PISA LECTURES ON LYAPUNOV EXPONENTS

JAIRO BOCHI AND MARCELO VIANA

ABSTRACT. These notes cover the course we taught at the research
trimester on Dynamical Systems organized by Stefano Marmi at
the Centro di Ricerca Matematica Ennio di Giorgi/Scuola Normale
Superiore di Pisa in the Spring of 2002. We are grateful to Stefano
for the invitation and all the effort he devoted to the trimester,
and to the Scuola Normale for its most charming hospitality.

The purpose of our course was to present certain recent results,
mostly from [Boc02, BVa, BGMV, Via], about the Lyapunov ex-
ponents of generic dynamical systems and linear cocycles. Since
the proofs are long and complex, we aimed at giving fairly com-
plete outlines, which could serve as an introduction to the complete
arguments in those papers.
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1. LYAPUNOV EXPONENTS

Let M be a compact manifold with dimensiond > 1,and f : M — M
be a C" diffeomorphism, » > 1. Oseledets theorem [Ose68] says that,
relative to any f-invariant probability u, almost every point admits a
splitting of the tangent space

(1) T.M=E&---®E k=k(2),
and real numbers A\ (f,z) > --- > A\g(f, z) such that

1 .
lirin —log [|Df™(z)vi|]| = Ai(f,z) for every non-zero v; € E, .
n—too N

These objects are uniquely defined and they vary measurably with the
point . Moreover, the Lyapunov exponents \;(f,z) are constant on
orbits, hence they are constant p-almost everywhere if p is ergodic.

The results we are going to present address the following two funda-
mental problems:

(1) How do Lyapunov exponents vary with the dynamical system ¢

(2) How often do Lyapunov exponents vanish ¢
We consider f varying in the space Diff}, (M) of C", r > 1 diffeomor-
phisms that preserve a given probability u, endowed with the corre-
sponding C" topology. The most interesting case is when y is Lebesgue
measure in the manifold. The second question is to be understood both
in topological terms — dense, residual, or even open dense subsets —and
in terms of Lebesgue measure inside generic finite-dimensional subman-
ifolds, or parameterized families, of Diff},(M).

1.1. A dichotomy for conservative systems. First, we are going to
see that systems with zero Lyapunov exponents are abundant among
C' volume preserving diffeomorphisms. Let p be normalized Lebesgue
measure on a compact manifold M.

Theorem 1 ([BV02, BVa)). There is a residual subset R of Diffi(M)
such that, for every f € R and p-almost every point x,

(a) either all Lyapunov exponents X\i(f,z) =0 for 1 <i <d,

(b) or the Oseledets splitting of f is dominated on the orbit of x.

The second case means there exists m > 1 such that for any y in the
orbit of x
m ) m .
o) 1D w)oil 1D w)os]
[[i ]

for any non-zero v; € E}, v; € E! corresponding to Lyapunov expo-
nents A; > A;. In other words, the fact that D f" will eventually expand
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E; more than Egj can be observed in finite time uniform over the or-
bit. This also implies that the angles between the Oseledets subspaces
E; are bounded away from zero along the orbit, in fact the Oseledets
splitting extends to a dominated splitting over the closure of the orbit.

In many situations, e.g. if the transformation f is ergodic, the con-
clusion gets a more global form: either (a) all exponents vanish at
p-almost every point or (b) the Oseledets splitting extends to a domi-
nated splitting on the whole ambient manifold. The latter means that
m > 1 as in (2) may be chosen uniform over the whole M.

It is easy to see that a dominated splitting into factors with con-
stant dimensions is necessarily continuous. Now, existence of such a
splitting is a very strong property that can often be excluded a priori.
In any such case theorem 1 is saying that generic systems must satisfy
alternative (a).

A first manifestation of this phenomenon is the 2-dimensional version
of theorem 1, proved by Bochi in 2000, partially based on a strategy
proposed by Mané in the early eighties [Man96].

Theorem 2 ([Boc02]). For a residual subset R of C' area preserving
diffeomorphisms on any surface, either

(a) the Lyapunov exponents vanish almost everywhere or
(b) the diffeomorphism is uniformly hyperbolic (Anosov) on M.

Alternative (b) can only occur if M is the torus; so, C' generic area
preserving diffeomorphisms on any other surface have zero Lyapunov
exponents almost everywhere.

