∥u∥Hs0 )∥qu∥22.

Since K is independent of ϵ, going to the limit ϵ ↓ 0 gives

(25) ∥eb·xu(t)∥22 ≤ eKt∥u0∥22, 0 ≤ t ≤ T

with K = K(∥u∥L∞([0,T ],Hs0 )). Since a(t) = u ∈ C([0, T ], Hs0), we can apply

Lemma 4 to obtain that eb·xu ∈ C([0, T ], L2) ∩ C((0, T ], Hs) for any s ≤ s0 + 2.
Thus we have proved the main part of Theorem 1.

It remains to prove the continuous dependence u0 7→ u. Since this is known for
the Hs0 norm by the Hs0 theory, it suffices to show that the map eb·xu0 7→ eb·xu
is continuous in the L2 norms, uniformly in t ∈ [0, T ]. This can be seen by the
following integral equation satisfied by v(t) = eb·xu(t):

(26) v(t) = Ub(t)v0 −
∫ t

0

W (t, t′)v(t′)dt′,
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where
W (t, t′) = (∂1 − b1)Ub(t− t′)uk(t′)/(k + 1)

is an operator valued kernel such that ∥W (t, t′)∥B(L2) ≤ C(t − t′)−1/2 (because

u ∈ Hs0 and s0 > n/2). This equation is obtained by lemma 1 with f = −uk∂1u.
It should be noted that W (t, t′) depends on u and hence on u0, but the dependence
is known to be continuous in the Hs0 norm which is weaker than the Hs0 ∩ L2

b

norm.

5. Proof of Theorem 2

We present here the proof of Theorem 2.

Proof. We start by proving the first inequality. By Theorem 1 and the estimate of
Lemma 4, we already know that it is true for any s < s0+2 (note that β > nk/2 ≥ 1,
hence the estimate of Lemma 4 for s < s0+2 is stronger than the one that we need
to prove). Now we fix δ > 0 and show that if the estimate holds for some s− δ with
s ≥ 1/2, then it also holds for s. We write again the integral equation satisfied by
tβs/2eb·xu(t):

tβs/2eb·xu(t) =

∫ t

0

Ub(t− t′)

[
βs

2
(t′)βs/2−1eb·xu(t′)− (t′)βs/2u(t′)keb·x∂1u(t

′)

]
dt′.

Hence by using the properties of the semigroup Ub we obtain

tβs/2∥eb·xu∥Hs ≤C

∫ t

0

[
(t− t′)−δ/2(t′)βs/2−1∥eb·xu∥Hs−δ

+(t− t′)−(δ+1)/2(t′)βs/2∥u(t′)keb·x∂1u(t′)∥Hs−1−δ

]
dt′.

Now by hypothesis the first term can be estimated by

(t− t′)−δ/2(t′)βs/2−1∥eb·xu∥Hs−δ ≤ C(t− t′)−δ/2(t′)βδ/2−1,

and the integral of this term is finite and bounded in t ≤ T whenever β ≥ 1 and
0 < δ < 2 (to prove this, one can again make the change of variables r = t′/t).

For the second term, we write that

∥u(t′)keb·x∂1u(t′)∥Hs−δ−1 =
1

k + 1
∥(∂1−b1)e

b·xu(t′)k+1∥Hs−δ−1 ≤ C∥eb·xu(t′)k+1∥Hs−δ .

To estimate the norm of eb·xuk+1 = (eb·x/(k+1)u)k+1 we use Proposition 2. By

induction on k, we obtain the following generalised version: for any v ∈ Hs′ ∩ L∞

and k ≥ 0,
∥vk+1∥Hs′ ≤ C∥v∥k∞∥v∥.

Hs′

We use this last inequality with v = eb·x/(k+1)u and s′ = s− δ, combined with the
Sobolev embedding theorem, to obtain

∥eb·xu(t′)k+1∥Hs−δ ≤ C∥eb·x/(k+1)u(t′)∥Hs−δ∥eb·x/(k+1)u(t′)∥k∞
≤ C∥eb·x/(k+1)u(t′)∥Hs−δ∥eb·x/(k+1)u(t′)∥kHs1 ,

with s1 > n/2. Now we use the hypothesis for s− δ, and the estimate of Lemma 4
for s1, to obtain that

(t− t′)−(δ+1)/2(t′)βs/2∥u(t′)keb·x∂1u(t′)∥Hs−1−δ ≤ C(t− t′)−(δ+1)/2(t′)(βδ−ks1)/2.

