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1. Introduction

We begin by recalling some definitions end known facts in
hyperbolic ‘dy'namics' (see [3] for details). .

let M be a compact manifold without ’5oundary, fe DiﬁJ'(M)
and ACM a basic set for f, i.e., a compact, invariant,
hyperbolic, transitive set, with A = nf;lza (y). for some neigh-
bourhood U of A, Then there is a neighbourhoced N of f 1in

Diffl(m), such that, for ge N, Aeg) = N g™U) 1s a basic set
nez

for g and there is hg: A— Ag, & homeomorphism conjugating g'h(g)
and f|,, with h, C°-close to hy = id if g 1s Cl~close to f.

Let, for g € h, Tn(g)mg E(g) @ Eu(g) be the hyperbolic
splitting of A(g). The local unstable set of z € A(g) 1s
W'g'l(g,z) = {we M a(g"(w),e"(z)) s 8 for ell n £0), where B>0
is small, . This is an embedded ct-disk with Tzwg(g,z) = Eu(g,z).
Moreover (W‘B“(g,z))z € A(g) 18 continuous on g in the following

sense: there 1is (eg!x)XEA where eg’xﬂfg(f,x)—-ﬁw‘ﬁ"(g,hg(x)) is

a ¢t diffeomorphism with eg,x(x) = hg(x), such that 1if g 1is
ct close to then, for all x¢€ A, eg,x is un:l.formily_cl close to the
inclusion of wg(f,x) in M. The (global) unstable set of zcA(g)
18 W(g,z) = (w e M: a(g"(w),2 (2)) =+ O when n— =w) =

= nLJO gn(wg(g,g"n(z))). We also consider local and global stable

sets defined by wg(g,z) = Wg(g_l,z), WB(s, 2) = Wu(s-l,z).
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In the following we will always assume dim E° l.l.
Consider, for =z € Ag), the set w{(g,z) N A(g)., TIts limit
capacity i1g & measure of how "fat" A(g) 418 in the unstable
direction and has been used in [7] to estimate the ammount of
bifurcations through & homoclinic O;explosion involving A (see
also 8] for the heteroclinic case). Recall that the limit

capacity of a compact metric space X 18 defined by

d(X) = limhgup log n(X,¢)/log c'l, where n(X,¢) 4is the minimum
¢ "

nunber of €=balls that cover X.

A related notion is the one of Hausdorff dimension of X
defined by HD(X) =sup{d= O: my(X) ==} = inf{d=a 0: my(X) = 0}, where
m:(X) = 1im inf I (diam U)?, the inf being taken over all finite

d ¢*0 #/47] :

covers W of X by sets of diemeter not greater than ¢ > 0.

Clearly both the limit capacity and Hausdorff dimension are
invariant by Lipschtz homeomorphisms.

With the above notations and assumptions we state:

THEOREM A Suppose dim E® ® 1. Then }m(w'.;'(g,hg(x)) n A(g)) is

a continuous function of g and its velue is independent of x¢€ A,
The same is true for d(wg(g,hg(x)) n A(g)). Moreover in our

context these fractional dimensions are equal,

In [5], McCluskey -Manning proved this result for Hausdorff
dimension using technigues of the thermodynamic formalism, Here
we give a direct and perhaps more geometric proof based on the

following theorem.

THEOREM B Suppose dim E” = 1, Then there is C > 0 and, for

eny ¥ € (0,1), there is a neighbourhood h, of f 1in pieet (M)

such that, for gen and x€4A, h
’ Y S - wi(f,x) N A
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-1
h are (C,y)-H8lder continuous,
€ w?(f,x)r1h ’ -

Recall that & morphism of metric spaces #: X — Y is said
to be (C,Yy)-H81der continuwous if there 18 & > O pguch that
a®(x),e(y)) = c(a(x,y))Y for all x,y € X with d(x,y) = 8.

We also note that the same techniques yield @ proof that the
Hausdorff dimension of the Julia set of a hyperbolic retional map |
on the Riemann sphere is a continuous function of the map. Notice
nowever that Ruelle (£10]) has proven that this dependence is
actually asnalytical.