It is an interesting question whether the theorem can always be for-
mulated in this more global form. Here is a partial positive answer, for
symplectic diffeomorphisms on any symplectic manifold (M, w):

Theorem 3 ([BVa]). There exists a residual set R C Sympll, (M) such
that for every f € R either the diffeomorphism f is Anosov or Lebesgue

almost every point has zero as Lyapunov exponent, with multiplicity
> 9.

1.2. Linear cocycles. Let f : M — M be a continuous transforma-
tion on a compact metric space M. A linear cocycle over f is a vector
bundle automorphism F' : & — £ covering f, where 7 : £ — M is a
finite-dimensional vector bundle over M. This means that

moF =form
and F' acts as a linear isomorphism on every fiber. The quintessential

example is the derivative F' = D f of a diffeomorphism on a manifold
(dynamical cocycle).
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For simplicity, we focus on the case when the vector bundle is trivial
£ = M x R?, although this is not strictly necessary for what follows.
Then the cocycle has the form

F(z,v) = (f(z), A(z)v) for some A: M — GL(d,R).

It is no real restriction to suppose that A takes values in SL(d,R).
Moreover, we assume that A is at least continuous. Observe that

Fr(z,v) = (f"(z), A™(z)v) for n € Z, with
Al(w) = A(f77(2)) -+ A(f (2)) A(z)

and ' ' '
A7 (z) = inverse of A'(f 7(x)).
The theorem of Oseledets extends to linear cocycles: Given any f-

invariant probability u, then at p-almost every point x there exists a
filtration

{2} xR'=F)>F}>--->FF' > FF = {0}
and real numbers A\; (A, z) > --- > A(A, z) such that

1
1. —1 An il = /\Z A,
Jim - log [|A™(@)vil| = Ai(4, z)

for every v; € F~'\ Fi. If f is invertible there even exists an invariant
splitting
{(z}xRE=E.®---©E
such that
lim  log || A" (z)ui]| = (A, )

n—+oo 1
for every v; € E' \ {0}. It relates to the filtration by FJ = &, E".

In either case, the largest Lyapunov exponent A(A,z) = A\ (A4, x)
describes the exponential rate of growth of the norm

1 .
AA,z) = Tim = log|| 4" ()]

If 1 is an ergodic probability, the exponents are constant p-almost
everywhere. We represent by A;(A, ) and A(A, i) these constants.

Theorem 1 also extends to linear cocycles over any transformation.
We state the ergodic invertible case:

Theorem 4 ([Boc02, BV02]). Assume f : (M, u) — (M, p) is invert-
ible and ergodic. Let G C SL(d,R) be any subgroup acting transitively
on the projective space RP4™L. Then there ezxists a residual subset R of
maps A € C°(M, Q) for which either the Lyapunov exponents \;(A, )
are all zero at p-almost every point, or the Oseledets splitting of A
extends to a dominated splitting over the support of .
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Remark 1.1. Theorem 4 also carries over to the space L> (X, SL(d, R))
of measurable bounded cocycles, still with the uniform topology. We
also mention that in weaker topologies, cocycles having a dominated
splitting may cease to constitute an open set. In fact, for 1 < p < o0,

generic LP cocycles have all exponents equal, see Arnold, Cong [ACI7]
and Arbieto, Bochi [AB].

1.3. Prevalence of non-zero exponents. We are now going to see
that the conclusions of the previous section change radically if one
considers linear cocycles which are better than just continuous: as-
suming the base dynamics is hyperbolic, the overwhelming majority of
Holder continuous or differentiable cocycles admit non-zero Lyapunov
exponents.

Let G be any subgroup of SL(d,R). For 0 < v < oo denote by
C"(M, Q) the space of C¥ maps from M to G endowed with the C
norm. When v > 1 it is implicit that M has a smooth structure. For
integer v the notation is slightly ambiguous: C” means either that f
is v times differentiable with continuous v:th derivative, or that it is
v — 1 times differentiable with Lipschitz continuous derivative. All the
statements are meant for both interpretations.

Definition 1.2. Let f : M — M be a C! diffeomorphism with Holder
continuous derivative. An f-invariant probability measure p is hyper-
bolic if every X\;(f, z) is different from zero at p-almost every point.

