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My aim today is to overview some of the effort that is currently being put
into developing a theory of general chaotic dynamical systems. My lecture will
have four main parts. Firstly, I shall formulate, in very general terms, the
main problems in this field. Choosing an appropriate language to make this
formulation more precise is a crucial step. This corresponds to the second part
of the lecture, when I shall introduce a number of important notions. Next,
I shall mention one class of systems, Hénon-like maps, for which the theory
is already fairly complete, through results obtained in the last decade. The
ultimate goal is even more ambitions: to build a global theory of systems with
complex dynamical behaviour. In the last part of the lecture I mention some
results, ideas and conjectures pointing in that direction.

1 General problems

The mathematical formulation of a dynamical system includes two ingredients:
a set M, the space of states (usually a manifold with dimension n > 1), whose
points represent the possible states of the system; and an ewolution low, de-
scribing how the system evolves from one state to another. The latter may have
discrete-time: a transformation f: M — M mapping each state xg € M to the
one 1 = f(xo) at which the system will be one unit of time later. The sequence
Zo,T1, T2, .. defined by z; 11 = f(z;) is the trajectory of the initial state xo.
If the transformation f is invertible, then we also have a backward trajectory
...Z_9,x_1,%o defined by z_j;11 = f(x_;). Another model is continuous-time
evolution, expressed by a differential equation

dz

= = F(z).
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The trajectory of the initial state xq is the solution z(t), t € R, of the differential
equation with z(0) = xo. It is assumed that solutions are defined for all times.

Problem 1. Describe the behaviour of most trajectories, for most dynamical
systems, specially as time goes to infinity.

The mathematical formulation of the evolution law is always a simplification
of the real process. So, it is very important that the conclusions drawn from it



not be too specific: they should remain valid for nearby laws. That is what the
next question is about:

Problem 2. Is the dynamical behaviour stable under small modifications of the
evolution law (e.g. small variations of parameters involved in it) ?

2 Some fundamental notions

An attractor is a closed subset A of the state space M such that a large set of
trajectories converge to A as time goes to infinity. More precisely this happens
with positive probability when the initial state is picked at random. Mathemat-
ically speaking, what I mean is that the basin of attraction of A (the set of
trajectories that converge to it) has positive volume inside the manifold M. As
part of the definition of attractor one also requires dynamical indecomposability:
there are trajectories dense in A, so that it can not be broken into smaller closed
invariant pieces.

In simple terms, attractors tell us where typical trajectories go when time
increases. One wants to know more: what is the spatial distribution of trajec-
tories, that is, where do they spend more (or less) time?

Let me give a simple example. The state space is R, and the evolution
is described by f: R — R, f(z) = 22 — 2. A simple computation shows that
f([—2,2]) = [-2,2]: trajectories starting at some o inside [—2, 2] remain in this
interval for all future times. How do they behave? If one is interested in all the
trajectories then there various types of behaviour. However, for typical (almost
all) trajectories the answer is unique: they fill-in a dense subset of [-2, 2], i.e.,
each of them visits the neighborhood of any other state in this interval.
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Figure 1: Distribution of a typical trajectory of f(z) = 2% — 2

Are these typical trajectories evenly distributed in the whole [-2,2] ? Figure
1 represents the graph of the distribution density: the integral over a subinterval
V equals the fraction of time
1
lim —#{1<j<n:z; eV}
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the trajectory spends in V. It shows that the distribuiton is not really uniform:
comparatively, more time is spent near +2 than near zero. Actually, the dis-
tribution density is the same for all typical trajectories: if the initial state is
chosen at random then, almost surely, it will generate the same graph as in the
figure. This is rather remarkable indeed, because systems like this one are sen-
sitive with respect to the initial conditions (or chaotic): trajectories of nearby
initial states almost surely diverge from each other exponentially fast, becoming
totally uncorrelated after a while.