Let x € A. Then, (Wy(£,x) 0 A) x (Wg(£,x) N A)— 4,
(y,2) = ﬂg(r,y) n w?(f,z), is a homeomorphism onto a neighbourhood

v, of x and so it induces continuous projections ﬂszvx-‘*(wb‘(f,x)nﬁ

s Vk'““ (wg(f,x) A A). In our context we can say somevwhat more.

THEOREM C Suppose dim E'® 1, let x€ A and X € wg(f,x) close
to x. Let 1% (Wi(f,x) N A)—> (W(£,%) N A), ™ (y) =
= wg(f,y) n w?(f.ﬁ). Then, for any ¥ € (0,1), n® and (ns)'l

are (C¥,Y)-Hﬂlder continuous for some C, > O.

~ In other words, Theorem C means that the (partial) stable
foliation '(wgtf'x))xeh is H8lder continuous with exponential
H8lder constent-arbitrarily close to one, This is the main step
in the proof of the following result on the dimension of the whole

baslic sets, in the two~dimensional case,

THEOREM D let dim M = 2, dim E” = dim E° = 1, Then

HD(A(g)) = HD(Wa(g,2) N Alg)) + ED(WE(g,2) N A(g))
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a(ME)) = A(Wie,2) N Ag)) + a(WE(g,2) N Alg))

and aso HD(A(g)) = a(A(g)) 1s & continuous function of g € Dﬁﬁ;(ML

Finally we would like to make some comments about on the
Hausdorff dimension of basic sets. It was proved by Bowen and
Ruelle ([2]) that 4f £ 4a C° then all its basic sets have measure
zero. On the other hand, Bowen has given in {[1) an example of a
cl-diffeomorphism on the sphere exhibiting & horseshoe with po-
sitive measure, Theorem D allows ué to prove that Bowen's example
is nongeneric. Actually, generically the Hausdorff dimension of
the horseshoes is smaller than two unless the horseshoe is all of M.

Corollary let dim M =2, dim E' =dim E® =1 and N be a emall
neighbourhood of f in Diffl(M). Then, for g 4is an open end
dense subset of n in the Cl-topology, we have HD(A(g)) < 2 and

s0 A(g) has lebesgue measure zero.

After the preparation of this paper, Mané [4] showed that
the Hausdorff dimension of a horseshoe in M° is a C'~! function
of £ € DIffN(M), r > 1. |

We now proceed to prove Theorems A~D and the Corollary in the

next sections.

2. Proof of Theorem B, For vy,z € wg(f,x), x € A, we denote by
d,(y,z) the }ength of the segment (y,z] © W?(f;x), i,e.,, 4@
is the induced distance on W?(f,x). We also denote, for

y € Wg(f,x),‘ Dfu(y) = Df as the derivative of f in

Tng(f,x)

u

the unstable direction.,

Let X = inf{|Df™(E)|: € ¢ Wg(£,x), x € A} > 1,  For
Y € (0,1), take ¢ > O such that (A-2¢) 2 AY, and &> 0 such
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that the following is true for all x € A
(1) a,(y,z) s 46==> |Dfy) -De(2)| = 6, for y,z € Wy(z,x).

Take hw a small neighbourhood of f such that for all

g € hY and x € A, we have

(2) a,(07% ho(y),y) % 8/2, for y € Wi(2,x) 0 4
and

(3)  ID(8g p(x) 8o 85, )(¥) - DE*(Y)| & &, foF y € W(£,x).
let fiow x € A and y,z € Wy(£,x) N A be such 4,(y,z) <.
Since w?(f,x) is l-dimensional,we have
4, (£(y),£(2)) = 4, (y,2)- ID£U(5,) |, for some € & Ly,2) Wi(e,x)
and, more generally
- n-1
W), 2 = ayyy2)- T e, watn s5€1e36y), £3(2))
Take N2 0 such that
(4) a4, (£ (y), tN(2)) = & £ a (M2 (y), M (2))
‘Then, for 0%asN d.(f(y),f%z)) s 8 and so, by (2),
ay(on” Bg(£7(r)), o7t n (=) £ 25, where 6, =8, on(yy .
On the other hand,

ay(o7" Ba(£7(y)), o7t ny(£7(2))) -

n-1

o . -1
= a4, (057, b (v), 631, hg(2))- T ID(a 5, ¢ 80 8)ny)]
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wvith ny € (632 no(£3(y)), 03 n (£2(z))1, 053 % n.
In particular, by (4) we get

' N-1

(5) du(9;¥x ho(v), eglx h,(z))- 1] ID(93§333°93)(n3)I £ 25 €
’ ’ 0 . .