Definition 1.3. A non-atomic hyperbolic probability u has local prod-
uct structure if it is locally equivalent to the product of the measures
u* and p® obtained by projecting it to the spaces of local stable sets
and local unstable sets.

A more formal definition will appear in Section 3. We point out that
most interesting invariant measures have local product structure. For
instance, Lebesgue measure always has local product structure if it is
hyperbolic: this follows from the absolute continuity of Pesin’s stable
and unstable foliations [Pes76]. The same is true, more generally, for
any hyperbolic probability having absolutely continuous conditional
measures along unstable manifolds or along stable manifolds. Also,
in the uniformly hyperbolic case, every equilibrium state of a Holder
continuous potential [Bow75] has local product structure.

Theorem 5 ([Via]). Assume f : (M, p) — (M, p) is ergodic and hy-
perbolic with local product structure. Then, for every v > 0, the set
of cocycles A with largest Lyapunov exponent A(A,x) > 0 at p-almost
every point contains an open dense subset A of C*(M,SL(d,R)). More-
over, its complement has oo-codimension.
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The last property means that the set of cocycles with vanishing ex-
ponents is locally contained inside finite unions of closed submanifolds
of C”(M,SL(d,R)) with arbitrary codimension. Thus, generic param-
eterized families of cocycles do not intersect this exceptional set at all!

Now suppose f : M — M is uniformly hyperbolic, for instance, a
two-sided shift of finite type, or an Axiom A diffeomorphism restricted
to a hyperbolic basic set. Then every invariant measure is hyperbolic.
The main novelty is that the set A may be taken the same for all
invariant measures with local product structure.

Theorem 6 ([BGMV, Vial). Assume f : M — M is a uniformly
hyperbolic homeomorphism. Then, for every v > 0, the set of cocycles
A with largest Lyapunov exponent A(A,x) > 0 at u-almost every point
and for every invariant measure with local product structure contains
an open dense subset A of C¥(M,SL(d,R)). Moreover, its complement
has co-codimension.

Theorem 6 was first proved in [BGMV], under an additional hy-
pothesis called domination. Under this additional hypothesis [BVb]
gets a stronger conclusion: all Lyapunov exponents have multiplicity
1, in other words, the Oseledets subspaces E! are one-dimensional. We
expect this to extend to full generality:

Conjecture. Theorems 5 and 6 should remain true if one replaces
A(A,z) > 0 by all Lyapunov exponents \;(A,z) having multiplicity 1.

Theorems 5 and 6 extend to cocycles over non-invertible transfor-
mations, respectively, local diffeomorphisms equipped with invariant
non-uniformly expanding probabilities (all Lyapunov exponents posi-
tive), and uniformly expanding continuous maps, like one-sided shifts
of finite type, or smooth expanding maps. Moreover, both theorems
remain true if we replace SL(d, R) by any subgroup G such that

G 3B~ (Bfl PR -,de) € (RPd_l)da

is a submersion, for any linearly independent {&;,...,&;} C RP% 1. In
particular, this holds for the symplectic group.

Problem. What are the continuity points of Lyapunov exponents as
functions of the cocycle in C”(M, SL(d, R)), when v > 0 7 Analogously,
assuming the base system (f, i) is hyperbolic.

2. ABUNDANCE OF VANISHING EXPONENTS

We are going to sketch the proofs of theorems 1 and 3. For complete
arguments see [Boc02, BV02].



PISA LECTURES ON LYAPUNOV EXPONENTS 7

Let f € Diff, (M) and I' be an invariant set. We say that an invariant
splitting Tt = E @ F' is m-dominated, for some m € N, if for all z € T’

Dfr, 1

m(Dfr|g,) 2’
where m(A4) = ||A7Y|7t. We call E @ F a dominated splitting if it is
m-dominated for some m.

2.1. Volume preserving diffeomorphisms. Given f € Diﬂi(M)
and 1 < p < d, we write

Mlf,2) = Mlfa) 44Xy (1) and LES(S) = [ A(f.2) du(o)
M

As f preserves volume, Ay(f,z) = 0. It is a well-known fact that

the functions f € Diffi(M) — LE,(f) are upper semi-continuous.

Continuity of these functions is much more delicate:

Theorem 7. Let f) € Difflll(M) be such that the map
Diff, (M) 3 f + (LE((f), ..., LE41(f)) € R*!

