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Dynamical systems

Transformations

��� � (discrete time)

or flows

� � � � (continuous time)

on some state space .

General goals: for “most” systems and “most” initial states,

describe the dynamical behavior, and

analyze its stability under perturbations

There has been considerable progress towards a global
theory, with a strong stochastic flavor.
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Towards a global theory

PSfrag replacements ��
� �

�
� �

��

= uniformly hyperbolic systems

� �

= partially hyperbolic

�

= (non-uniformly) hyperbolic
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Uniformly hyperbolic systems

Consider the cat map

� �
� � � � � � � �
�

For almost every initial state � � � �
, and any observable

(continuous function) �� � �
,

�
	


�� 
��� �

� � � � � � � � � � ���

where � � volume (Lebesgue) measure on

� �

.
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Uniformly hyperbolic systems

A similar fact is true, but much more subtle, for the slim
baker map (or any perturbation of it):

There exists an invariant probability � such that

�
	


� 
� � �

� � � � � � � � � � � �

for almost every initial state � � � �

, and any observable�� � �

.
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Physical measures

A physical measure is an invariant probability � in the state
space such that the set

� �
�

�

of initial states � such that

�
	


� 
� � �

� � � � � � � � � � � �

for any observable �� � �

, has (at least) positive
volume.

This means that, for any � � � �
�

�

and typical sets

� � ,

�
� � � � average time the orbit of � � � �

�
�

spends in

�

.
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Physical measures

Existence of physical measures ?

Uniqueness/Finiteness ?

These problems are hard. Time averages need not
converge. For example:

zA B

For uniformly hyperbolic systems there is a very complete
theory, by Sinai, Ruelle, Bowen (1970-1976).
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Hénon strange attractors

� � � � � � �

defined by

� ��� � � � � � � � �� � � � �
�� �

The picture is for paarmeters � � �� �

and

� � 	� 


.
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Hénon strange attractors

Benedicks-Carleson (1991): for a positive probability set of
parameters, there exists a strange attractor.

Benedicks-Young (1993,96): the attractor supports a
physical measure �, for which the system has exponential
loss of memory (decay of correlations).

Benedicks-Viana (2000): the physical measure � is unique,
and

� �
�

�

contains almost all points in the basin of
attraction.

strange � exponentially sensitive � (non-unif) hyperbolic

all Lyapunov exponents are non-zero at almost all points.
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Physical measures

Conjecture: If all Lyapunov exponents are non-zero almost
everywhere (full volume), then almost every point is
contained in the basin of some physical measure.

There are partial results by Alves, Bonatti, Viana and by
Pinheiro.
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Physical measures

Conjecture: If all Lyapunov exponents are non-zero almost
everywhere (full volume), then almost every point is
contained in the basin of some physical measure.

There are partial results by Alves, Bonatti, Viana and by
Pinheiro.

Conjecture (Palis): Any system may be approximated by
another for which there are only finitely many physical
measures, and the union of their basins has full volume.

It is known to be true for transformations in dimension

�

, by
Lyubich and Avila, Moreira.
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Physical measures

There is a good understanding of other models, including

Lorenz strange attractors, by Morales, Pacifico, Pujals,
Tucker.

Lorenz Attractor

25-25

50

-5

Title: Lorenz System
Date: Fri Jun 18 12:24:00 1999
 Range = [ -25, 25 ];    Range = [ -5, 50 ]
Initial Conditions: ( x, y, z, time )=( 0.1, 0.1, 0.1, 0 )
Parameters: ( sigma, rho, beta )=( 10, 28, 2.6666667 )
Num Pts = 10001;  Time Step = 0.01

partially hyperbolic maps, by Alves, Bonatti, Viana and
by Tsujii.

A stochastic view ofDynamical Systems – p. 12/18



Partial hyperbolicity

Partial hyperbolicity: in addition to exponentially expanding
and exponentially contracting directions, one allows for
central directions, where the behavior may be neutral, or
else vary from one point to the other.

Lorenz strange attractors are partially hyperbolic.
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Partial hyperbolicity

Partial hyperbolicity: in addition to exponentially expanding
and exponentially contracting directions, one allows for
central directions, where the behavior may be neutral, or
else vary from one point to the other.

Lorenz strange attractors are partially hyperbolic.

There has been much progress in partially hyperbolic
systems, both conservative and dissipative:

Pugh, Shub, Wilkinson, Burns, Nitika, Torok, Xia, Arbieto,
Matheus, Tahzibi, Horita,

Diaz, Pujals, Ures, Bonatti, Viana, Arnaud, Wen, Crovisier,
Abdenur, and others.
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Stochastic stability

Consider the stochastic process obtained by adding small
random noise to the system. For discrete time, there are
two main models (most results hold for both):

(Markov chain) � 
 �  � � � � 
 � � � 
 with � 
 � ��
�

� 	 �

(random maps) � 
 �  � � 
 � � 
 �

with
� 
 � �
�

� � �

Under general assumptions, there exists a stationary
probability � � such that, almost surely,

�
	


� 
� � �

� � � � � � � � � � �
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Stochastic stability

Stochastic stability means that � � converges to the physical
measure � when the noise level � goes to zero.
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Stochastic stability

Stochastic stability means that � � converges to the physical
measure � when the noise level � goes to zero.

Kifer (1986): stochastic stability for uniformly hyperbolic
maps and for Lorenz strange attractors.

Benedicks, Viana (2004): Hénon strange attractors are
stochastically stable.

There are rather general results for partially hyperbolic
systems, by Alves, Araujo, Pinheiro.

A stochastic view ofDynamical Systems – p. 17/18



Stochastic stability

Stochastic stability means that � � converges to the physical
measure � when the noise level � goes to zero.

Kifer (1986): stochastic stability for uniformly hyperbolic
maps and for Lorenz strange attractors.

Benedicks, Viana (2004): Hénon strange attractors are
stochastically stable.

There are rather general results for partially hyperbolic
systems, by Alves, Araujo, Pinheiro.

Conjecture: If all Lyapunov exponents are non-zero almost
everywhere, and there is a unique physical measure, then
the system is stochastically stable.
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