N
c 28Y ¢ 2(du(y,z))?-- y' (lDfu(EJ)l)Y-

Now du(gj;nj) £ 485 and so, by (3) and (1),
Doy, 10890 4} (ng) | = IDE%(ngd| = ¢ 2 [DL(E4)] - 2¢

and s0, since |Dfu(§d)| a A,
ID(oy,908°0 ) (ny) | & (D (eI Y.

Then,it follows from (5) that

840622, Bo(y), 655 no(2)) = 2. (IDe(e) Y- (ay(y,2))Y

and so
d,(hy (), hy(2)) & C.(a,(v,2))"

where C = 2-sup[|DBg’x(§)|= gEM x €4, §cWg(£,x))

.sup{ |DEY(E)|: € € WH(L,x), x € A},

. -1
The Hblder continuity of (h n A)
| Elwg (£,%)

is proved in the same way, The proof of the theorem is complete.



3. Proof of Theorem A

It is easy to check that if there is an onto, (C,y)-H8lder
continuous map X -~ Y, where X,Y are metric spaces, then

my(Y) % Cd'“dy(x) for all da 0 and n(Y,Ce¥) & n(X,¢) for
¢ >0 small, so HD(Y) £ y~* HD(X) and. 4a(¥) = y~la(x).

Since hgz w?(f,x) n A—>= W?(g,hg(x)) n Alg) , it follows
from Theorem B that for g € hy

HD(W3 (g, B (%)) N AE)) € Ly,y™7 HD(W(£,x) 0 )

and
(W3 (eng(x)) 0 Ag)) € Ty, v™1 a (e, x) n 4.

This obviously implies the claimed countinuity of the Hausdorff
dimension and the limit capacity.

As to the second part of the theorem, let us first suppose
that f is C2. In this case the family of (codimension one)
stable manifolds (ws(f,x))xen can be extended to an invariant
¢! foliation 3%, defined in a neighbourhood of A (see comments
in £71). Then if x,y € A are cleose, the holonomy of ¥ defines
e Cludiffeomarphism from W2(f,x) to Wi (f,y), sending (WH(f,x) NA)
to  (W(£f,y) 0 A). |

Let first x, € A be transitive. We claim that the value
of HD(W§(£,3(x,)) N A) 1s independent of J = O and B > O
small. In fact we only have to prove this last assertion, since
£ ig lipschitz and w?(f,fd(xo))l\A::fj(wﬁ(f,xo) N A) for some
small & > O, Take N = 1 gsuch that rN(xo) is8 close to xo._By

the remarks above we have



=
HD(WS (£,%5) 0 4) € ED(W] (£M(x,)) nA) € ED(WS (£,x,) N A)
. o _ o

for gome B, > 0, @6, > O. Moreover, by taking N arbitrarily
large, we can suppose‘ that ‘-ﬂo.a- O, &8 close to P£>0 and G, *0 18
arbitrarily small, The claim now follows easily. '

Take now any x€ A and choose - J= 0 such that td(xo) is
close to x. Again by the differentiadility of '#8  we have

}m(wgl(f,fJ(xo)) N A) & HD(Wg' (£,x) N A)c!m(wg‘z(f.fd(xo)) 0 A)

for some B, > 0, B, > 0 close to B> 0., By the claiﬁ; above
Iﬂ)(w’;(f,x) nA) = HD(W';(i‘,xo) n A), This ends the proof in the

02 case. The proof of the general case 1is now qQuite easy: Just
use the first part of the theorem and the fact that any f¢€ Diffl(M)
cen be eproximated by c®-diffeomorphisms. The proof for the limit
capacity is similar.