1s continuous at f = fy. Then for almost every x € M, the Oseledets
splitting of fo is either dominated or trivial (all \,(f,z) = 0) along the
orbit of x.

Since the set of points of continuity of a upper semi-continuous func-
tion is always a residual set, we see that theorem 1 is an immediate
corollary of theorem 7. Also, theorem 7 remains valid for linear cocy-
cles, and in this setting the necessary condition is also sufficient.

We shall now explain the main steps in the proof of theorem 7.

2.2. First step: Mixing directions along an orbit segment. The
following notion, introduced in [Boc02], is crucial to the proofs of our
theorems. It captures the idea of sequence of linear transformations
that can be (almost) realized on subsets with large relative measure as
tangent maps of diffeomorphisms close to the original one.

Definition 2.1. Given f € Diff, (M) or f € Sympl, (M), a neighbor-
hood U of f in Diff}L(M) or Sympllli(M), 0 < k < 1, and a non-periodic
point z € M, we call a sequence of (volume preserving or symplectic)

linear maps

T,M 2 1M 2 B2 M

an (U, k)-realizable sequence of length n at z if the following holds:
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For every v > 0 there is 7 > 0 such that the iterates f/(B,(z)) are
two-by-two disjoint for 0 < j < n, and given any non-empty open set
U C B,(x), there are g € U and a measurable set K C U such that

(i) g equals f outside the disjoint union U?;é f1(0);

(i) w(K) > (1 = r)u(U);
(iii) if y € K then || Dgyi, — L;| <y for every 0 < j < n— 1.

~— —

To make the definition clear, let us show (informally) that if v, w €
T, M are two unit vectors with <{(v,w) sufficiently small then there
exists a realizable sequence {Lg} of length 1 at x such that Ly(v) =
D f,(w).

Indeed, let R : T,M — T,M be a rotation of angle <(v,w) along
the plane P generated by v and w, with axis P+. We take Ly = Df,R.
In order to show that {Ly} is a realizable sequence we must, for any
sufficiently small neighborhood U of z, find a perturbation g of f and a
subset K C U such that conditions (i)-(iii) in definition 2.1 are satisfied.
Since this is a local problem, we may suppose, for simplicity, that
M =R? =T,M. First assume U is a cylinder B x B’, where B and B’
are balls centered at z and contained in P and P+, respectively. We
also assume that diam B < diam B’ < 1. Define K C U as a slightly
shrunk cylinder also centered at x, so condition (ii) in definition 2.1
holds. Then there is a volume preserving diffeomorphism A such that
h equals the rotation R inside the cylinder K and equals the identity
outside U. Moreover, the conditions # < 1 and diam B < diam B’
permit us to take A C'-close to the identity. Define ¢ = f o h; then
condition (iii) also holds.

This deals with the case where U is a thin cylinder. Now if U is any
small neighborhood of = then we only have to cover u-most of it with
disjoint thin cylinders and rotate (as above) each one of them. This
“shows” that {Ly = D f,R} is a realizable sequence.

Our first proposition towards the proof of theorem 7 says that if a
splitting F® F' is not dominated then one can find a realizable sequence
that sends one direction from E to F.

Proposition 2.2. Given [ € Diffi(M), a neighborhood U > f and
0 <k <1 be given. Let m € N be large. Suppose it is given a non-
trwial splitting Tome)yM = E @ F along the orbit of a non-periodic
y € M satisfying the following “non-dominance” condition:

1Dy [Fll

) m(D /75

1
> —.
-2
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Then there exists a (U, k)-realizable sequence {Lg,...,Ly,—1} at y of
length m and there is a non-zero vector v € E, such that we have
Lm—l cee Lo(’U) € Ffmy.

Let us explain how the sequence is constructed, at least in the sim-
plest case. Assume that <((E}i,, Fiy) is very small for some ¢ =
I,...,m — 1. We take unit vectors v; € Eyiy, w; € Fji, such that
< (v, w;) is small. As we have explained before, there is a realizable
sequence {L;} of length 1 at f’z such that L;(v;) = w;. We define
L; = Dfyi, for j # 4; then {Lo,..., Ly_1} is the desired realizable
sequence.

The construction of the sequence is more difficult when <(E, F) is
not small, because several rotations may be necessary.

