SIMPLE LYAPUNOV SPECTRUM FOR CERTAIN LINEAR
COCYCLES OVER PARTIALLY HYPERBOLIC MAPS
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ABSTRACT. Criteria for the simplicity of the Lyapunov spectra of linear co-
cycles have been found by Furstenberg, Guivarc’h-Raugi, Gol’dsheid-Margulis
and, more recently, Bonatti-Viana and Avila-Viana. In all the cases, the au-
thors consider cocycles over hyperbolic systems, such as shift maps or Axiom
A diffeomorphisms.

In this paper we propose to extend such criteria to situations where the
base map is just partially hyperbolic. This raises several new issues concern-
ing, among others, the recurrence of the holonomy maps and the (lack of)
continuity of the Rokhlin disintegrations of u-states.

Our main results are stated for certain partially hyperbolic skew-products
whose iterates have bounded derivatives along center leaves. They allow us, in
particular, to exhibit non-trivial examples of stable simplicity in the partially
hyperbolic setting.

1. INTRODUCTION

The theory of linear cocycles is now a classical field of dynamical systems and
ergodic theory, grounded on the pioneer works of Furstenberg, Kesten [13, 11]
and Oseledets [18]. The derivatives of smooth dynamical systems are the first
examples that come to mind, but the notion of linear cocycle is a lot more broad, and
arises naturally in many other situations, e.g., in the spectral theory of Schrodinger
operators.

Among the outstanding issues is the problem of simplicity: when is it the case
that the dimension of all Oseledets subspaces is equal to 1¢ This was first studied by
Furstenberg [11], Guivarc’h-Raugi [15] and Gol’dsheid-Margulis [14], who obtained
explicit simplicity criteria for random i.i.d. products of matrices. Recently, Bonatti-
Viana [7] and Avila-Viana [2] extended the theory to include a much broader class of
(Holder continuous) cocycles over hyperbolic maps. There is also much progress in
the quasi-periodic case, that is, for linear cocycles over rotations: see Duarte-Klein
[10] and references therein.

Our purpose in this paper is to initiate the study of the simplicity problem in
the context of linear cocycles over partially hyperbolic maps, that combine features
from both the hyperbolic and the quasi-periodic cases.

The theory of partially hyperbolic diffeomorphisms and flows was initiated by
Brin-Pesin [8] and Hirsch-Pugh-Shub [16] and has been at the heart of much recent
progress in dynamical systems. While boasting many of the important properties
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of uniformly hyperbolic (Axiom A) systems, partially hyperbolic maps are a lot
more flexible and encompass several interesting new phenomena.

Linear cocycles over volume-preserving partially hyperbolic maps were studied
previously by Avila-Santamaria-Viana [1]. The issue of simplicity is much better
understood when the base map is non-uniformly hyperbolic, meaning that all the
center Lyapunov exponents are non-zero. Indeed, Viana [21] proved that simplicity
is generic, in a very strong sense, among 2-dimensional cocycles. Backes-Poletti-
Varandas [5] extended that conclusion to any dimension d > 2, under additional
assumptions such as fiber-bunching.

For this reason, here we focus on the opposite case, namely, we take the partially
hyperbolic map to be mostly neutral along the center direction, meaning that its
iterates have bounded derivatives along the leaves of the center foliation. The
following simple example illustrates some of the systems we have in mind.

Let wo,w; be real numbers and fo, f1 : S* — S! be the corresponding rotations,
that is, fi(t) = t + w; mod Z for every t € S'. Take wy to be irrational. Let
Ag: ST — SL(3,R) and A; : St — SL(3,R) be given by

2 0 O
AO (t) = 0 1 0 and Al (t) = Rl (t)RQ (f)R3 (t)
0 0 27!

where R;(t) denotes the rotation of angle 27t around the i-th axis. Each A; defines
a linear cocycle F; over the transformation f;. We want to consider the random
combination F' of these two cocycles: at each step one applies either Fy or Fy, at
random.

The results in this paper (see Theorem A and Example 2.4) ensure that the Lya-
punov spectrum of Fis simple, and the same is true for any small perturbation in
the uniform topology. Concerning this last point, it should be noted that simplicity
of the Lyapunov spectrum is usually not an open property, cf. Wang, You [24].

Acknowledgements. We are grateful to Lucas Backes, Fernando Lenarduzzi, En-
rique Pujals and Jiagang Yang for numerous discussions, and to the anonymous
referee for a thoughtful review of the manuscript and many suggestions that helped
improve the text.

2. DEFINITIONS AND STATEMENTS

Here we state our main result. Beforehand, we must give the precise definitions
of the notions involved in the statement. In what follows, K denotes either the real
field R or the complex field C, indifferently.

2.1. Linear cocycles and Lyapunov exponents. The linear cocycle defined
by a measurable matrix-valued function A : M — GL(d,K) over an invertible
measurable map f : M — M is the (invertible) map Fiu : M x K¢ — M x K9 given
by

Ar(p) =< id ifn=0
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Let /i be an f-invariant probability measure on M such that log || A!|| are inte-
grable. By Oseledets [18], at fi-almost every point p € M there exist real numbers
A1 (p) > -+ > g () and a decomposition K¢ = Elo-- -EBE;; into vector subspaces
such that

) . 1 -
AGYE} = iy and M) = T~ log |4 (o]
for every non-zero v € Eg and 1 < i < k. The dimension of Eg is called the
multiplicity of A;(p).

In this work we assume that the invariant measure ji is ergodic. Then the
Lyapunov exponents and the dimensions of the subspaces E}) are constant almost
everywhere. The Lyapunov spectrum of the cocycle is the set of all Lyapunov expo-
nents. The following notion is central to the whole paper: the Lyapunov spectrum
is simple if it contains exactly d distinct Lyapunov exponents or, equivalently, if
every Lyapunov exponent has multiplicity equal to 1.

2.2. Partially hyperbolic skew-products. Let ¢ : Y — 3 be any two-sided
finite or countable shift. By this we mean that X is the set of two-sided sequences
(Zn )nez in some set X C N with #X > 1, and the map & is given by

o ((In)nel) = (I"Jrl)nel :

Let disty, : ¥ x ¥ — R be the distance defined by

o0

(1) distg(@,9) = Y 27 "6(ak,yp), with & = (), and § = (Yx) ez

k=—o0

where d(z,y) = 1 if 2 = y and §(z,y) = 0 otherwise. Then & is a hyperbolic
homeomorphism (in the sense of [21]), as we are going to explain.

Given any = € ¥, we define the local stable and unstable sets of & with respect
to & by

Wi () = {2 : z = yg for every k > 0} and
Wi (9) = {& : z =y for every k < 0}.
Observe that, taking A = 1/2 and 7 = 1/2,
(1) disti(ﬁn(gl), &n(ﬂg)) <\ disti(gl, ﬂg) for any ﬂ S 2, ﬂl,gg S Wlf)c(ﬂ) and
n > 0;
(11) distg(ﬁin(gl),&in(ﬂz)) < A" disti(gl,ﬂg) for any Q IS gl,gz (S ngc(yA)
and n > 0;
(iii) if distg(2,9) < 7, then W (Z) and W) (9) intersect in a unique point,
which is denoted by [z, y] and depends continuously on & and .

By a partially hyperbolic skew-product over the shift map ¢ we mean a homeo-
morphism f: ¥ x K — ¥ x K of the form

f(jat) = (&(j)a ffc(t))

where K is a compact Riemannian manifold and the maps fw : K — K are diffeo-
morphisms satisfying

(2) A|Dfa(t)]] <1 and A|Df; 1 (t)]| < 1 for every (#,t) € & x K,
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where ) is a constant as in (i) - (ii). We also assume the following Holder condition:
there exist C' > 0 and o > 0 such that the C''-distance between fm and fy is bounded
by Cdists,(z,9)* for every &,7 € 3.

We say that f has mostly neutral center direction if the maps f” K - K
defined for n € Z and & € & by

f&n—1(i)0-~-ofi ifn>0

f(;nl(m) -0 5— 1(x) 1f n < 0

have bounded derivatives, that is, if there exists C' > 0 such that
|Df2|| < C for every & € 3 and n € Z.

Remark 2.1. Clearly, this implies that the { fg :jE€Zand T € f]} is equicontinu-

ous. When the maps fy are C''*¢, equicontinuity alone suffices for all our purposes
(see Remark 3.2).

In the definition of partially hyperbohc skew-product one may replace the shift

: 3 — % with a sub-shift or ZT — ZT associated to a transition matrix

T = (T ,j)ijex. By this we mean that T; ; € {0,1} for every 4,5 € X and o7 is

the restriction of the shift map & to the subset Y7 of sequences (&, )nez such that
Te, zny, = 1 for every n € Z.

One way to reduce the sub-shift case to the full shift case is through inducing.
Namely, fix any 1-cylinder [0;i] = {(2n)nez € S7 : 2o = i} with positive measure
and consider the first return map g : [{] — [i] of &7 to [¢]. This is conjugate to a full
countable shift (with the return times as symbols) and it preserves the normalized
restriction to the cylinder of the p-invariant measure. All the conditions that
follow are not affected by this procedure. Moreover, every linear cocycle F over
o gives rise, also through inducing, to a linear cocycle over g whose Lyapunov
spectrum is just a rescaling of the Lyapunov spectrum of F'. In particular, simplicity
may also be read out from the induced cocycle.

2.3. Stable and unstable linear holonomies. Property (2) is a condition of
domination (or normal hyperbolicity, in the spirit of [16]): it means that any ex-
pansion and contraction of fm along the fibers {Z} x K are dominated by the
hyperbolicity of the base map 6. For our purposes, its main relevance is that it
ensures the existence of strong-stable and strong-unstable “foliations” for f , as we
explain next.

Let the product M =3 x K be endowed with the distance defined by

diStM((il, tl), (JA?Q, tz)) = dlsti({fl, .fg) + diStK(tl, tg),

where distg, denotes the distance (1) on % and dist is the distance induced by the
Riemannian metric on K.
We consider the stable holonomies

hs:i,’g . K — K, h;;y,g = lim (le)i @] f:E’
defined for every & and § with & € W _(9), and unstable holonomies

higz: K — K, hg,;= nILH;o (fg_")_ ofim
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defined for every & and y with & € W» (9). That these families of maps exist
follows from the assumption (2), using arguments from [6]. See for instance [4],
which deals with a similar setting.

We define the local strong-stable set and the local strong-unstable set of each
(&,t) € M to be

Wik (&,1) = {(§,5) € M :§ € Wii(2) and s = h§ (1)} and
Wit (&,8) = {(§,5) € M : § € Wi (2) and s = ht (1)},
respectively. It is easy to check that

(5.5) € Win(t) = Tim_disty (7"(5, ), F"(,0)) =0
and analogously on strong-unstable sets for time n — —oo.

2.4. Measures with partial product structure. Throughout, we take [i to be
an f—invariant measure with partial product structure, that is, a probability measure
of the form i = pp® x pu* x p® where:

p: M — (0, +00) is a continuous function bounded from zero and infinity;
1° is a probability measure supported on ¥~ = X%<o;

' is a probability measure supported on ¥ = X?%=o;

1 is a probability measure on the manifold K.

For notational convenience, we formulate the boundedness condition as follows:

there exists x > 0 such that
3) 1 opeha) g Lo pEhet) o
K pas,2v) k(a0 )

for every z°, 2° € ¥~ and z%, 2% € X7, where p: 3 — R is defined by
(1) ) = [ pGa. (o).

Observe that when ¥ is a finite shift space this is an immediate consequence of
compactness and the continuity of /.
Now define, for & € X,

6) o) = ) and i = e
In other words, i is the normalization of j(Z,-)uc. Note that {4 : & € ¥} is a
(continuouAs) disintegration of A/l along vertical fibers, that is, with respect to the
partition P = {{z} x K : & € ¥}. A

The assumption that j is invariant under f, together with the fact that g
depends continuously on , implies that
(6) (fa)ehts = sy for every & € 3.
We will also see in Section 5 that this disintegration is holonomy invariant:
) (R 4)«5 = iy whenever § € W*(#) and

(R 5)«fiG = fig whenever § € W"(Z).

Remark 2.2. In particular, if Z is a fixed point of the shift map then ;1§ is invariant

under fz Clearly, it is equivalent to pu®. Moreover, if ¢ is a homoclinic point of z,
that is, a point in W*(2) N W*(2), then (hj ; o hf ;)1 = (hy ;o hg )i = 5.
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2.5. Linear cocycles with holonomies. Let A : M — GL(d,K) be a a-Holder
continuous map for some o > 0. By this we mean that there exists C' > 0 such that

|A(p) — A(q)|| < Cdisty,(p,¢)* for any p,q € M.

The linear cocycle defined by A over the transformation f : M — M is the map
F:M xK? = M x K? defined by
E(p,0) = (f(), A(D)v).
In what follows we take the cocycle to admit stable and unstable linear holonomies.
Let us explain this.