Finally, the Hausdorff dimension and the limit capacity of
e basic set A take the same value if f 1is 02_ (see Takens [11]).
Again, by the first part of the theorem the same is true even 1if |
f is Just Cl. The proof of Theorem A 1s complete.

4, Proof of Theorems C-D and the Corollery.

Proof of Theorem C, Take g € NY n Diffz(H). As observed in

Section 3, the stable foliation (w’é’(g,z))zen(g) is differentiable,
in the sense that it can be extended to an invariant Cl foligtion

in a neighbourhood of A(g). It follows that its holonomy maps, in
particular nS:(Wi(g,h,(x)) N MeD— (Wa(g,h, (X)) N AE)), T(2) =
= wﬁ(g,z) n wg(g,hs(ic')), are Lipschitz.
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On the other hand, for vy Elwu(f,xs, hg(ﬂ; (y)) =
= hg(w“(f,y) n W(£,3X)) = wg(s,hs(v)) n W';(s,hs(i)) =ﬂE(hS(Y))r

since h, preserves local invariant sets, Then ﬂB==hglo ﬂgo,hg

and the result follows from Theorem B and the remarks above.

Proof of Theorem D. From the definitions we easily get that, for
any metric space A, HD(A) £ d(A). Consider the product space

A, = (Wg(f,x) N AY X (Hg(f,x) N A). It is quite easy to check
that d(A) = d(w‘;(f,x) N A) + a(wWs(£,x) N A). On the other hand,
by Marstrand. [6], HD(Ax) 2 HD(Wg(f,x)n A) + HD(W?(f,x)flA). Then,
by Theorem A, HD(A,) = HD(W3(£,x) N A) + HD(W5(L,x) N A) =

= a(WE(g,%) N A) + AWE(£,x) 0 A) = a(A)).

Let now & A, —= A be given by ¥(y,2)=Wg(£,y) NWg(L,y).
¢ 1s a homeomorphism onto a neighbourhood V& of x in A, We
claim that ¢ and % are (Cy,y)-Hﬁlder continuous for any
v € (0,1). From this 1t follows that HD(V,) € [y,y 1IHD(A,),
a(v,) € Ly,y"11d(A,) for eny ¥ ¢ (0,1) and so HD(V,) =
= HD(Ax), d(v%) = d(Ax). Now, (V ) is an open cover of A, and

80 HD(A) = HD(V,) = HD(A,), d(A)= d(v )= d(Ax), these values
being independent of x € A,

We are now left to prove the claim above., Let w1==§(yl,zl),
Wy = f(yz,zz) and w = w?(f,wl) n wg(f,w2) = @(ya,zl). Clearly,
by Theorem C,

d(lewa) £ du(wllw) + ds(wgwa) g CY (du(Y]_’Ya))* + -C'l’ (ds(zl’ 32) )Y ‘
£ ?..Cy(m.&x[ducylyyé)s .ds(zlizz)j)v

and this proves the Hblder continuity of &,
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Now, from the continuous dependence of H;(f,z) and

W;(f,z) on z € A, we get in a fairly easy way that
d(wl,wz) > k-max[du(wl.w),ds(w,wz)}
for some k > O, Then, again by Theorem C,
méx[du(yl.ya),ds(zl,zz)] £ max[CY(du(wl.Iw))Y,CY(ds(w,wz))Y] S
< CY(max[du(wl.w).ds(W.wa)])Y s C, k7Y (d(w, ,w,))Y.

This ends the proof of the theorem.