The integral of this expression is finite and bounded in t ≤ T if we take 1 > δ > 0
and s1 > n/2 such that β ≥ 1 + (ks1 − 1)/δ (once again, this bound comes from
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the change of variables r = t′/t). The hypothesis β > nk/2 ensures that we can
find such s1 and δ.

Note that we are allowed to use the property for eb·x/(k+1)u instead of eb·xu

because eb·x/(k+1)u0 ∈ L2, with ∥eb·x/(k+1)u0∥22 ≤ ∥u0∥1−1/(k+1)
2 ∥eb·xu0∥1/(k+1)

2

(Hölder). The homogeneous condition verified by b is also true for b/(k+1), hence
we can use the hypothesis for eb·x/(k+1)u instead of eb·xu. Hence the decay (5) is
valid for every s ≥ 0.

Now we prove the second inequality by induction on l. For l = 0, it is known by
(5). Assuming that it has been proved for all s ≥ 0 up to a given l, we prove it for
l + 1. Again using (17) with f = −uk∂1u, we obtain on differentiation

(27) (d/dt)l+1eb·xu = −(∂1 − b1)

n∑
k=1

(∂k − bk)
2(d/dt)leb·xu− (d/dt)leb·xuk∂1u.

The Hs norm of the first term on the right is dominated by

∥(d/dt)keb·xu∥Hs+3 ≤ Ct−(β(s+3)+αl)/2 ≤ Ct−(βs+α(l+1))/2

by induction hypothesis. This gives the required estimate.
For the second term in (29), we have as above

∥(d/dt)leb·xuk∂1u∥Hs ≤C∥(d/dt)leb·xuk+1∥Hs+1

≤C
∑

l1+···+lk+1=l

∥(dl1v) . . . (dlk+1v)∥Hs+1 ,

where we have written v = eb·x/(k+1)u and d = d/dt for simplicity. Using Proposition
2 multiple times again, we obtain

∥(dl1v) . . . (dlk+1v)∥Hs+1 ≤ C

k+1∑
i=1

∥dliv∥Hs+1

∏
j ̸=i

∥dljv∥∞.

By induction hypothesis and Hs1 ↪→ L∞, where s1 = (α/β − 1)/k (since we know
that α > β(kn/2 + 1)), this is dominated by Ct−m/2, where

m = β(s+ 1) + αli +
∑
j ̸=i

(βs1 + αlj) = β(s+ 1) + αl + kβs1 = βs+ (l + 1)α.

This is the required estimate. □

6. Application: dispersive blow-up in dimension n ≥ 2

6.1. Linear dispersive blow-up. In this section, we construct an initial datum
for the linear problem associated to (1) such that the linear evolution exhibits a
singularity at a given time, on a linear subspace of dimension d < n. More precisely,
we state the following

Proposition 4. Let n ≥ 2 and 1 ≤ d ≤ n. For t ∈ R, let V (t) = e−t∂1∆. Recall
that (V (t))t∈R is a group of evolution operators that preserves Hs norms. For any
t∗ ∈ R∗, there exists u0 ∈ H1(Rn) ∩ C∞(Rn) such that:

(1) For every t ∈ R− {t∗}, u(t) = V (t)u0 ∈ H1(Rn) ∩ C∞(Rn).
(2) u(t, x) ∈ C0(R× Rn).
(3) |Du(t, x)| → +∞ when (t, x) → (t∗, x∗), for every x∗ ∈ Vd, where

Vd = {(x1, . . . , xn) ∈ Rn, x1 = · · · = xd = 0}.
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Proof. For x ∈ Rn, let us write x = (y, z) where y = (x1, . . . , xd) and z =

(xd+1, . . . , xn). Let ϕ(x) = e−2π|y|e−π|z|2 . Note that ϕ has an exponential decay,
which will enable to use the smoothing properties of Lemma 2. Take any b ∈ Rn

such that 1 ≥ b1 > 0 and
∑n

k=2 b
2
k < 3b21. Then eb·xϕ belongs to L2(Rn). Note that

eb·xV (t)ϕ = Ub(t)e
b·xϕ, where Ub(t) is defined as in Lemma 2. By the smoothing

properties of Ub(t) stated in Lemma 2, for any t > 0, the function Ub(t)e
b·xϕ belong

to H∞(Rn), hence is smooth. Thus V (t)ϕ is also a smooth function.
For negative times, use the fact that e−b·xϕ also belongs to L2(Rn), and

e−b·xV (−t)ϕ = U−b(−t)e−b·xϕ.