By stable linear holonomies we mean a family of linear maps Hp .- K¢ — K,

defined for each p, ¢ € M with € Ws (p) and such that, for some constant L > 0,
Ed N — Ad(g s o Ai(p)—1 P> -
(a) Hfj(ﬁ),fj(tj) A (Q) o Hp,q oA (p) for eYery J = 1;
(b) H;ﬁ = 1(.1 and HE@ = HAZ;G@O H;g,i for any Z € V[/lisc(p)7
(c) [[Hj 4 —id|| < Ldisty (p,q);
(d) (,q) = Hj ; is uniformly continuous in {(p,q) : ¢ € Wigi.(p)}

oc

Unstable linear holonomies Hf - K¢ — K¢ are defined analogously, for the pairs
(5, ) with G € W2 (7).

These notions were introduced in [6, 1], where they were called simply stable
and unstable holonomies. We add the adjective linear to avoid any confusion with
the holonomies h® and h" in the previous paragraph, that concern only the base
dynamics, whereas H® and H" pertain to the linear cocycle.

It was shown in [1] that stable and unstable linear holonomies do exist, in par-
ticular, when the cocycle is fiber-bunched. By the latter we mean that there exist

C > 0 and 0 < 1 such that
|A™ () ||[|A™(p)"L||A"™ < €™ for every p € M and n > 0,

where X is a hyperbolicity constant for f as in conditions (i)-(ii) above. Then stable
and unstable linear holonomies may be defined by

H ;= nh_}ngo A"(G) " o A™(p), and Hf = nh_}ngo AT(G) " o ATM(p)
2.6. Pinching and twisting. Now we state our criterion for simplicity of the
Lyapunov spectrum. It is assumed that the cocycle admits stable and unstable
linear holonomies.

We call F pinching if there exists some fixed (or periodic) vertical leaf ¢ = {i} x K
such that the restriction to £ of every exterior power AFE has simple Lyapunov
spectrum, relative to the fi—invariant measure (5 (recall Remark 2.2). In other
words, the Lyapunov exponents Aq,---,\;g are such that, for each 1 <k < d—1
and fi-almost every ¢ € K, the sums

/\il(ii',t)—l—"'-i-/\ik(j,t), 1<ip << <d

are all distinct.

Next, take F' to be pinching and let K% = E'(t) @ - - - @ E%(t) be the Oseledets
decomposition at each point (#,t) € . This is defined on a full /i§-measure set.
Choose (measurably) unit vectors e’(t) € E'(t). Let § be a homoclinic point of #.
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Given t € S', denote t; = h¥ ;(t) and to = h$ ;(t1). Then define B(t) to be the
matrix of the linear map

u s . d d
(8) Hg ), 8,0 © Hz o), (9,00) K = K

relative to the bases {el(ta),...,e%(t2)} and {el(t),...,e?(t)}, respectively. Ob-
serve that t also varies on a full fi-measure set, since the composition of the
holonomies preserves f15 (Remark 2.2).

We call the cocycle F twisting if, for some choice of the homoclinic point ¢, all
the algebraic minors mr ;(t) of B(t) are non-zero for ji¢-almost every t € K and
they decay sub-exponentially along the orbits of f@, meaning that

1 .

9) lim —log|mr s(fZ(t))] =0 for ig-almost every ¢t € K
n—oo N

and any proper subsets I and J of {1,...,d}.

Remark 2.3. By [22, Corollary 3.11], the property (9) holds whenever the function
log |my g| o fz —log|my | is fi5-integrable. In Example 2.4 we show how to check
the twisting condition in a specific case using this observation.

Finally, we say that the cocycle Fis simple if it is both pinching and twisting
(in addition to admitting stable and unstable linear holonomies).

2.7. Main statement. Let H*(M ) denote the space of all a-Hoélder continuous
maps A : M — GL(d,K). The norm

IAp) — A@)||
”A”a = sup ”A( )|l + sup “dist o (ba
pEM p£q disty (D, Q)
defines a topology in H*(M) that we call a-Hdlder topology.

We say that A is a continuity point for the Lyapunov exponents if, for every
1 <4 < d, the function \; : H*(M) — R is continuous in A.

Theorem A. Let f : M — M be a partially hyperbolic skew-product with mostly
neutral center direction and /i be a f—invariant measure with partial product struc-
ture. Suppose that A € H O‘(M ) is such that the corresponding linear cocycle
F o M x K — M x K% over f is simple. Then A is a continuity point for the
Lyapunov exponents, and the Lyapunov spectrum of Fis simple.

By continuity, the Lyapunov spectrum remains simple for every perturbation of
F', that is, for the linear cocycle over f corresponding to every element of H*(M)
sufficiently close to A.

Example 2.4. The example presented in the Introduction satisfies all the condi-
tions in Theorem A, and so the conclusion applies to it. In order to explain this,
let us formalize the example as follows.

Let 6 : & — 3 be the shift map on 3 = {0,1}% and let # be the Bernoulli measure
(60/2+ 61/2)% Let f: % x §' — % x 8 be defined by f(,t) = (5(2), fu,(t))
and u be the product of ¥ by the Haar measure on S*. Fmally, let M =% x St
and F : M x R® — M x R?® be given by F((&,t),v) = (f(&, 1), A(Z,t)v) with
A(w, t) = A, (t).

It is clear that f is a skew-product with mostly neutral central direction, and [
has partial product structure. Moreover, i is ergodic. Indeed, let ¢ be any ergodic
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component. Since fi projects down to ¥, which is ergodic, ( must project to v.
The Lyapunov exponent of f along the vertical S! fibers is zero and so, by the
Invariance Principle of [3], there exists a disintegration {z : 2 € £} of ¢ along the
S fibers which is invariant under stable and unstable holonomies and is continuous.
Consider the fixed point & = (...,0,0,0,...) of 6. Since fy is uniquely ergodic,
because we took wp to be irrational, (; must coincide with the Haar measure on
S1. Then, by holonomy invariance, (: is uniquely determined at every point, which
proves that the ergodic component is unique.

Now consider the homoclinic point § = (...,0,1,0,...) of &, where the sole non-
zero entry is in position 0. The corresponding stable and unstable holonomies are
given by

Py = lim (foo---foo f1) "o (foo---ofo) = fi'ofo and
By o= lim (fto-fy') o (fote - fy) =id.

Similarly, the stable and unstable linear holonomies are given by

H(Si,s),(g,t) = A1 (t)_l o AO and H&u"b,t),(i,t) =id

where s = h$ ,(t) = fo_l(fl(t)) =t+wi; — wo.
It is also clear that F' is pinching: its restriction to £ = {#} x S' corresponds to
the constant cocycle
0
0
2—1
whose Lyapunov spectrum is obviously simple. We are left to check the twisting
condition.
Since Ag is constant, so is its Oseledets decomposition E*(t) & E?(t) & E3(t),
with E' = span{(1,0,0)}, E? = span{(0,1,0)} and E* = span{(0,0,1)}. This
shows that B(t) is just the matrix of

Ha},t),(;ﬁ,t) o H(Si,s),(jl),t) = Al (t)71 o AQ = Rg(—t)Rg(—t)Rl(—t)Ao,

2 0
Aot)=1| 0 1
0 0

relative to the canonical basis of R®. It is straightforward to check that all the
minors my_y(t) of this matrix are analytic functions of ¢ not identically zero. In
particular, all their zeros have finite order and, consequently, the functions log |my, |
are integrable. Using [22, Corollary 3.11] we conclude that

1
lim — log|ms s(f3'(t))] = 0 for Lebesgue almost every ¢t € S*,
n

n—oo

which shows that F is twisting.

In many contexts of linear cocycles over hyperbolic systems, simplicity turns
out to be a generic condition: it contains an open and dense subset of cocycles
(precise statements can be found in Viana [22]). This is related to the fact that
in the hyperbolic setting pinching and twisting are just transversality conditions,
and so they clearly hold on the complement of suitable submanifolds with positive
codimension.

It would be interesting to find whether this extends to the present partially hy-
perbolic setting. In dimension d = 2, simplicity is equivalent to positivity of the
largest Lyapunov exponent and that has been shown to hold for an open and dense
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subset of linear cocycles over partially hyperbolic skew-products with mostly neu-
tral center direction, by Poletti [19]. In general, by Theorem A, it would suffice
to prove density of our pinching and twisting conditions. Density of pinching cor-
responds, roughly, to density of simplicity for linear cocycles over quasi-periodic
transformations, a subject that does not seem to have been much investigated be-
yond the 2-dimensional case (but see [10]). On the other hand, the arguments in
Example 2.4 suggest that twisting is probably a rather mild requirement on the
cocycle.

2.8. Outline of the proof. For every 1 < ¢ < d, we want to find complementary
F—invariant measurable sections

(10) €: M — Grass(l,d) and 1 : M — Grass(d —1,d)

such that the Lyapunov exponents of a along £ are strictly larger than the Lyapunov
exponents along 7.

The starting point is to reduce the problem to the case when the maps fm and
the matrices A(ﬁ;, t) depend on & only through its positive part x*. This we do
in Section 4, using the stable linear holonomies to conjugate the original dynamics
to others with these properties. Then f M — M projects to a transformation
f:M — Mon M = Xt x K which is a skew-product over the one-sided shift
o: 2t = X+ and, similarly, the linear cocycle F': M x K% — M x K% projects to
a linear cocycle F': M x K% — M x K% over the transformation f .

We also denote by F and F the actions

F 2 M x Grass(l,d) — M x Grass(l,d) and
F: M x Grass(l,d) - M x Grass(l, d)

induced by the two linear cocycles on the Grassmannian bundles. Still in Section 4,
using very classical arguments, we relate the invariant measures of f and F with
those of f and F, respectively.

In Section 5 we study u-states, that is, F-invariant probability measures m whose
Rokhlin disintegrations {7z : & € f]} are invariant under unstable holonomies,
as well as the corresponding F-invariant probability measures m. Here we meet
the first important new difficulty arising from the fact that f is only partially
hyperbolic. Indeed, in the hyperbolic setting such measures m are known to admit
continuous disintegrations {m, : © € M} along the fibers {z} x Grass(l, d) and this
fact plays a key part in the arguments of Bonatti-Viana [7] and Avila-Viana [2].

In the partially hyperbolic setting, the situation is far more subtle: the disinte-
gration {m, : € ¥} along the sets {z} x K x Grass(l,d) is still continuous, but
there is no reason why this should extend to the disintegration {m : (z,¢) € M}
along the fibers K x Grass(l,d), which is what one really needs. The way we
make up for this is by proving a kind of L!-continuity: if (x;); — x in ¥ then
(M 4)i — Mg in L1 (uc). See Proposition 5.8 for the precise statement.

This also leads to our formulating the arguments in terms of measurable sections
K — Grass(l, d) of the Grassmannian bundle, which is perhaps another significant
novelty in this paper. The properties of such sections are studied in Section 6.
The key result (Proposition 6.1) is that, under pinching and twisting, the graph of
every invariant Grassmannian section has zero mj-measure, for every x € M and
any u-state m.
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These results build up to Section 7, where we prove that every u-state m has
an atomic disintegration. More precisely (Theorem 7.1), there exists a measurable
section & : M — Grass(l, d) such that, given any u-state m on M x Grass(l,d), we
have

(11) Mzt = O¢(z) for fi-almost every (Z,t) € M.

Thus we construct the invariant section & : M — Grass(l, d) in (10).
To find the complementary invariant section 7 : M — Grass(d—1, d), in Section 8

we apply the same procedure to the adjoint cocycle a *, that is, the linear cocycle
defined over f~!: M — M by the function

(2,t) = A*(z,t) = adjoint of A(f~1(z,1)).

We check (Proposition 8.4) that this cocycle F** is pinching and twisting if and only
if F'is. So, the previous arguments yield a F*-invariant section £* : M — Grass(l, d)
related to the u-states of F*. Then we just take n = (5*)L

Finally, in Section 9 we check that the eccentricity, or lack of conformality, of
the iterates A" goes to infinity fi-almost everywhere (see Proposition 9.1) and we
use this fact to deduce that every Lyapunov exponent of F along € is strictly larger
than any of the Lyapunov exponents of a along 7. At this stage the arguments are
again very classical. This concludes the proof of Theorem A.

In Appendix A we show that continuous maps are dense in the corresponding
L' space, whenever the target space is geodesically convex. This is probably well
known, but we could not find explicit references.

3. DISINTEGRATION ALONG CENTER LEAVES

Let us start by fixing some terminology. We use idy to denote the identity
transformation in a set Y. Similarly, disty will always denote the distance in a
metric space Y.