5. Proof of the Corollary.

Openess is clear from the continuity statement in Theorem D.
Density is a trivial consequence of the fact that HD(A(g)) < 2
whenever g is 02. This follows from the results of Bawen and
Ruelle in [2]) together with McCluskey and Manning [ 5]. For the
sake of beihg complete we give here a different (and elementary)
proof of this last fact not using the thermodynamic formalism,

Let g be c® and let p € A(g) be a periodic point for
g. Take an interval J in W (p,g) containing p and let
K=Wp,g) n Jn Al(g). One can prove (see [9]) that there are
Il""’Ik _disjoint compact subintervals of J and

v: I = (I, U...U I,) » J such that
1) Kc I and the boundary of each IJ is contained in KX
2) y(X) =K and K= N ¢ (1) |
nz0
3) For each j, w(Ij) is the convex hull of some subset of

{Il’...'Ik]
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L) y 1s c! on (a neighborhood of) each IJ

5) ¢ is expanding, i.e., there is A > 1 such that

[¥(x)] 2 A for a1l x € I.

Moreover, ¥ has the bounded distortion property: there

is ¢ > 0 such that |[(y™)’'(x)|/|1(+")'(¥)] s © whenever
x, ¥y € I are such that *i(x) and qi(y) belong to the same Iji

for all 0O0'< i £ n=-1. See remark at the end of this section.

Let Un’ n =1, be the covering of K formed by the

connected components of y§ (I). We are going to construct

d € (0,1) such that ( T (diam U)d)n is bounded (and in fact
UEhn
non-increasing). Since sup{diam U: U € u ]

n goes to infinity this will imply' HD(Wzoc(g,p) n ale)) =

goes to zero when

= HD(X) < 4 < 1, which proves the Corollary.

Let U€ u__,* then q(“'l)(u) = I, for some 1« j< k.
By property (3) above wn(U) = v(Ij) can be written in the form
Uso ol Gr+s U Ir+s' where the union is_

n
v (U) = Ir u Gr+1 U Ir+1

assumed disjoint and in increasing order (sup Ii-l = inf Gi <

< Sup G, = inf I,). Then, U = 12 U G:+1 U I:+1 Ues U G:+s U I:+s,

with I € u,, G; disjoint from X, ¥'(I]) = I,, ¥"(c]) =o,.
Now for < pg r+s and r+l € g € r+s we have

(diam I.)/(aiam G ) = [(aiam I7)/(aiam 62)3-L(¢")" (8)/(¥7)" (n)]

for some § € ID, n€ Gy. Note that for 0 s i s n-l, vig)

and wi(n) belong to the same element of [Il,...,Ik] because

§,nq € U, a connected component of w-(n'l)(l). Hence, by the

bounded distortion property, (diam Ip)/(diam Gq) z

> [ (aiam I:)/(diam Gg)]. &' and so (diam I:)/(diam Gg) s 8



for some @8 independent of p, q, n and U,

We now need the following fact. ..

Lemmat Given 6 > O and S = 1 there is Bo ™ 90(9'5) € (0,1)
such that for any xo,yl,xl,...,ys,xs > 0 with‘ X¥¥ +Xy +..o+

+Y X = 1 and xi/yi < B, xi~1/yi s 8 forall 1< ix S,

5
we have X xg s 1 for g < p < 1.
o

n n
Taking x; = (giam Ir+i/diam v), vy = (diam Gr+i/diam u)
in the lemma we get I (diam I;1+i)a < (diam U)B for all
o
BO(B.S) < B < 1. Now taking d = max[go(e,s) : 2 £ 85 k] we

have, by the argument above, £ (diam V)-d s (diam U)d for every

yeu
veu®
Ue€E u and so & (diam v)9 ¢ ¢ (diam U)d. This ends the
n-to Veu Ueu
n n-1

proof of the Corollary.

We now want tﬁ make a final remark about this proof. The
assumption that g is C2 is essential to assure that ¢ is Cl.
In fact the construction of y§ involves holonomy maps of the
stable foliation JF° and, as noted earlier,.these maps are not
necessarily smooth, unless the diffeomorphism generating 33 is
02. If we assume that € is 03 the proof becomes somewhat
simpler because then § can be taken to be cl*Y (i.e. ¥’ exists
and is HOlder continuous), In such-a case the bounded distortion
property is easier to provez- it just follows from the fact that
[e/] =2 a > i and it is H8lder continuous. In the general case,
vhen ¥ dis induced by a 02 diffeomorphism, the bounded distor-
tion property is still true but the proof is more subtle and it is

due to Newhouse (see [9]).
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