Given any dynamical system, a physical measure is a probability P in the
state space M such that

P (V) = fraction of time the trajectory of z¢ spends in each domain V' (1)

with positive probability (volume) when the initial state xq is picked at random.
In the example I discussed before P is Lebesgue measure on [—2, 2], multiplied by
the density in Figure 1, and (1) holds with full probability for z¢ in [—2,2]. The
notion of physical measure goes back to Sinai, Ruelle, Bowen [Sin72], [Rue76],
[BowT75], who proved that uniformly hyperbolic systems (Axiom A systems, as
defined by Smale [Sma67]) have a finite number of physical measures (or SRB
measures). The theory of uniformly hyperbolic systems is a good paradigm for
what we would like to have in much more generality.

Before stating some rigorous results, let me briefly discuss Problem 2. T am
specially interested in stability under small random perturbations. The following
situation is often encountered in practical applications. The transformation
f: M — M is a simplification of the actual dynamics, taking into account
only the main aspects of the evolution: other aspects are too small and/or too
complex to go into the mathematical formulation of the problem. They may,
however, affect the dynamics to some extent: from xy the system moves on to
a state Z; which is close, but not quite equal to 1 = f(xp). Then it moves
to a state Z2 close to f(Z1), and so on. In many cases, one may think of each
Zj41 as resulting from f(Z;) by the addition of a small amount of random noise
(independent at each iteration step). The question is: is the information one gets
from the simplified model f: M — M compatible with the “true” behaviour,
described by the sequence (%;); 7

Let me be more precise. Out of general results, there exists a probability
P. (g denotes the size of the random noise) describing the behaviour of typical
pseudo-trajectories (Z;);:

P-(V) = fraction of time for which #; is in each domain V in M

with positive probability in the choice of g = xg, and full probability in the
choice of the subsequent ;. The system is stochastically stable if P, is close to P
when the random noise is small. See e.g. [Via97] for more detailed information.



3 Hénon-like systems

The model f: R? — R?, f(z,y) = (1 — az® + y, bx), was proposed by Hénon
[HénT6], as the simplest mathematical formulation for a system with complex
dynamics. He observed, numerically, the presence of a chaotic (or “stange”)
attractor for parameters a =~ 1.4, b =~ 0.3,. Starting from the work of Benedicks,
Carleson [BC91], after the pioneer results of Jakobson [Jak81], it has been pos-
sible to develop a rather complete theory for this class of maps (although we
do not quite understand the particular parameter range studied by Hénon yet).
This theory is summarized in the theorem below. We also know that it applies
to very general situations in Dynamics [MV93], [DRV96].

Theorem 1. With positive Lebesgue probability in the space of parameters a
and b,

(a) f has a chaotic attractor A (Benedicks, Carleson [BC91]);

(b) f has a physical measure P (Benedicks, Young [BY93]);

(c) there are no-holes in the basin of attraction of A (Benedicks, Viana [BVb]);
(d) the chaotic attractor is stochastically stable (Benedicks, Viana [BVa]).

Part (c) means that (1) holds not only with positive probability but, in fact,
with full (area) probability in the basin of attraction.

4 Towards a global theory

The following conjectures are part of Palis’ program, presented in [Pal99]:

Conjecture 1. Any system can be approximated (small modification of the evo-
lution law) by another having only a finite number of attractors which, more-
over, have nice properties: physical measures, the no-holes property, stochastic
stability.

Conjecture 2. Most systems, in terms of probability in parameter space, have
finitely many attractors.

In this direction we have

Theorem 2 (Alves, Bonatti, Viana [ABV]). Every strongly chaotic trans-
formation has a finite number of attractors and physical measures.

The precise definition of strongly chaotic is somewhat technical. I just men-
tion a consequence, and refer the reader to [ABV] for the complete formulation.
A strongly chaotic map is sensitive in all directions: given g € M and any yq
close to it, almost surely, the corresponding trajectores diverge from each other
in the future, exponentially fast. More precisely, all the Lyapunov exponents
are positive, almost everywhere.

This result motivates the following conjecture that I formulated for the first
time in [Via98].



Conjecture 3. Any smooth system whose Lyapunov exponents are non-zero al-
most everywhere (with respect to volume) has physical measures (a finite num-
ber of them if the Lyapunov exponents are bounded from zero).
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