Let ¥ = ¥~ x ©T, where ¥~ = X%<0 and ¥ = X%20. Thus we write every
i e as (25, 2%) with 28 € £~ and 2 € £+, For simplicity, we also write & = %+
and z = 2. Let P : ¥ — ¥ be the canonical projection given by P(i) = z and let
o :Y — X be the one-sided shift. Given points # € 3 and § € M, denote

z, = P(67"(%)) and ¢, = (P xidg)(f"(q))

for each n € N.
We also consider M = 3 x K and the projection p = (P x idgk).fi. In other
words,

(12) p=p(z,t) p* x p® where p(z,t) = /ﬁ(ws,x,t) dp®(z®).
Similarly to (5), for each z € M let
p(:E, ) c c
(13) o, ) = 7——————= and pug = oz, )u’.
S p(x,t) duc(t)

Note that {uS : o € X} is a continuous disintegration of p with respect to the
partition P = {{z} x K : z € X}.

In this section we derive some useful properties of these disintegrations (5) and
(13). For this, we assume that the base dynamics is such that each f; : K — K
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along the center direction depends only on = P(Z). This is no restriction in our
setting, as we will see in Section 4. Then there exists f : M — M of the form
f(z,t) = (o(x), f.(t)) such that

(P xidg)o f = fo(P xidgk)
3.1. Holonomy invariance. We call the extremal center Lyapunov exponents of
f the limits
1 A 1 N
AHT(&,t) =lim = log | Df2(t)|| and A (&,t) =lim —=log||Df2(t)""||.
n n n n

for (z,t) € ) x K. The Oseledets theorem [18] ensures that these numbers are well
defined at ji-almost every point. In our situation, since the maps f7' have uniformly
bounded derivatives:

Lemma 3.1. X\t =)\~ =0.

Remark 3.2. When the maps f; are C'T¢, equicontinuity alone suffices to get the

conclusion of Lemma 3.1. This can be shown using Pesin theory, as follows.
Suppose that At > 0. Then we have a Pesin unstable manifold defined fi-almost

everywhere. This implies that there exist & € S and ¢ # s € K such that

distr (£77(t), f™(s)) — 0.
Then, given points ¢ and s in the unstable manifold and given any § > 0, there

exists n such that distr(f; (), f™(s)) < 8. This implies that the family is not
equicontinuous. The proof for \*~ is analogous.

Let m1 : M — 3 be the projection (Z,t) = &, recall that we also assume
that f: M — M admits s-holonomies and u-holonomies and /i has partial product
structure. That implies that (7). /i has local product structure in the sense of [3].

Lemma 3.3. The map & — [i5 is continuous. Moreover, the disintegration {fiS :
& € M} is both u-invariant and s-invariant:

(a) (h;,u)* fig = fig for every & € W*(g) and
(b) (h52) 5 = g for every & € W*(2).

Proof. By Theorem D in [3], there exists a disintegration {f$ : & € ¥} which
is continuous, u-invariant and s-invariant. By essential uniqueness, i = fA$ for
[-almost every z. Since both disintegrations are continuous, it follows that they
coincide, and so {{1 : & € f]} is continuous, u-invariant and s-invariant, as claimed.

O
Corollary 3.4. u§ = [i§ for every & € S, where x = P(z).

Proof. The assumption that fz only depends on x = P(Z) implies that hj ; = id
for every Z and ¢ in the same stable set. By the previous lemma, this implies that
g = fug; whenever & and y are in the same stable set. Then,

s = [ g dnza) = i
for any & with P(z) = x. O

We also have
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Corollary 3.5. The disintegration {uS : x € X} is f-invariant, in the sense that
(fz)*,ug = Uo(x) Jor every x € 3.

Proof. We have that (f3). fig = figz) for fi-almost every &, because /i is f-invariant.
Since & — f1§ is continuous, the identity extends to every & € 3. By Corollary 3.4
this implies that (fz).pg = pig(, for every z € . O

3.2. Jacobians. Denote © = (7). ft and v = (71 ). where 7; denotes both canon-
ical projections M — 3 and M — ¥. Recall the functions ¢ and o defined in (5)
and (13). Note that {(z)ac : & € 2} is a disintegration of /i with respect to the
partition {m 1(Z) : & € £} of M and {o(x)u¢ : z € £} is a disintegration of y with
respect to the partition {m '(z) : z € £} of M.

Given a measurable map g : N — N and a measure n on N we call Jacobian of g
with respect to 7 the essentially unique function J,g : N — R such that n(g(C)) =
J. o Jng dn for every measurable set C' C N where g is invertible. This is well defined
whenever N can be covered with countably many domains of invertibility of g. See
[23, Section 9.7] for a detailed discussion.

Remark 3.6. Let JfJ : K — R be the Jacobian of fJ with respect to u¢. Using
the observation that {o(z)u® : © € ¥} is a disintegration of the f-invariant measure
1, one easily gets that

ssie) = 4L,

In particular, these Jacobians are uniformly bounded from above and below. Analo-
gously, the fact that {45 : & € 2} is invariant under stable and unstable holonomies
ensures that the Jacobians J h;‘cy of those holonomies with respect to u¢ are uni-
formly bounded from above and below.

Lemma 3.7. J, f*(z,t) = J,o"(z) for every (z,t) € M and k > 1.
Proof. Fix some k-cylinder I = [0;xq,...,z—1] and let J C I and C' C K. Noting

that o® | I is injective,

,u(fk(J x C)) :/ /ij(fzk(y)(c)) dv(y)

y€Eak(J)
= /el Juak(Z)uik(z)(ff(C)) dv(z),

where z(y) is the unique point in o=*(y) N I and we use the change of variables
z = z(y). Using Lemma 3.5, it follows that

k = o (2)us v(z) = ¥ om
u(f (ch»—/JJV (2)us(C) diz) / (Juo* o m) du,

xC

which concludes the proof. O

Now we find the Jacobian of o*:

Lemma 3.8. J,o%(x) = l/uik(w)(I), where I = [—k;xo,...,v5_1]. Consequently,
the Jacobians J, f* = J,0% o w1 are continuous and bounded from zero and infinity
on every k-cylinder.
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Proof. Given z € ¥ andn > 1, let J,, = [xo, ..., x,] be the n-cylinder that contains
z. Then,
. v(df ()
Jyot(z) = lim ———4
o (x) n1—r>I;o v(Jy,

Since 7 is invariant under &,

v(J,) =0(27 x J,) =062 x J,)) = / ve(I)dv(y).
Y€k (Jn)
It follows that
1 ~ lim fyegk((]n) V(S(I)dy(y)
Jyoh(z)  n—oo v(o*(Jn))
This proves the first part of the conclusion. The second part is a consequence,
since the local product structure implies that « — ng(x)(l ) is continuous for every

cylinder I. 0

= Vo) (1)-

4. CONVERGENCE OF CONDITIONAL MEASURES

For eaAch 1< l < d, the linear Pocycle F: M xK?*— M xK?induces a projective
cocycle F': M x Grass(l,d) — M x Grass(l,d) through

(14) F(4,0) = (f(2), A(@)v).
Let = (P x idg), f# and, for any Borel probability measure 7 on M x Grass(l, d),
(15) m = (P xidg X idgrass(,a)), 7

We will be especially interested in the case when m is a F-invariant probability mea-
sure that projects down to ji under the canonical projection 7 : M x Grass(l,d) — M
on the first coordinate.

4.1. Reduction to the one-sided case. Our first step is to show that, up to
conjugating the cocycle in a suitable way, we may suppose that:

(A) the base dynamics f; along the center direction depends only on z;

(B) the matrix A(%,t) depend only on (x,t).
Next, let us explain how such a conjugacy may be defined using the stable linear

holonomies. .
Let z° € ¥~ be fixed. For any g € X, let ¢(y) = (2°,y) and then define

h(§:0) = (5 1).5(0):
Then f = h~ 1o foh is given by
F@t) = (6(9), f3(®)),  with () = b (59,005 (1) Fo(@) (1)-
Notice that f; does depend only on y (bAecause ¢ does).
Assume that (A) is satisfied. Define ¢(g,t) = (¢(9),t) and then let

H(y,t) = H&(g,t),(zﬁ,t)

Define A(9,t) = H(f(§,t)) " o A(§),t) o H(§,t). Then

AG:8) = Hy g5 00, a(F @y © AHE: 1)),

which only depends on (y,t). Clearly, this procedure does not affect the Lyapunov
exponents.
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From now on, we assume that both (A) and (B) are satisfied. Then, there exist
f:M—=M, f(z,t) = (o(z), fx(t)) and A:M — GL(d,K)

such that

(Pxidg)of=fo(Pxidg) and A= Ao (P xidg).
Consequently, the map

F: M x Grass(l,d) = M x Grass(l,d), F(p,V)=(f(p),A(p)V)

satisfies

(P x id X idgrass(iay) © F' = F o (P x idg X idarass(i.a)) -

The following well known basic fact will be used to characterize the F-invariant
probability measures:

Proposition 4.1. Let (N,B,n) be a Lebesgue probability space and g : N — N be
a measurable map that preserves . Let {n, : y € N} be the disintegration of n with
respect to the partition into pre-images P = {g~'(y) :y € N}. Let

G:NxL—NxL, Gz,v)=(g9(z),G:(v))

be a measurable skew-product over g and, given any probability measure m on N x L
that projects down to n), let {m, : x € N} be its disintegration with respect to the
partition into vertical fibers {x} x L, x € N. Then m is invariant under G if and

only if
my = /(Gz)*mZ dng(z) for n-almost every x € N.

As an immediate consequence, we get:

Corollary 4.2. In the conditions of Proposition 4.1, if g is invertible then m is
invariant under G if and only if my = (Gg-1(z))«Mg-1(z) for n-almost every x € N.

Proof. Each n, must coincide with the Dirac mass at g~ (y). O

4.2. Lifting of measures. The next proposition shows that every F-invariant
measure m that projects down to m may be recovered from the corresponding F-
invariant measure m, defined by (15). Recall that we write g, = (P x idg )(f~"(4))
for each ¢ € M and n > 0.

The following proposition is borrowed from [7, Section 3]. Adapting the proof

to the present setting is straightforward.

Proposition 4.3. Take m to be F-invariant. Then, for [i-almost every q € M,
the sequence (A™(gn )+ Mg, )n converges to Mg in the weak™ topology.

Moreover, for any k > 1 and any choice of points yn . such that f*¥(ynx) = qn
and {Yn.x : n > 0} is contained in some k-cylinder,

. . k
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5. PROPERTIES OF u-STATES

A probability measure 7 on M x Grass(l, d) is called a u-state of F if there exists
a disintegration {ri; : ¢ € M} along the partition {{q} x Grass(l,d) : ¢ € M } which
is invariant under unstable linear holonomy:
(16) mg = HY

v 1y for every p,q € M with g € W(p),
where M C M is some full measure set. Let m : M x Grass(l,d) — M be the
canonical projection.

Proposition 5.1. There is some F-invariant u-state 1 that projects down to fi
under .

This is analogous to [2, Proposition 4.2]. In very brief terms, the idea is to fix
some # € ¥ and to construct a homeomorphism between the space of measures in
{2} x W (&) x K that project down to p° and the space of all u-states. Using
that the former is weak™ compact, we get that the space of u-states measures is
also compact. Moreover, it is F.-invariant. That ensures that any accumulation
point of n~! Z;ZOI Fim is also a u-state.

In the remainder of this section, m denotes any F-invariant u-state that projects
down to i under 7, and {riz : G € M} is taken to be a disintegration as in (16).

5.1. Bounded distortion. Let 7 : M — 3 be the canonical projection m (i, t) =
Z and denote = 7y, 1. Equivalently,

§E) = [t (o) o) d 1)

for any measurable set F C . For each z € 3], define 7, to be the normalization
of

e [ ot tyanco)

Then {7, : © € X} is a continuous disintegration of # with respect to the partition
into local stable sets W (Z).

The measure © satisfies the properties of local product structure, boundedness
and continuity in [2, Section 1.2]. In what follows, we recall a few results about
this type of measures that we will use later. For each z* € X7 and k > 1 let the
backward average measure py; ... of the map o be defined by

w 1
Hig,av = Z W(Sz

ok (z)=xv
where Jo* : ¥t — R is the Jacobian of u* with respect to .
Lemma 5.2 (Lemma 2.6 in [2]). For any cylinder I = [0;t0, ..., tp—1] C X1 and
eI,
~k o~ _ I RAYES S
G 0z = Jo" (2") Dok (zuy | I7)

where {D,u @ 2% € XTY} is the disintegration of U with respect to the partition

{37 x {24} : 2% e X},
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Lemma 5.3 (Lemma 2.7 in [2]). For every cylinder [J] C ¥% and 2" € X1,

n—1

(1) 2 imsup + 3 g (1)
k 0

n—1

> lim inf — D) = —u*([7]),
k=0

where K is the bound given in (3).