2.3. Second step: Lowering the norm. Let us recall some facts
from linear algebra. Given a vector space V' and a non-negative integer
p, let AP(V) be the p:th exterior power of V. This is a vector space
of dimension (z), whose elements are called p-vectors. It is generated
by the p-vectors of the form vy A --- A v, with v; € V, called the
decomposable p-vectors. We take the norm ||-|| in A?(V') such that if v =
v1 A---Av, then ||v|| is the p-dimensional volume of the parallelepiped
with edges vy, ..., vp. A linear map L : V — W induces a linear map
AP(L) : AP(V) — AP(W) such that

NP(L)(v1 A---Avp) = L(vi)) A--- A L(vp)

Let f € Diﬂi(M ) be fixed from now on. Although it is not necessary,
we shall assume for simplicity that f is aperiodic, that is, the set of
periodic points of f has zero measure.

Given f € Difflli(M) and p € {1,...,d — 1}, we have, for almost
every x,

1
—log [[AP(Df)|| = Ap(f,x) as n — oc.
n

Suppose the Oseledets splitting along the orbit of a point z is not
dominated. Our next task (proposition 2.3) is to construct long real-
izable sequences {Lo, ..., L, 1} at z such that 1 ~log IAP(L_y - - - Lo)||
is smaller then the expected value A,(f,x).

Given p and m € N, we define Fp( f,m) as the set of points z such
that if Top)M = E @ F' is an invariant splitting along the orbit, with
dim E = p, then it is not m-dominated. It follows from basic properties
of dominated splittings (see section 3.1) that I',(f,m) is an open set.
Of course, it is also invariant.
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Proposition 2.3. Let U C Diff}L(M) be a neighborhood of f, 0 < Kk <
1,0 >0 andp € {1,...,d — 1}. Let m € N be large. Then for u-
almost every point x € L',(f,m), there exists an integer N(zx) such that
for every n > N(x) there exists a (U, k)-realizable sequence

{Lo,..., Lo} ={L&™, ..., L&}
at x of length n such that

Api(2) + Apii (2)
2

Moreover, the function N : T',(f,m) — N is measurable.

1 ~ ~
(4) S Log ||\ (Lo - Lo)l| < + 0.

The proof of the proposition may be sketched as follows. Given
z € ['y(f,m), we may assume \,(z) > A\,41(x), otherwise we can take

the trivial sequence L; = D fy;, and there is nothing to prove. Then
we can consider the splitting T, M = E, & F,, where E, (resp. F}) is
the sum of the Oseledets spaces corresponding to the exponents A, (z),

.oy Ap(z) (resp. Apyi(z), ..., Ag(x)). By assumption, the splitting
E & F is not m-dominated along the orbit of z, that is, there exists
¢ > 0 such that

IDS7IsI 1
m(Dfl,) 2

By Poincaré recurrence, there are infinitely many integers £ > 0 such

that the above relation is satisfied (for almost every x). Moreover, it

can be shown, using Birkhoff’s theorem, that for all large enough n,

that is, for every n > N(z), we can find £ &~ n/2 such that the inequality
£ _ 1

above holds for £. Here £ ~ n/2 means that |- — 5| < const.d.

Fix z, n > N(z), £ as above, y = f{(x) and z = f(y). Propo-
sition 2.2 gives a (U, k)-realizable sequence {Lq, ..., Ly_1}, such that
there is a non-zero vector vy € E, for which

(5) Lm—l e L()(’U()) € Fz

y=fiz) =

We form the sequence {EO, ey Zn,l} of length n by concatenating
{foi($); 0<s <£}, {LO,...,Lm_l}, {foi(w); L+m<i <m}.

It is not difficult to show that the concatenation is a (U, x)-realizable
sequence at x.

We shall give some informal indication why relation (4) is true. Let
v € NP(T, M) be a p-vector with ||v|| =1, and let

V! = NP (Lyp_y - - LoD f5) (v) € AP(T,M).