Reversing the proof of Lemma 2 shows that U−b is parabolic backwards in time.
Hence here again e−b·xV (−t)ϕ and then V (−t)ϕ are smooth functions, for any
t > 0.

The candidate for Proposition 4 is thus u0 = V (−t∗)ϕ. By the previous arguments,
V (t)u0 is smooth for any t ̸= t∗. We then show that u0 ∈ H1(Rn). By the properties
of V (t), it is enough to check that ϕ ∈ H1(Rn). The Fourier transform of ϕ is given
by

ϕ̂(ξy, ξz) = C
e−π|ξz|2

(1 + |ξy|2)(d+1)/2
:= f̂(ξy)ĝ(ξz)

where C > 0 is a constant. Since g ∈ S(Rn−d) and f ∈ H1+d/2−(Rd), ϕ ∈
H1+d/2−(Rn). Note that, for any s ≥ 1,

|Ds
yϕ(0, z)| = C e−π|z|2

∫
Rd

|ξy|s

(1 + |ξy|2)
d+1
2

dξy = ∞.

□

We also state the following example in the case n = 2:

Proposition 5. Let s ∈ N∗. For any t∗ ∈ R∗, there exists u0 ∈ Hs(R2) ∩C∞(R2)
such that:

(1) For every t ∈ R− {t∗}, u(t) = V (t)u0 ∈ Hs(R2) ∩ C∞(R2).
(2) u(t, x) ∈ Cs−1(R× R2).
(3) |∂s

xu(t, x)| → +∞ when (t, x) → (t∗, x∗), ∀x∗ ∈ {(x, y) ∈ R2, x = 0}.

Proof. Let p > 2 and ϕp(x, y) = |x|s−1/pe−x2−y2

. Then ϕp ∈ Hs∩L2
b for any b ∈ R2.

The proof of the previous proposition shows that V (t)ϕp is smooth for any t ̸= 0.

Note that ∂s
xϕp(x, y) = Csgn(x)s|x|−1/pe−x2−y2

+ g(x, y), where g is a continuous
function with exponential decay. In particular, ∂s

xϕp ∈ L2 and |∂s
xϕp(x, y)| → ∞

for any y when x goes to zero. Taking u0 = V (−t∗)ϕp again enables to end the
proof. □

6.2. Non linear dispersive blow-up on a line. We give here the proof of
Theorem 4.

Proof. We use here a proof very similar to the one of Theorem 1.3 in [LPD21].
Consider ϕp as in the proof of Proposition 5 and define u0 = V (−t∗)ϕp. We write

u(t) = V (t)u0 +

∫ t

0

V (t− t′)u2∂xu(t
′)dt′ := V (t)u0 + z(t)

the solution of (3) with n = k = 2. Since {V (t)}t∈R is an unitary group in Hs

and ϕp ∈ Hs(R2), u0 ∈ Hs(R2). Up to multiplying ϕp by a small constant, we can
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suppose that u(t) is globally defined and u ∈ C(R, Hs). By the Proposition 1.4
of [LPD21] (cf Proposition 3), z(t) ∈ Hs+1(R2) ⊂ W s,p(R2) for all times. By the
proof of Proposition 5, V (t∗)u0 = ϕp ∈ W s,1(R2). By Lemma 1, for any t ̸= t∗,

∥V (t)u0∥W s,∞(R2) ≤ C|t− t∗|−2/3∥ϕp∥W s,1(R2).

Hence for any t ̸= t∗, V (t)u0 ∈ W s,∞(R2)∩Hs(R2) ⊂ W s,p(R2). Hence the solution
u(t) = V (t)u0 + z(t) belongs to W s,p whenever t ̸= t∗. Finally, by Proposition 5,
u0 ∈ C∞(R2).

But for any y ∈ R, |∂s
xϕp(x, y)| ∼ C|x|−1/pe−x2−y2

as x goes to zero. Hence the
Lp norm of ∂s

xu(t
∗) = ∂s

xϕp + ∂s
xz(t

∗) blows up on any open subset U ⊂ R2 such
that U ∩ ({0} × R) ̸= ∅. □
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[KF84] S. N. Kruzhkov and A. V. Faminskĭı. Generalized solutions of the Cauchy problem

for the Korteweg-de Vries equation. Mathematics of the USSR-Sbornik, 48(2):391–421,
1984.

[Kin21] S. Kinoshita. Global well-posedness for the Cauchy problem of the Zakharov-kuznetsov

equation in 2d. Annales de l’Institut Henri Poincaré C, Analyse non linéaire,
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