As a direct consequence, for every cylinder [J] C ¥T and 2% € 3T,
(17) timsup e ([7]) 2 Z*(17])-

5.2. Estimating the Jacobians. For every =z € X let
F, : K x Grass(l,d) — K x Grass(l,d), Fy(t,V) = (f(t), A(z,t)V)
and for every &,y € S in the same unstable set let
H; 4 K x Grass(l,d) - K x Grass(l, d)
be defined by
Hs5(t, V) = (g 4(t), H oy gne_)V)-

&9

Observe that Fy o Hz 5 = Hj(z),6(5) © Fz- Now define {m; : & € f]} as

Ty = / Th.e dfic (£)

Observe that for any ¢ : K x Grass(l,d) — R,

/(pd 7U*m1

e (hg (), HE oy, he (t))V)dmw +(V)d g (t)

Il
\\\\\

¢(h )d (HE o ne (), Ma 1) (V)d pg(t)

&9

o (h V)diing e ) (V)d (1)

<p t V)ding(V)d (kY (15)(t)

7"}* x
o(t, V) diing, (V)d i (t),

because 1 is a u-state and {fi§ : # € 3} is h%invariant. It is also easy to see
that {1z : # € B} is a disintegration of /i with respect to the partition {& x K x
Grass(l,d) : & € B}.

The main point with the next corollary is that the conclusion is for every x € X.

Corollary 5.4. If {ih; : & € XA]} is a disintegration of an invariant u-state m then
m&n(i) = an*”ﬁli

for every n > 1, every x € &, and Uy-almost every & € W ().
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Proof. Since m is 2 -invariant, the equality is true for all n > 1 and r-almost all
2eor, equivalently, for ©,-almost every 2 € W (z) and v-almost every z € X.
Consider an arbitrary point @ € ¥. Since v is positive on open sets, £ may be
approximated by points z such that

o _m oA
m&n(g) —FZ Tz

for every n > 1 and fi.-almost every 2 € W}? _(z). Since the conditional probabilities
of m are invariant under unstable linear holonomies, it follows that

m&n(i) = (H&n(z)7&7l(z))*F:*m2 = Fg*(Hg)i)*mg = Fg*m;ﬁ

for fi.-almost every Z € W _(z), where & is the unique point in Wi _(z) N W (2).
Since the measures [i, and [i, are equivalent, this is the same as saying that the
last equality holds for fiz-almost every & € W (z), as claimed. (]

5.3. L'-continuity of conditional probabilities. Recall that
pw=(Pxidg), 1 and m = (P x idg x idGrass(l,d)) m

Let {my : € £} and {my, : (x,t) € M} be disintegrations of m with respect to the
partitions {{z} x K x Grass(l,d), z € £} and {{(z,t)} x Grass(l,d), (z,t) € Ex K},
respectively. Thus each m, is a probability measure on K x Grass(l,d) and each
My, is a probability measure on Grass(l, d).

It is easy to check that x — m, may be chosen to be continuous with respect to
the weak® topology (see Corollary 5.9). The corresponding statement for z — my
is false, in general. However, the main goal in this section is to show that the family
{my, : (x,t) € M} does have some continuity property:

Proposition 5.5. Let (x,), be a sequence in ¥ converging to some x € X. Then
there exists a sub-sequence (xn, )i such that

Mg, ¢ = Mgt 4S k — oo
in the weak* topology, for u¢-almost every t € K.

We will deduce this from a somewhat stronger L'-continuity result, whose precise
statement will be given in Proposition 5.8. The key ingredient in the proofs is a
result about maps on geodesically convex metric spaces that we are going to state
in Lemma 5.6 and which will also be useful at latter stages of our arguments.

A metric space N is geodesically convex if there exists 7 > 1 such that for every
u,v € N there exist a continuous path A : [0,1] = N with A(0) = u, A(1) = v and

(18) dist y (A(2), A(s)) < 7disty (u,v) for every s, ¢ € [0,1].

Geodesically convex metric spaces include convex subsets of a Banach space, path
connected compact metric spaces and complete connected Riemannian manifolds,
among other examples. The spaces of maps with values in a geodesically convex
metric space are analyzed in Appendix A.

Lemma 5.6. Let L be a geodesically convex metric space and take (K, By, ux) to
be a probability space such that K is a normal topological space, By is the Borel
o-algebra of K and uy is a reqular measure.

Let Hjy : L — L and hj : K — K, with j € N and t € K, be such that

(Hj,t(:z))j —x and (hj(t))j —t,
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uniformly int € K and x € L and, moreover, the Jacobian Jh;(t) of each h; with
respect to i is uniformly bounded. Then

lim / disty, ((¢), Hy 0t 0 hy(8)) dyugc (£) = 0
J
for every bounded measurable map v : K — L.

Proof. Take j € N to be sufficiently large that dr,(H, (x), ) < €/4 for every t and
x. Then,

/distL(d),Hj,toq/;ohj)d,uK S/(distL(U),wohj)
+diStL(’lﬁOhj,Hj7tO’lbOhj)) d/J,K
< /distL(w,wohj)duK + i

Let C > 1 be a uniform bound for Jh;(t). By Proposition A.1, given € > 0 there
exists a continuous map 1 : K — L such that

/diStL(’Jjudj) dpr <
Then, by change of variables,

/distL(J)ohjﬂ/)ohj)d,uK < O/distL(d;,d))duK < i.

€

4C°

Then
/distL(ZD, Yo hj)duk

< / (distr, (v, %) + distz (1,9 o hy) + distz (1 0 by, o hy)) dux

< [ distu (@5 0 hy) dpc + 5.

By the continuity of 0, increasing j if necessary,
dist, (4(t), 4 o hy(t)) < i for every ¢t € K.
The conclusion follows from these inequalities. O

Lemma 5.7. Let (z,), be a sequence in X converging to some x € ¥ and (jn)n be a
sequence of integer numbers such that z, = o~ (z,) converges to some z € ¥ and
(fg:)n converges uniformly to some g : K — K. Then g is absolutely continuous
with respect to p® with bounded Jacobian. Moreover, the Jacobians of fg: with
respect to u¢ are uniformly bounded.

Proof. By Lemma 3.5 we have that (fI).uS = p¢ . Taking n — oo we get
that g.pul = pS, which implies that J,cg = o(z,t)/0(2,t) is uniformly bounded.
Since, J,. fg: converges uniformly to J,.g, it follows that the sequence is uniformly
bounded. O

Proposition 5.8. Let ¢ : Grass(l,d) — R be a continuous function, (z,), be
a sequence in X converging to some x € ¥ and (jn)n be a sequence of integer
numbers such that z, = o~ (x,) converges and (fg;;)n converges uniformly to
some g: K — K. Then f@dmwn,fﬁif (1) converges to Jodmg g4y in L' ().
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Proof. Denote t,, = fI~(t). Fix z® € £~ and let

by = higs 2y womy © Snand Hy = Higo o pu(e)) (20,00 ,t0)-

Let M be the space of probability measures on Grass(l,d) with the distance

/¢d€—/¢dn’18up|¢|§1}-

This generates the weak™ topology, and so M is compact. By Remark 3.6 and
Lemma, 5.7, the Jacobians of g~ ' o h% with respect to ¢ are uniformly bounded.
Applying Lemma 5.6 with L = M, H;; = (H}ft)*, h; =g 'o h% and (t) =
Mys z.9(t), We get that

d(&,m) = Sup{

lim d (mms,m,g(t)v (Hz,t)* mms,z,h}{(t)) dﬂK(t) = 0.

n—oo

Observe that (Hﬁt)* Mys z hu(t) = M ,z,,t, and so the previous relation implies
that the sequence t — [ @ difigs 4, ¢, converges to t — [ @din,, . o) in L' (u).
Next, by the definition of the disintegration,

mz,t :/[)('rsv'rvt)mzs,z,t du5($5)

and so

J1 [ etwdme, o, = [ o)yl duc
S//|/(pp(xsaxnutn)dmms,mmtn

- / op(x®,x,g(t))digs o g)| du® dp®.

So, noting that the integrand goes to zero as n — oo, for every z° € ¥, the
dominated convergence theorem ensures that

lim /|/<p(v) dmg, . —/cp(v) dmg, gp)| dp® =0,

n—r00

as we wanted to prove. O

The case when j, = 0 for every n € N suffices for proving Proposition 5.5 (the
full statement will be needed in Section 7). Indeed, it gives that if (x,), — = and
¢ : Grass(l,d) — R is continuous then t — [ pdm,, ¢ converges to t — [ pdmg,
in L'(u). So, there exists a sub-sequence (n)x such that

/cpdm%k,t — /cpdmwg for u¢ — almost every t.

Moreover, since the space of continuous functions is separable, one can use a di-
agonal argument (see e.g. the proof of [23, Proposition 2.1.6]) to construct such a
sub-sequence independent of ¢. In other words,

Mg, t — Mg, in the weak*-topology, for u¢ — almost every t.
This proves Proposition 5.5.

Corollary 5.9. The disintegration {m, : x € £} is continuous.
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Proof. Let ¢ : K x Grass(l,d) — R be a continuous function. Given any (z,), — z,
we have that

|/<pdmxn —/(pdmm|

-y / / (b, 0) dimg, 4 (0)pln, ) dpi(2)
- / / (1, 0) dim o (0)p(, 1) dpi (1)
< [1 [ ett.vrptontydms, i(0) = [ olt,v)pta,t) dmi(0)] di0)

By Proposition 5.5, up to restricting to a subsequence, we may suppose that
(myg,, +)n converges to my; in the weak™ sense, for p-almost every ¢. Then

/go(t,v)p(xn,t) dmy, (v) — /cp(t,v)p(ac,t) dmg . (v)

for pc-almost every ¢t. To get the conclusion it suffices to use this observation in
the previous inequality, together with dominated convergence. 1

Corollary 5.10. We have my = [(F}).my dvi(y) for every x € S and k > 1,
where V¥ is defined as
1
k
v, = 0y
et T W)

Proof. The F-invariance of m gives that m, = [ (F;)*my dv¥ (y) for v-almost every
x, the continuity of the disintegration implies that this extends to every x € . [

6. DUAL GRAPHS OF GRASSMANNIAN SECTIONS

Fix1 <l < d. Let wy,...,w; be a basis of a given subspace W € Grass(l, d). The
exterior product wy A - -+ Aw; depends on the choice of the basis, but its projective
class does not. Thus we have a well defined map

(19) Grass(l,d) — PAYKY), W = [w; A--- Awyl,

which can be checked to be an embedding: it is called the Pliicker embedding of
Grass(l,d). The image is the projectivization of the space of l-vectors

AL(RY) = {wy Awg A Awy € ANKY) - w; € K for 1 < <1},

which we denote by PAL (K9). This is a closed subset of PA!(K9), and it is invariant
under the action induced on PA!(K?) by any linear map B : K% — K?. See [2,
Section 2] for more information about I-vectors.

The geometric hyperplane $HV C Grass(l, d) associated to each V' € Grass(d—I, d)
is the set HV of all subspaces W € Grass(l,d) which are not in general position
relative to V. In other words,

HV ={W € Grass(l,d) : WNV #£{0}}.

This may also be formulated using the Pliicker embedding (19): if v is any (d — )-
vector representing V', then HV consists of the subspaces W € Grass(l, d) repre-
sented by [-vectors w such v A w = 0.
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Let sec(K, Grass(l, d)) denote the space of measurable maps V from some full z°-
measure subset of K to the Grassmannian manifold of all I-dimensional subspaces
of K. Define the dual graph of each V € sec(K, Grass(d — [, d)) to be

graph YV = {(t,v) € K x Grass(l,d) : v € HV(¢)}.
Let 7 be any u-state on M x Grass(l, d), m be its projection to M x Grass(l, d)
l,d

and {m, : © € 3} be the Rokhlin disintegration of m along the fibers K x Grass(l, d)
(recall Section 5.3). The purpose of this section is to prove the following fact:

Proposition 6.1. We have mg(graph HV) = 0 every V € sec(K, Grass(d — [,d)),
u-state m and every x € 3.

The following terminology will be useful. For each & € 3, consider the following
push-forward maps sec(K, Grass(l, d)) — sec(K, Grass(l, d)):

(a) V = F;V given by
FiV(t) = Az, s)V(s) with s = (fz) " (£);
(b) V= H3 ,V given, for § € Wi (&), by
(c) V= HE ,V given, for § € Wi (&), by
These are well defined because the h®* and A" holonomy maps are absolutely con-

tinuous with respect to u°, as a consequence of (7).

6.1. Graphs have measure zero. Starting the proof of Proposition 6.1, recall
that each m,, is a probability measure on K x Grass(l,d), and

my :/mm,tg(xat) duc(t)7

where each m, , is a probability measure on {(z,t)} x Grass(l,d). Recall also that
T — my is continuous, by Corollary 5.9.
Let x € ¥ be fixed for the time being, and consider the functions

G: K x Grass(d —1,d) = R, G (t,V)=myz,(HV) and
g: K =R, g(t)=sup{m,(HZ):Z € Grass(d —1,d)}.

Lemma 6.2. G : K x Grass(d — [,d) — R and g(t) : K — R are measurable
functions.

Proof. Let P! < P? < ... be an increasing sequence of finite partitions of Grass(d—
[,d) such that P = V;enP? is the partition into points (that such a sequence exists
is clear, e.g., because the Grassmannian is compact). Write P* = {P},---, P! }
and then define

Gy K x Grass(d —1,d) » R, Gu(t,V) = mu (9P )xpr (V)

j=1

where xp : Grass(d — [, d) — R denotes the characteristic function of a measurable
set B C Grass(d—[, d). By the Rokhlin disintegration theorem, each t +— m (HP}")
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is a measurable function. It follows that G,, is measurable for every n. Moreover,
(Gn)n converges to G at every point. Thus, G is measurable. Analogously,

gn K =R, gu(t,V) = max{m,(HP}") :j=1,...,n}

is measurable for every n, and (gy,), converges pointwise to g. Thus the map ¢ is
measurable. (]

For each fixed ¢t € K, the function V — G(¢,V) is upper semicontinuous: if
(Vi)n converges to V' then $V,, is contained in a small neighborhood of HV, for
every large n, and then m, (($HV;,) can not be much larger than m, (HV'). Since
Grass(d — [, d) is compact, it follows that the set

I'(t) ={V € Grass(d —1,d) : G(t,V) = g(t)}

is compact and non-empty (the supremum in the definition of ¢ is attained) for
every t € K.

Theorem 6.3 (Theorem I11.30 in [9]). Let (X, B, 1) be a complete probability space
and'Y be a separable complete metric space. Denote by B(Y') the Borel o—algebra
of Y. Let k(Y) be the space of compact subsets of Y, with the Hausdorff topology.
The following are equivalent:

(1) a map v — K, from X to k(Y') is measurable;
(2) its graph {(z,y) € X XY 1y € K;} is in B B(Y);
B) {zxe X:K,NU#0} €B for any open set U C Y.

Moreover, any of these conditions implies that there exists a measurable map o :
X =Y such that o(x) € K, for every x € X.

Lemma 6.4. A given V € sec(K, Grass(d — [, d)) realizes the supremum of
{ma(graph HV) : V € sec(K, Grass(d — 1,d)) }

if and only if V(t) € T'(t) for uc-almost every t € K. Moreover, there exists some
Ve € sec(K, Grass(d — 1, d)) that does realize this supremum.

Proof. By Lemma 6.2, the set
{@&V):Vel)} ={EV):GtV) =qg(t)}

is a measurable subset of K x Grass(d — [,d). Compare the second condition in
Theorem 6.3. Thus, from the last claim in the theorem, there exists some measur-
able map V, : K — Grass(d — [, d) such that V,(t) € B, for every t € K. In other
words,

M (HVe(t) = G(t,Vu(t)) = g(t) = s%p My t(HZ)
for every t € K. Given any V € sec(K, Grass(d — [, d)) we have

ma(graph HV) = / M (V) o, ) dp (1)

(20) < [ supma.(92)ota,t) du(t)

= [ mes( V2ol t)du () = ma(eraph V).

Thus, V, does realize the supremum. Moreover, (20) is an equality if and only if
G(z,V(t)) = g(t) for u-almost every ¢t € K. O
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So far, we kept x € X fixed. The next proposition shows that the supremum in
Lemma 6.4 is actually independent of x. Denote

v = sup{mg(graph HV) : V € sec(K, Grass(d — I, d)), z € }.
Proposition 6.5. sup{m,(graph$V) : V € sec(K, Grass(d —[,d))} = v for every
r € X.

Proof. Given any cylinder [J] C X, choose a positive constant ¢ < u([.J])/k, where
k > 0 is the constant in (17). Consider any Z € ¥ and V € sec(K, Grass(d — [, d)).
For each k > 1 and y € 0~ *(Z), define V¥ € sec(K, Grass(d — 1, d)) by
kyk _ 1) o Ak ki _ o ek
FyV, =V, that is, A%(t,y)V, (t) = V(f, (1)) for each t € K.
By Corollary 5.10, m;(graph HV) = J my(graph HVF) dpy; z(y) and so
mz(graph H)) < iz ([J]) sup{m (graph HV) : V € sec(K, Grass(d — I,d)),z € [J]}
+ (1= gz (D)
By (17), there exist arbitrary large values of k such that i ;([J]) > ¢. Thus

maz(graph HV) < esup{m, (graph HV) : V € sec(K, Grass(d — I, d)),z € [J]}}
+ (1 —¢)y.

Varying & € ¥ and V € sec(K, Grass(d — 1,d)), we can make the left-hand side
arbitrarily close to . It follows that

sup{my(graph V) : V € sec(K, Grass(d — I, d)), x € [J]} > ~.
The converse inequality is obvious. Thus, we have shown that the supremum over
any cylinder [J] coincides with 7.
So, given any x € 3 we may find a sequence (2, ), — x such that the sequence
(my, (graph HV,. ), converges to 7, where (cf. Lemma 6.4) each V,, realizes the
supremum at x,. Moreover, by Proposition 5.5, up to restricting to a subsequence

we may assume that (my,, ¢)n — My ¢ for every ¢ in some full p°-measure set X C K.
Then

v = limm,, (graph HV, )

(21) = h,{“/mxn,t(ﬁvxn(t))g(:rn,t) dpc(t)

n

< /lim sup my,, +(HVy, (t))0(@n, t) dus(t).

For each fixed t € X, consider a sub-sequence (z,, )r along which the limsup is
realized. It is no restriction to suppose that (Vznk (t))n converges to some V €
Grass(d — [, d) as k — co. For any € > 0, let V; be the closed e-neighborhood of V.
The fact that V,, (t) C Ve for every large k implies that

limsupmy, ¢(HVs, (¢) < lmsupmg, (HVe) < ma(HVe)
k k

(because V. is closed). Thus, making ¢ — 0 on the right-hand side,
limksup M, (Ve (1) < Mg (AV) < my 1 (HVa(t)).

Replacing this in (21), we find that y < [‘mg (HV,(t))o(z, ) duc(t) as claimed. O
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Having proved Proposition 6.5, the proofs of the following two lemmas are anal-
ogous to those of Lemmas 5.2 and 5.3 in [7], and so we omit them.

Lemma 6.6. Given any v € ¥ and V € sec(K, Grass(d — [,d)), we have that
mg(graph HV) = v if and only if my(graphf)}'ﬁ_l(V)) = for every y € o~ (x).

As introduced in Section 3.2, let {7 : @ € ¥} be the disintegration of & = (7).t
with respect to the partition into stable sets {¥~ x {z} : # € ¥}. Observe that
every U, is equivalent to p°.

Lemma 6.7. For any x € ¥ and any V € sec(K, Grass(d — [, d)) we have that
mz(graph HW) <~ for vy almost every & € Wi (z).

Hence, m, (graph HW) = v if and only if mz(graph HW) = v for D, -almost every
i€ W (o).

6.2. Sections over a periodic point. Let p be a fixed (or periodic) point of &
and Z be a homoclinic point associated to p. More precisely, we fix Z and ¢ > 1
such that 2 € W (p) and 6°(2) € W .(p). Denote p = P(p) and z = P(2).

By the pinching hypothesis in Section 2.6, the Oseledets decomposition of F'
restricted to K has the form E'(t) @ --- @ E%(t), at uc-almost every t € K, with
dim E'(t) = 1 for every i. Fix a measurable family e!(t),...,e?(t) of bases of K¢
with e?(t) € E'(t) for every i. The matrices of the iterates A7(p,t) relative to these
bases are diagonal:

atd(t) 0 0
: 2,j
A (pt) = 0 a® (t) 0
0 0 Coa®I(t)

We are going to use the associated linear bases of A(¢~D(K%) and A'(K?), defined
at p®-almost every t € K by

(22) {el(t)=e" (t) A--- Aelai(t), for T = {i; < --- <ig_i}}
and

(23) {e(t) = e (t)A--- Nedi(t), for J={j1 <--- <7ji}}
respectively.

By Lemma 6.4 and Proposition 6.5, we may choose V° € sec(K, Grass(d — [, d))
such that m,, (graph.ﬁ VO) = 7. Define V7 = };jvo for j > 1. By Proposition 6.6,
we also have m,, (graph$V7) = v for every j > 1. Let VO : K — Ald=D(K9)
be a representative of VO € sec(K, Grass(d — [,d)), in the sense that VO(t) is the
projective class of VO(t) for each t. Then denote V7 = F, 7V for each j > 1.

Expressing V in terms of the linear bases (22) of A(4=0(K%),
Vit = Y ur(t)el (),
we find that

ali(t)

I=iy,...;iq—1
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with alJ(t) = @™ (t) - - - a’a-1J (t). Note that lim;(1/;)log|a®7| = A;, and so
1 .
(24) lim —log a7 = Ai, + -+ + Ay,
J ]

Order the multi-indices
I:{il < .- <Z.d7l}

in such a way that the sums \;; +---+ A
condition these sums are all distinct).

iq_, are in increasing order (by the pinching
Let I be the first multi-index, in this ordering, for which v; is not essentially

zero. In what follows we assume that f, is ergodic for p¢. Then I is the same for
every t € K in a full yu®-measure set. The non-ergodic case can be reduced to this
one by ergodic decomposition.

Lemma 6.8. The section t — Ef(t) satisfies my, (graphﬁ Ef) =.

Proof. By the Birkhoff ergodic theorem,
1 n—1 )
i & 3 oy (F0) 1= [ Torld,
j=0

for pig-almost every ¢ € K. So, there exist some ¢ > 0 such that
1 n—1
lim ZO i (f1(8))]>35>0
J:

for every t in some full pp-measure set. For any ¢ in that set we may consider a
sub-sequence (ji) such that [v7(f7*)| > § > 0. Then
1 _
lim ———— V7 (t) = el (¢),
B V@)
and so

lim VIk(t) = B (t) + B2 (t) + - -- + B (t) = EL ()

for yi°-almost every t. We also have that m, ¢ (V7 (t)) = supy myp, (V), and then

Lemma 6.4 implies that my, .(E!(t)) = supy my; (V) for pc-almost every ¢, as we
claimed. il

This means that, from the start, we may take V9(t) to coincide with one of the

invariant sections Etl~ given by the Oseledets decomposition, for pg-almost every
t € K. Define V' = F_*V°. We have that m, (graph V') = v and, by Lemma 6.7,
M(zu 2y (graphH V') = v for p®-almost all (2%,2) € Wi (2). For each (2°,p) €
Wite(D), define Vg ) = M. ) 4oy (V'), where (2°,2) is the unique point in
Wig.((*,p)) N Wi (2). Since v is a u-state, and h¥ ; pg = pg, this implies that
(25) M(gsp)(Vwspy) =7 for p-almost every (z*,p) € Wi .(p).

Denote V(j.ms’p) = ‘F(iz;7p)V&j((zsyp)) for each (2%,p) = p and j > 1. In particular,

Vg = ]-'Z;JVﬁ. We are going to prove that for a large set of js the Vg have no
intersection.
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Proposition 6.9. There exists N > 1 such that for every M € N and 6 > 0 there
exist my < mg < -+ < mpy and K C K, with p(K) >1—3§ and V™ (t)N---N
VN () = 0 for any choice of my, < my, < -+ <my, andt € K.

Proof. Let V : K — A4=D(K%) be such that V(t) is an unitary d — [ vector that
represents V() in A0 (K?). We can write it as

V(t)=> wr(t)e (t).
I

Then

FAVE) =A 60 V(D)= %ei
I

Let N = dim AY(K?%). Given any m; < mg < --- < my and t € K such that
Vmi(t) NN VTN (t) # 0, there is some non-zero W (t) € AY(K?) such that
(26) W(t) NF; ™ V(t) = 0.

Write
W(t) = wa(t)e;] where J = {1,2,...,1}\ I.
I

Then (26) can be written as

3o (S (1))

alme (t) wr (t)wf =0,

I
for every 1 < k < N, where w; = +1 is the sign of el' A - - -/\eid’l Aelt A --/\e{d’l.
This may be written as

(27) B(t)x =0
where
or, (71 (1)) vry (S (1)
a11,7n1 (t) e a,IN*ml (t)
(28) B(t) = : : :
vr (f™N () viy (F™N(#)
alvmN(t) alN™N (t)
and @ = (@, wr,, ..., TiywWiy )

So, in order to prove that the intersection is necessarily empty, it suffices to show
that (27) has no non-zero solutions, in other words, that det B(t) # 0. We are
going to use the following fact:

Lemma 6.10. Let b} : K = K, for 1 <i<d and n € N, be measurable functions
and suppose there exist x1 < x2 < --- < Xq Such that

1
(29) lim — log |} (t)| = xi for p°-almost every t.
non

Thgn for every M € N and § > 0 there exist ny < ng < --- <np; and K c K with
w(K) > 1—20, such that for any choice of a set {ki,- - kq} C {1,..., M} with
k1 < -+ < kg, the matriz

B(t) € Kdde Bi,j (t) = b?kj (t)7
has non-zero determinant for every t € K

For the proof we need the following simple algebraic fact:
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Lemma 6.11. Let C = (c!)1<ij<a be a square matriz with c¢; # 0 for every
i=1,...,d. Then

d
detC =[] cf -detE

=1

where E = (el )a<; j<a is defined by
(30) e =

Proof. The assumption ensures that we may write

1 1 1
i < cq
T L oL
C C c
1 1 1 2 d
detC=cy...cq | . )
Y 4
ool o

Subtracting the first column from each one of the others, we end up with

Q... &
detC=ci...cy| = - |,
d el
as claimed. [l

Proof of Lemma 6.10. Let us write b}’" =0 fori =1,...,d and n > 1. The
hypothesis (29) implies that there exist ny > 1 and K7 C K with u(K7) > 1-§/M
such that

(31) bi"(t) #0forn>ny, te Kyandi=1,...,d.
Let ny be fixed and define (compare (30))
AR ORI 0!
OO0
From (29), and the observation that y; > x1, we get that

(32) b2 (1)

fori=2,...,dand n > n;.

1 1
(33) lim — log [b"™ ()| = lim — log |b, ™ ()| = xi.
n n n n
In particular, there exists no > ny and Ko C K7 with u(Ks) > 1 —26/M such that
(34) b2 () # 0 and bl (t) # O for n > ng, t € Ky and i =2,...,d

(the second condition follows immediately from (31) and the fact that ny > nq, but
we mention it explicitly, for consistency with what follows).

Next, proceed by induction on | < M: Suppose that we have defined an increas-
ing sequence of numbers ny < --- < ny, a decreasing sequence of sets K; O --- D K3
with p(K;) > 1 —16/M, and for every 1 < j < max{l,d} a family of measurable
functions bj’nk]”m’nkl K — K\ {0} with 1 < k1 < -+ < k; <[ satisfying the
following relation:

J=1lng. ng. o,...,nk J=lng. g5, s
(35) bj’nkj""’nkl (t) - bi J j—2 1( ) B bjfl 2 1(t)
' o =1 s j—1, yeens ’
Z o e (O B e ()
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fori=y7,...,dand t € K.
Suppose | < M. Fix, 1 < j <max{l+ 1,d} and 1 < k; < --- < k; <, define

. j+1n,n s . .
the functions bz kT K; — K inductively by
T M o yeees TN M o yeees n
(36) bj—i—l,n,nkj,...,nkl (t) - bz My 1Mk o Ty (t) bj kj_1:Mk; o k1 (t)
i = .

b.zfnkj;nwnkl (t) bj;nkj7~~~;nk1 (t)
fori=j+1,...,d,t € K; and n > n;. Then, arguing as in (33) and using induction

on j,

(37) lim * log []

Hence we can find nj41 > n; and K1 C K; with
W(Kis1) > 1= 1+ 1)6/M

such that, for every 1 < j <max{l+1,d}and 1 <k <--- <k; <I,

JHLmp 1,5y

b; (t)#£A0fori=j+1,...,dand t € K;;1.

Now fix {k1, -+ ,kq} C {1,..., M} with k1 < -+ < kg, and define for t € Ky,

the matrix
ng

B(t) e K™ B, ;(t)=b, " (t).
Then, in view of the recursive relations (35)—(36), we may apply Lemma 6.11 d-
times to C' = B(t) to conclude that
d

d d
det B(t) = [T or ™ (&) T 02" =™ () --- T ™™ (8).
i=1 1=2

i=d
This completes our argument.

The twisting condition (Section 2.6), implies that
1
lim —log v (f™(t))| = O for p-almost every t € K
non

and I = {i1 < -+ <ig_;}. Then, by (24),

lirrln % log % =—(\iy + -+ Ni,_,) for palmost every t € K.
The pinching condition ensures that these sums are all distinct. Then we may apply
Lemma 6.10 to the functions
vr, (f"(1))
alor(t)
We get that there exist m; < --- < my and K € K with u(K) > 1 — 6 such that

for every {ki, -+ ,ka} C {1,..., M} with k1 < - < kg, the matrix B(¢) defined in
(28) is invertible for every t € K. O

br(t) =

Proof of Proposition 6.1. Assume for the sake of contradiction that v > 0. Then let
20 < v and take C' > 0 large enough that C'(y — 20) > 1. Consider the sequence of
integers I = {ny,na,...,ncn} given by Proposition 6.9. Then there exists KCK
with p¢(K) > 1 — § such that

(38) AV (t) NN PN (t) — 0
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for every t € K and every {k; < - -- <kn}C{l,...,CN}.
First, suppose that Thﬁ(graphjﬁvg) = . The property (38) means that the sets
Vi (t) are N-wise disjoint for every t € K. Then,

i (| graph ) = i (| graph 9] | K )

jel jel

> %;mﬁ(graphﬁvg | K) >C(y—96) > 1.

This is a contradiction because the measure 71, is a probability.

Now we treat the general case. By (25), 1 (ye p) (graph.ﬁvgsﬁp)) = ~ for ev-
ery j and p®-almost every (z°,p) € W (p). In particular, we may a sequence
((xz, p))k — p with that property. Moreover, let By(t) be the matrix defined by
a system of equations as in (28), with coefficients depending on V&;,p) instead of

V5. Keep in mind that, by definition,

Vi) = ?xivz)v(miﬁp)(vl)'

The sequence %?IZ,Z),(EZ,;D) converges uniformly to Hf ; when k — co. Let V5 =

HY 5(V'). By Lemma 5.6 (together with the observation that L' convergence implies
convergence almost everywhere over some subsequence), up to restricting to some
subsequence of values of k£ we have

liin V("i )(t) =V, (t) for p-almost every t € K.

zy,p

This proves that By converges almost everywhere to B.

Recall that det B(t) # 0 for every t € K, by Lemma 6.10. Then, there exist
L ¢ K with pu(L) > 1 —26 and ko > 1 such that det By(t) # 0 for every t € L
and k > ko. Then, applying the previous argument with (x®,p) and By instead of
p and B, we get that

m(m;,p)( U graphﬁvgmi)po > % Z m(miyp)(graphﬁvgmi)p) | L)
jer I
>C(y—20)>1

for every k > ko. Thus, again we get a contradiction (because M (z3 p) 1S & proba-
bility). O

7. CONVERGENCE TO DIRAC MEASURES

The goal of this section is to prove the following theorem:

Theorem 7.1. There exists a measurable map & : M — Grass(l,d) such that, given
any u-state 1 on M x Grass(l,d), we have

Mgt = O¢g(ze) Jor fi-almost every (I,t) € M.

In particular, there exists a unique u-state.
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7.1. Quasi-projective maps. We begin by recalling the notion of quasi-projective
map, which was introduced by Furstenberg [12] and extended by Gol’dsheid, Mar-
gulis [14]. See also [2, Section 2.3] for a related discussion.

Let v + [v] be the canonical projection from K¢ minus the origin to the projective
space PK?. We call Py PK? — PK? a projective map if there is some P € GL(d,K)
that induces Py through Py([v]) = [P(v)]. The space of projective maps has
a natural compactification, the space of quasi-projective maps, defined as follows.
The quasi-projective map ) induced in PK¢ by a non-zero, possibly non-invertible,
linear map Q : K¢ — K? is given by

Qx([v]) = [QW)].
Observe that Q4 is well defined and continuous on the complement of the kernel
ker Qu = {[v] : v € ker Q}.

More generally, one calls Py : Grass(l,d) — Grass(l,d) a projective map if there
is P € GL(d,K) that induces Py through Pgx(§) = P(§). Furthermore, the quasi-
projective map QQx induced in Grass(l,d) by a non-zero, possibly non-invertible,
linear map Q : K — K% is given by

Q& = Q(8).

Observe that Q4 is well defined and continuous on the complement of the kernel
ker Qu = {& € Grass(l,d) : E Nker @ # {0}}.

The space of quasi-projective maps inherits a topology from the space of non-
zero linear maps, through the natural projection @ — Q4. Clearly, every quasi-
projective map @y is induced by some linear map @ such that [|Q] = 1. Tt
follows that the space of quasi-projective maps on any Grass(l, d) is compact for
this topology.

The following two lemmas are borrowed from Section 2.3 of [2]:

Lemma 7.2. The kernel ker Q4 of any quasi-projective map is contained in some
hyperplane of Grass(l,d).

Lemma 7.3. If (P,)., is a sequence of projective maps converging to some quasi-
projective map @Q of Grass(l,d), and (vn)n is a sequence of probability measures in
Grass(l,d) converging weakly to some probability v with v(ker Q) = 0, then (Pp)«vp
converges weakly to Q.v.

7.2. Convergence. Recall that, given 1 <[ <d—1land1<i <--- <74 <d, we
write

Eofi(t) = B (8) A= AE" (1) € A'(KY)

for every t € K such that the Oseledets subspaces E! are defined. By a slight abuse
of language, we also denote by E""~+"(¢) the associated vector subspace, that is,

E"(t)@--- @ E"(t) € Grass(l, d).

In this way, each E% % becomes an element of sec(K, Grass(l,d)).
Let p € X be the fixed point of 6 and 2 € ¥ be a homoclinic point of p with 2 &
Wit (p). Fix 2 € N such that 6*(2) € WS (p). For each k > 0, denote 2, = 6 *(2)

and zr, = P(Z;). Observe that f;, = f., and, similarly, A(p,t) = A(p,t). We take
advantage of this fact to simplify the notations a bit in the arguments that follow.
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Proposition 7.4. Let n = Hj . JELol € sec(K, Grass(l,d)). For every sequence
(kj); — oo there exists a sub-sequence (kf); such that
lim AR (21, ta) sy 0y, = Oy, where = (f5) 1),

for pc-almost every t € K.
Proof. We have that k =hp ;o f’C oh¥% . and

Zk> P
k hY u
A (2, 1) = Higne 0.0 A 002 5 O0)) Hzy ), (ohy L (00)-
So (A

Zk:;tk) Mz, 1, 15 equal to

u k u
(i o ey A0 12, 5(00)) (G, o oune,(00) st
Note that H(Z,c N

Zp converges to p.
Let Ky C K be a full puf-measure such that the conclusion of the Oseledets
theorem holds at (p,t) for every t € Ky. We claim that for any ¢ € Ky and every

sub-sequence of
AR (p, h%, 5(tr))

that converges, the limit is a qua51-prOJectlve transformation ()4 that maps every
point outside ker Q to E!(h¥, »(tr)) € Grass(l,d). This can be seen as follows.

Given w € AY(K?9) and k > 1, we may write

w= P wp B () ha (1))
1<ip << <d

with coefficients w},...,w) € K. It follows from the sub-exponential decay of

angles of the Oseledets splitting that |wj| grows sub-exponentially in k for every
i=1,...,N. Recall that (f})~*(h(t)) = hx(tx). Then, the action of A*(p, hy(t))
in the projectivization of the exterior power is given by

HAk P, (f5)~ ( ()))IEm )=1(h( t>H
20, )] o

The quotient of the norms converges to zero for any j > 1. Thus, we have that
either A*(p, hy(tx))w — E,Ill(t) or A¥(p, hy(tx))w — 0. The latter case means that
w is in the kernel of the limit. Thus, any limit quasi-projective transformation does
map the complement of the kernel to E,?(t), as claimed.

As an immediate consequence we get that for any ¢ € Ky and every sub-sequence
of

S(t0)) converges uniformly to the identity map id, because

A¥ (p, () )w = @wk

7j=1

HE ey, e A 05 P (1))
that converges, the limit is a quasi-projective transformation that maps every point
outside the kernel to Hgﬁ,h(t)),(i,t)E}ILl(t)'
By Remark 2.1, the family {fI! : n,k > 1} is equicontinuous. Using Arzela-
Ascoli, it follows that we can find a sub-sequence of (k;); along which the family
(f% )=t converges to some g : K — K. Then, by Proposition 5.5, there exists a

k

further subsequence (k}); and a full y“-measure set K1 C K such that
Mzt = Mp g(t)

for every t € K;.
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By Proposition 6.1 and Lemma 5.7, there exists a full p°-measure set Ko C K
such that my, ) gives zero weight to every hyperplane of Grass(l,d) for every
t € Ko. Then, by Lemma 7.3 and the previous observations,

klim AR (2, th) sy 1, = )

along any sub-sequence such that A¥(zy, ;) converges. This yields the claim of the
proposition. (I

Remark 7.5. The argument remains valid when one replaces the homoclinic point
2 by any other point in W*(p).

It follows from Proposition 4.3 that there is a full p® x p*-measure subset of
points & € X such that

(39) nh*{goA (.In, n)*mmn,t’” - mi,t

for pc-almost every t € K, x,, = P(67"™(2)) and £ = (f2 )~*(t). Since the shift is
ergodic with respect to the projection of ji on 3, one may also require that

lim 67" (&) = 2.
J—o0
for some sub-sequence (n;); — oo.
Fix any = € $ such that both conditions hold. Let k > 1 be fixed, for the time
being. Then (39) implies that

hm A" (Injv nj) mmn.,tﬁj

(40) = lim A"+ (I"J +kvtn +k) Ttk 2

Jj—o0 itk

7 k
JE}I&A (Injv fz ) A (‘ranrkvtszrk)* T ko tE

Note also that, by definition,

+k

A k N
tfzj = fmn]. +k (tij +k)'

We use once more the fact that { f; :m € Zand & € 2} is equicontinuous
(Remark 3.2). Using Ascoli-Arzela, it follows that the exists a sequence (n;); — 0o
such that (f;j] );1 converges to some g : K — K. Up to further restricting to a
sub-sequence if necessary, Proposition 5.8 ensures that

converges to m : for p-almost every t,

mznj+k’tij+k 2k g(t)

where z, = P(67"(2)) and g(t); = (fF) 7 (g(t)).
Fix any ¢ € K such that the previous claims are fulfilled. Let (n}); be any sub-

sequence of (n;); such that A"l( ity ) converges to some quasi-projective map
Q : Grass(l,d) — Grass(l,d). Then (40) may be written as

Q.+ AF (Zk; ()I;) Mgt

If n(g(t)) ¢ ker @ then, making k — oo, we may use Lemma 7.3 and Proposition 7.4
to conclude that 1, = é¢g n(g(t))- This gives the conclusion of Theorem 7.1 under
this assumption.
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2 S

p ynj+k+l+m z ynj +k+1
—o 00— 060 o
PR +k L]

FIGURE 1. Proof of Theorem 7.1: avoiding the kernel of @

Let us show that we can always reduce the proof to this case. Recall that + € Z

was chosen so that 6*(2) € W _(p). Define g,% € ¥ by
" (g) € Wit (6"(2)) N Wise(@n, k) and 6° () € Wise(6°(2)) N Wine(2k)-
Note that § depends on k and j and w that depends on k. We denote y = P(9)
and w = P(w). Moreover, y, = P(6-"(9)) and w,, = P(6~"(w)) for each n > 0
Let m € N be fixed, for the time being. We have that z; = y; with 0 <¢ < n; + k.
So,
a,z-i—m(P(a.—nj—k—z—m(g))) = Yn;+k = Tnj+k-

Also 67" % (y) = 6*(), and so 6~ ~F7"™(y) — "™ () when j — co. There-
fore, by Propositions 4.3

A 1 n;+k x
Mz = lim A™ (:an+k,tnﬁk)*mmnﬁk,tflﬁk

j—o0
= lim Amj( Lty ) m g
j—o0 me; Mg/ * y7nj7t'1,Jnj

where m; = n; + k + 1+ m. The last expression may be rewritten as

A" (:Enj ) tf;,j)*Ak+Z (ynj-i-k-i-zu tgnj+k+1)*Am (ymj ) t;gn])*m ]

P
Ym; 7tm]~

Making j — oo,

, —1 ~1
(Frtii) = (F57) o9

AkJrl (y"j"'k'f‘“ tzy;nj+k+1) - AkJrl (w’ (ﬂfm) _1g(t))

A Yy ) = A (w, (F5) (1))

and, restricting to a sub-sequence if necessary,

k+14+m

ot
Ymjtm; W

o C_
g — mwm( )719(1&) for pc-almost every t.

e — u Il y 7 — u
Lemma 7.6. Denote 7(s) _~H(ﬁ,i~t(s)),(w,s)El~z(s) with h(s) = hi 5(s). Then there

exists a full p®-measure set K C K and a sub-sequence (kj); such that for every
t € K there exists a sub-sequence (n; = nj(t)); of (n;);(t) such that

n T k+ g
A (.’L’n; s tn;) oA (yn;-‘rkj “+1 tyn2+k], +7l)
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converges to some quasi-projective transformation Q. Moreover, i((fu ¥ i Lg(t))

is not in ker Q if j is sufficiently large, depending on t.

Proof. As before denote h = h% ; and hy = h% ;. We begin by constructing

the sub-sequence (k;);. Note that (fE+)~! = (fi) (fzkk)f1 and @ — 2 when

k — oo. First, take a sub-sequence of values of k£ such that ( fk)_l converges

uniformly to some ¢. Since hj converges to the identity map, (f Y h = hi(fF )t
also converges uniformly to ¢. Note that ¢ is absolutely continuous with respect
to u®, by Lemma 5.7. Recall that

~ k+o\—1 _ u {1
n((fw ) g(t)) - H(ﬁ,h((ﬂfﬁl)*l)),(ﬁ),(j'ff,*l)*l)Eh((fff,*l)*l)

with B(s) = h%yﬁ(s). Up to restricting the sub-sequence of values of &k, we may use
Lemma 5.6 to get that

ﬁ((f£+l)719(t)) —=n((f2) (bg( )) and
E((fy) " hg(t)) = E(gg(1)))

for every ¢ in some full p°-measure set K;. This defines the sub-sequence (k;); in
the statement. In what follows, all the statements on k are meant restricted to this
sub-sequence.

The twisting condition implies that

(42) HEGFLED 0 (B 4+ + B]) = {0}

(41)

for any jit1,...,74 € {1,...,d} and a full p“measure set of values of t € K. In
other words, A*(n(h(t)) does not belong to any of the hyperplanes of Grass(l,d)
determined by the Oseledets decomposition at the point (p,t). Since ¢ and g are
absolutely continuous, there exists a full p°-measure set Ko of values of ¢ such that
(42) holds with ¢ replaced by ¢(g(t)).

Take K = K; N K. Fix any ¢t € K such that in addition (p,hg(t)) satisfies
the conclusion of the Oseledets theorem. Consider any sub-sequence (n}); of (n;);
such that A™ (xn; , tfl/_) converges to some quasi-projective transformation ) when
1 — 00. Then '

An; (‘T”Q’tfl’v) o AT (y" (ks U Y ’+k+1)

converges to Q =Qo Ak"'z( (fk'H) g(t) ) when ¢ — oo. Moreover,
1

ker Q = AR (w, ( ff”) t)) ker @
= A (w, (fE) " Tg) T AR (e, (75) o) ker Q.
Next, observe that
(43) AR (2, (F5) () = 0k A (p, hg(t)) ©
where h = hg ; and
O = H(z gw).phgy) 304 Ok = Hg (111 ng(t)). 20, (£ )~ (9(0))°

By Lemma 7.2, the kernel of @ is contained in some hyperplane $v of Grass(l, d).
Hence, O(ker Q) is contained in the hyperplane O($v), of course. Since we take
t € K to be such that the Oseledets theorem holds at (p,t), the backward iterates
A7F(p, hg(t))O($Hv) are exponentially asymptotic to some hyperplane section $HE
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that is defined by a (d — l)-dimensional sum E of Oseledets subspaces. This re-
mains true for Oy A™F(p, hg(t))O(Hv) because Oy converges exponentially fast to
the identity map, since Z; converges to p exponentially fast. In other words, using
(43),
. ~1 ~1 _
dlStGrass(l,d) (Ak (Zka ( zkk) g(t)) f)’U,f)E((f;j) 1hg(t))) -0

exponentially fast as k — oo. Then, by (41), we have that A* (zy, (fzkk)flg(t))fljﬁv
converges to E(¢g(t)). So,

kerQ C A (=, (1) g(t)) " HE(¢g(1)).

Keep in mind that 2 € W (p) and ¢ € N is such that 6"(2) € W2 _(p). Recall
also (from Section 4.1) that in the present setting all the local stable holonomies
h® and H*® are trivial. Define

Vi) = Hi ), 6.0 Hipa) ) B (22)

= HE ) oA (0(2),8)HY, o (60(2).6)A (B, 12) E' (t2)

= H&,tl),(ﬁ7t)A_l(o-l(2)7 S)El(s)
with ¢ = hY.(t), t2 = h;(t1) and s = fi(t2) = fi(t1). Then, by the twisting
condition, eV’ cannot intersect any sum of the form @;c; B with #1+#J = d.
In particular, the distance between

HE o oA (6°(2),5)E(s) and  E"(s)

is positive. Equivalently, the distance between

A7(6%(2),s)E(s) and n(t,) = H" )Eh(s)

(P:1),(2:t1

is positive. Then n((f;)_lqbg(t)) does not intersect
A6 (2), (29 B (e9() = A' (= (1) og(1)) " E(eg(1)),
which implies that n((f) ™ ¢g(t)) ¢ ker Q. m

Having established Lemma 7.6, we can now use the same argument as previously,
to conclude that Mz, = (5Q~77 at p-almost every point also in this case. To do this,
observe that for every m and k fixed there exist a sub-sequence (m/); of (m;); such
that

(44) m —m )71 o for p°-almost every t.
g

g
Yot W (FEEH™

Wm

Using a diagonal argument, we may choose (m}); to be independent of k and m. Fix,
once and for all, a full p°-measure subset K’ such that (44) and the conclusions of
Lemma 7.6 and Proposition 7.4 (more precisely, Remark 7.5) hold for every t € K.

For each fixed ¢t € K’, fixing k sufficiently large and making m/ go to infinity
(along the sub-sequence given by Lemma 7.6), we find that

mi,t = Q* (Am(wmu (ff;;:z)_lg(t))*mwmy(ﬂf}ﬁ)flg(t)
Then, making m — oo and using Lemma 7.3 and Proposition 7.4,
Mat = O¢(it)s

where £(&,t) = Qi((fi+t)"1g(t).
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Thus we proved that Mz, is a Dirac measure for P-almost every & € S and f15-
almost every t € K. Note also that the set M C M of points (Z,t) € M such that
1(z,+) is a Dirac measure is measurable, since the map (Z,t) +— 1z 4) is measurable
and the set of Dirac measures is closed in the weak* topology is closed, then M
is measurable. Thus we have shown that M has total fi-measure, which completes
the proof of Theorem 7.1.

8. ORTHOGONAL COMPLEMENT

8.1. Eccentricity. Let L : K¢ — K be a linear isomorphism and 1 <[ < d. The
l[-dimensional eccentricity of L is defined by

m(L [ )

E(Z,L) = sup {m

(g€ Grass(Ld) ), m(L]€) = (L&

We call any [-subspace £ € Grass(l,d) that realizes the supremum as most ez-
panded l-subspace. These always exist, since the Grassmannian is compact and the
expression depends continuously on &.

These notions may be expressed in terms of the polar decomposition of L =
K'DK with respect to any orthonormal basis: denoting by ai,...,aq the eigen-
values of the diagonal operator D, in non-increasing order, then E(I, L) = a;/a; 1.
The supremum is realized by any subspace { whose image under K is a sum of
l-eigenspaces of D such that the product of the eigenvalues is aj ---a;. It follows
that E(I,L) > 1, and the most expanded [-subspace is unique if and only if the
eccentricity is strictly larger than 1.

Proposition 8.1. For every 0 < ¢ < 1, there exists a set M, C M with ﬂ(Mc) >c
such that E(l, Ar(f(z, t))) — 00, and the image of the most expanded subspace by

A™(f="(&,t)) converges to £(&,t), restricted to the iterates such that f~"(i,t) € M,
For the proof, let us recall the following fact, whose proof can be found in [2]:

Proposition 8.2. Let N be a weak®™ compact family of probabilities on Grass(l, d)
such that all v € N give zero weight to every hyperplane. Let L, : K¢ — K9 be
linear isomorphisms such that (L,)v, converges to a Dirac measure é¢ as n — oo,
for some sequence vy, in N'. Then the eccentricity E(l, L) goes to infinity and the
image Ly, (o) of the most expanding l-subspace of L,, converges to &.

Proof of Proposition 8.1. Given 0 < ¢ < 1 take M. C M to be a compact set,
with p(M.) > ¢ and such that the restriction of the map (z,t) = m, ) to M. is
continuous. This implies that

N = {m(myt); (x,t) € M.}

is a weak® compact subset of the space of probability measures of Grass(l,d), and
every measure in N gives zero weight to every hyperplane. Moreover,

A" (f7HE )M iq(f-n (2,0)) = Oe(a,t)-

Take M, = (P x id)~'(M.). Then the claim follows from Proposition 8.2, with
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8.2. Adjoint cocycle. Fix any continuous Hermitian form (-,-); t) in M x K.
Let F* : M x K% — M x K? be the adjoint cocycle, defined over f : M — M by

F*((@,),0) = (f7'(#,1), Au(&, t)v)
where A, (#,t) is the adjoint A(f~1(&,t))* of the matrix A(f~1(2,t)) with respect
to the Hermitian form. In other words, A.(Z,t) is characterized by

u,fl* T,t)v) =(A(f T, t)u),v for any u,v € K¢
(wAtistio) | = (A @ o)) v

and (&,1) € M. We have that
W}?il(:i:,t) = W;f“(ﬁ;,t) and W}fi (Z,t) = W}?S(:i:,t).
It is also easy to see that

uA S,A * sA u,A *
HE 5 ) = Higoy ) and HES oy = (Hiz ) a.n)™

respectively, for any (Z,t), (4, s) in the same f~!-unstable set and any (&,t), (2,7)
in the same f~!-stable set.
The following fact is well known (see [20, Proposition 2.7] for a similar result):

Proposition 8.3. The cocycles F and F* have the same Lyapunov exponents.
Moreover, if E7, j = 1,...,k are the Oseledets spaces of F then the Oseledets
spaces of F* are, respectively,

B=[Fao o oo oF j=1,..k
Proposition 8.4. Ais simple, if and only if, A, is simple.
Proof. Applying Proposition 8.3 to the restriction of F to the periodic leaf {p} x K
we get that the cocycle A, is pinching, if and only if, A is pinching. Moreover, the

Oseledets decomposition EL@- - - @ EF of A, is given by the orthogonal complements
of the Oseledets subspaces of A:

E=[e eoF'lopte.  oB]
We are going to use this for proving the twisting property, as follows.
Let ¢y = HEA o HEA and ¢, = HE o H3 2. Denote
h:K— K, h(t)=h%;0h;; and
He = HE pu@),5,0) © H(@h*l(t»,(:z,h;;,g(t)w
Then, for any V € sec(K, Grass(l, d)),
bp.2V(8) = Hy (VK1) and 93V (1) = Hyw" (V(A(D)).

First, we treat the case | = 1. Define measurably for (almost) every t € K a
linear base of unit vectors e’ (t) € E7(t), j = 1,...,d. The twisting condition means

that if
¢p,ze Z ak,;(t eJ

then 1
nhﬁrr;o - 10g|ak,j(f;3 ()| = 0.
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We need to deduce the corresponding fact for the adjoint. For this, write
d
(5,:65)(1) = Y Brj (D)l (0).
j=1

Hence

Bra®(el®). €M) = (d5:ea(t)€’(t)

= (el (h(t), ¢p.z¢’ (h(1))

a;k(A(2)) (el (h(1)), €" (h(1))),

by definition (e’ (t),e’(t)) = cos(a’(x)) for every 1 < i < d, where
al(t) = L(e(t),e'(t))

—Lc(ei(t),Etl@-~-@E%@-~-@E§),

£
T
2
so, by the Oseledets theorem,

1 , ,
lim — log|(eL(f}'(t)), €' (f£(t))| = 0 fg-almost everywhere.

n—,oo M

Then 1 )
Tim —log|B (/7 (6)] = lim ~logla, (/3 (h(1))
also as h : K — K preserves fij this is true for fu5-almost everywhere.
For | > 1 the proof is just the same, using the inner product induced on A!(K%)
by (-, -), that is,
(UL A A wr A Awg) g gay = det ((vg, w;) -
Thus, we have shown that A is twisting if and only if A, is twisting. O
Applying Proposition 8.1 to the adjoint cocycle we get:
Corollary 8.5. There exists a section £* : M — Grass (1,d) which is invariant
under the cocycle F; and the unstable linear holonomies of A.

Moreover, given any ¢ > 0 there exists M, ¢ M with ﬂ(Mc) > ¢ such that,
restricted to the sub-sequence of iterates k such that f¥(p) in M., the eccentricity

E(1, A5(f*(p)) = E(1, A*(p)) goes to infinity and the image A% (f*(p))¢i(f*(p))
of the most expanded l-subspace tends to £*(p) as k — oo.

The next lemma relates the invariant sections of the two cocycles, F' and F; :

Lemma 8.6. For ji-almost every &,t C M, the subspace &(&,t) is transverse to the
orthogonal complement of £*(&,t).

Proof. Recall that the stable linear holonomies of A are trivial. Thus, the same
is true for the unstable linear holonomies of fl* So, the fact that £* is invariant
under unstable linear holonomies means that it is constant on local stable sets of f .
Then the same is true about his orthogonal complement 7(Z,t) = £*(2,t)*, which
means that it only depends on 7(&,t) = n(x,t), where = P(Z). Recall that the
graph of n(x, ) over K has zero m,-measure, by Proposition 6.1:

mo(graph o) = [ [ Ge, (0w 0)auc (O @)
= p'xp’({2,t:4(2,t) enlz,t)}) =0
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for v-almost every x € X. Hence i ({Z,t: &(2,t) € n(x,t)}) = 0, which proves the
lemma. g

9. PROOF OF THEOREM A

Denote by n(Z,t) € Grass(d— 1, d) the orthogonal complement of £*(Z, ) at each
(Z,t) € M. Recall that £* was defined in Corollary 8.5 and is invariant under A.:

A, (2,0)E* (&,t) = (&, 1)) for j-almost every (&,t).

Consequently, 7 is invariant under A.

According to Lemma 8.6, we have that K¢ = £(2,t) © n(Z,t) at ji-almost every
point. To prove Theorem A we are going to show that the Lyapunov exponents of
A along ¢ are strictly greater than those along 7. For that, let

@, t) =@, t) @ - @ EYa,t) and n(E,t) =n*(2,t) D Dnt(2,1)

be the Oseledets decomposition of A restricted to the two invariant sub-bundles,
where &% corresponds to the smallest Lyapunov exponent among &° and n° the
largest among all 7)7.

Denote d,, = dim&" and ds = dimn®, and then let A, and A\ be the Lyapunov
exponents associated to these two sub-bundles, respectively. Define

1
n( s U (4 E
Avag) - et (A0, €460
det (A" (2, 1), W (2, 1)) 75
where W (z,t) = £*(Z,t) @ n°(Z,t). By the Oseledets theorem

R
i log A&, 1) = o

Ay — As) -

The proof of the following proposition is identical to the proof of Proposition 7.3
in [2]:

Proposition 9.1. For every 0 < ¢ < 1 there exist a set M. C M with [L(MC) >c
such that for fi-almost every (Z,t) € M

lim A" (Z,t) = 00

n—roo

restricted to the sub-sequence of values n for which f”(i, t) € M,.

So now fix some 0 < ¢ < 1 and M, given by Proposition 9.1. Let g : M, — M,
be the first return map:
g (@,t) = fr@0 (2,1).
Then we can define the induced cocycle G : ]\ch x K4 — ]\ch x K4

G((jvﬂ ,1)) = (g (jat)vD(iat)v) )

where D(z,t) = A*@b (&,t). Tt is well known (see [22, Proposition 4.18]) that the
Lyapunov exponents of G with respect to i ]}4 ) [ are the products of the exponents
of F4 by the average return time 1/(M.). Thus, to show that A, > A, it suffices
to prove the corresponding fact for G.

Define

et (D* (&, 1), €4 (, 1)) 7
Ak((f,t)): dt(‘D A( 7t)7§ A( 7t))+.
det (Dk (2, ), W (&, 1)) T s
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Then A¥(#,t) is a sub-sequence of A"(&,t) such that f(i,t) € M,. So, using
Proposition 9.1 we conclude that

k-1
~ _ . Ak _
nh_}rrgozologA g (,1)) = nh_}rrgo log A® (p) =
J

for ji-almost every (i,t) € M..
We need the following classical fact (see [17, Corollary 6.10]):

Lemma 9.2. Let T : X — X be a measurable transformation preserving a prob-
ability measure v in X, and ¢ : X — R be a v integrable function such that
limy, 00 27;01 ((p o Tj) = +o0 at v almost every point. Then [ @dv > 0.

Applying the lemma to T = ¢ and ¢ = log A we find that

, 1 . - dp
k p— —_ =
khm klogA (Z,1) klggok E g A (¢ (,1)) /1ogAﬂ( A >0

at fi-almost every point. On the other hand the relation between Lyapunov expo-
nents gives that
ds 1

(A = As) =
du + ds fi(Me)

. AR (5 1) —
klin;oglogA (z,t) =

this means that A, > Ass, so there is a gap between the first [ Lyapunov exponents
and the remaining d — [ ones. Since this applies for every 1 <[ < d, we conclude
that the Lyapunov spectrum is simple.

What is left to prove is that a simple cocycle is also a continuity point for the
Lyapunov exponents.

Proposition 9.3. If A is simple, then, for every 1 < i < d, the functions \; :
H*(M) — R are continuous in A.

Proof. Take ® : M x PK? — R

then for every k € N, there exists an F; -invariant u-state riv; such that A (Ag) =

| ®rdm}. Passing to a subsequence if necessary we can suppose that 7} converges
in the week® topology to some Fj-invariant u-state 7%. By Theorem 7.1 mg =

féEédﬂ(:i:), this implies that

M (Ar) = /@(@,v)dmg =\ (A).

Now, using the same argument for every i-dimensional Grassmannian we get
that Ay + --- 4+ \; is also continuous, concluding the proof. O

The simplicity plus the continuity implies that there exists a neighbourhood of
A with simple Lyapunov spectrum. This completes the proof of Theorem A.
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APPENDIX A. CONTINUOUS MAPS ARE DENSE IN L!(M, N)

Let M be a normal topological space and N be a geodesically convex separable
metric space (Section 5.3). Denote by F the set of measurable maps f: M — N.
Given any regular o-finite Borel measure . on M, fix any point 0 € N and define
L,(M,N)={feF: [disty (f(z),0) du(z) < co}. When p is a finite measure,
the choice of 0 € N is irrelevant: different choices yield the same space L}L(M ,N).

The function distzs (a,n) Li(M, N) x LL(M, N) — R defined by

distr 110 (1:9) = [ dy (@), 9()) )

is a distance in L}L(M, N). The special case N = R of the next proposition is well
known, but here we need the following more general statement:

Proposition A.1. The subset of continuous maps f : M — N 1is dense in the
LY (M, N
space L, (M,N).

We call s : M — N a simple map if there exist points v1,...,v; € N pairwise
disjoint measurable sets Ay,..., Ay C M with finite y-measure such that

()_ v; ifxeA;
SEEU0 ifag U A,

Proposition A.1 is an immediate consequence of Lemmas A.2 and A.3 below.

Lemma A.2. The set S of simple functions is dense in L, (M, N).

Proof. Consider any f € Li(M, N). Given € > 0, fix a set Ky C M with finite
p-measure and such that

/ disty (f(x),0) du(z) <
M\ K,

NS

Let {v1,...,v;,...} be a countable dense subset of N. The family
{B (v, ):ieN}

p(Ko)

covers N and, consequently,
€ €
B; = B(vi, —— B(vy,———), t1€N
O gtz U P )

is a partition of N. Then A; = Ko N f~1(B;), i € N is a partition of Kq into
measurable sets. Fix k € N large enough that

/ distx (f(x),0) du(z) <
KO\U?:l Ai

Now define s : M — N by

(z) = v; fexeA;fori=1,....k
SEEU0 ifa g UR A,

Then
/ dist (£(a), () dia) = [ dist (f(2), 0) du(z) <
M\U§71 A;

M\Ulf:lAi

[ NN e
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and

[, st @) s(@) dute) < (U 4)

k .
i=1""7

Thus distLh(M)N)(f, s) < €, which proves the lemma. O

Lemma A.3. For every s € S and € > 0 there exists a continuous map f : M — N
such that distLh(MﬁN)(f, s)<e

Proof. Let A; and v;, i = 1,...,k be as in the definition of the simple map s and
7> 1 be as in (18). Denote L = max{d(v;,0):i=1,...,k}. Foreachi=1,...,k,
consider a compact set K; C A; such that u(A; \ K;) < €/(4kTL). Since the K;
are pairwise disjoint, and M is assumed to be normal, there exist pairwise disjoint
open sets B; D K;, i =1,...,k with u(B; \ K;) < ¢/(4k7L). In particular, we also
have p(A; \ Bi) < ¢/(4kTL).

By the Urysohn lemma, there are continuous functions v, : M — R, i =1,...,k
such that
1 ifzekK;
(45) Yilw) = { 0 ifz¢ B
Now we use the assumption that N is geodesically convex. For each i =1,... k,

fix A; : [0,1] = N with \;(1) = v; and X\;(0) = 0. Then define f : M — N by
Ai(i(x)) ifx e B;withi=1,...,k
0 if z ¢ UL, Bi.

It is clear that f is continuous, because the B; are open and pairwise disjoint.
Moreover, f(z) = s(x) if

fx) =

k k k
either xEUKl- or IEM\(UAiUUBi)-
i=1

i=1 i=1
All the other values of = fall into some of the following cases:

(1) z € A;N (B; \ K;) for some i and j: then

dn (f(2),5(x)) < dn(X(¥;(2)),0) + dn (0, v:)
<TdN(’U], ) d (O,’UZ‘)§2TL.
(2) z € A\ Uk_, B; for some i: then dy(f(z),s(z)) = d(0,v;) < L.
(3) @ € Bj \ UF_, A; for some j: then
dn (f(2), 5(x)) = dn (X (¥;(2)), 0) < mdn (v;,0) < 7L.

In either case, x belongs to the set
k k
Ui\ B)yu B\ K))
i=1 j=1

which, by construction, has p-measure bounded by €¢/(27L). So,

distzs (v,w) (f, 8) < 5 max {dy(f(z),s(z)) 1z € M} <,

27 L
as claimed. O
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