PISA LECTURES ON LYAPUNOV EXPONENTS 11
Since m < n, and Ly, ..., L,,_1 are bounded, we have

1 ~ ~ 1

—1og [|\P(Lp—1 - - Lo)v|| S = log[|AP(D =™V
(6) n n )

+ ~log [A(D VI

To fix ideas, suppose v is a decomposable p-vector belonging to the
subspace AP(E;). Then

(7 Slog A (D VI = Ay, )

If we imagine decomposable p-vectors as p-parallelepipeds then, by (5),
the parallelepiped v’ contains a direction in F,. This direction is ex-
panded by the derivative with exponent at most A\y41(2) = Apt1(2).
On the other hand, the (p — 1)-volume of every (p — 1)-parallelepiped
in T, M grows with exponent at most A,_;(z). This “shows” that

1 —L£—m
(8) gDV S Apia (@) + Ap ().
Substituting (7) and (8) in (6), and using that £ = n — ¢ —m ~ n/2,
we obtain

Lo [P - Ty 22 Ao (@) Ay (o)
n 9 5
= Apia(z) + Ap 1 (2)
()

So the bound from (4) holds at least for p-vectors v in AP(E,). Similar
arguments carry over to all AP(T,M).

2.4. Third step: Globalization. The following proposition renders
global the construction of proposition 2.3.

Proposition 2.4. Let a neighborhood U > f, p € {1,...,d — 1} and
0 > 0 be given. Then there exist m € N and a diffeomorphism g € U
that equals f outside the open set I'y(f, m) and such that

)
[ oy <o+ [ 2ehD 2Rl g
Fp(f’m) Fp(fam)

The proof goes as follows. Let m € N be large andlet N : [',(f, m) —
N be the function given by proposition 2.3 with x = 2. For almost
every x € [,(f,m) and every n > N(x), the proposition provides a

realizable sequence {L;} of length n at z satisfying (4). “Realizing” this
sequence (see definition 2.1), we obtain a perturbation g of f supported
in a small neighborhood of the segment of orbit {z, ..., f*(z)}, which
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is a tower UU- - -U f*(U). Since the set I';(f, m) is open and invariant,
these towers can always be taken inside it. Each tower ULI- - -LI f*(U) =
UU---Ug™(U) contains a sub-tower KLI---LIf"(K) where the perturbed
derivatives are very close to the maps EZ Hence if we choose U small
enough then (4) will imply

Ap 1(2) + Apya (o)
2

To construct the perturbation g globally, we cover all I',(f, m) but a
subset of small measure with a (large) finite number of disjoint towers
as above. Moreover, the towers can be chosen so that they have ap-
proximately the same heights (more precisely, all heights are between
H and 3H, where H is a constant). Then we glue all the perturbations
(each one supported in a tower) and obtain a C' perturbation g of f.
Let S be the support of the perturbation, i.e., the disjoint union of the
towers. Let S’ C S be union of the corresponding sub-towers; then
u(S\S") < ku(S) < 6% Moreover, if y € S’ is in the first floor of a
sub-tower of height n then (10) holds.

To bound the integral in the left hand side of (9), we want to use
the elementary fact (notice I',(f, m) is also g-invariant): for all n € N,

(N | )Ap(g,x)du(x)S% [ 1ogln e dute).

Fp(fam)

1
(10) Elog A" Dgy|| < + 24, Vy e K.

Let ng = H/d. Here comes a major step in the proof: To show
that most points (up to a set of measure of order of §) in I'y(f, m)
are in S' and its positive iterates stay inside S’ for at least ngy iterates.
Intuitively, this is true by the following reason: The set S’ is a g-castle!,
whose towers have heights ~ H. Therefore a segment of orbit of length
no = 6 'H, if it is contained in S’, “winds” ~ §~! times around S'.
Since S’ is a castle, there are only ! opportunities for the orbit to
leave S’. In each opportunity, the probability of leave is of order of
62 (the measure of the complementary I',(f,m) \ S’). Therefore the
probability of leave S’ in ng iterates is ~ § 6% = 4.

Using the fact above, one shows that the right hand side of (11) with
n = ng is bounded by the left hand side of (9), completing the proof
of the proposition.

2.5. Conclusion of the proof. Let I',(f,m) be the set of points
where there is no dominated splitting of index p, that is, I',(f,m) =
NmenI'p(f, m). The following is an easy consequence of proposition 2.4.

IThat is, a union of disjoint g-towers.
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Proposition 2.5. Given [ € Diﬂ’i(M) andp € {1,...,d—1}, let

_ /\P(f’x) _)‘p-l-l(f’x)
wn=[ : du(z).

Then for everyU > f and 6 > 0, there exists a diffeomorphism g € U
such that

| Mlos)dute) < [ A0 duta) = () + 6

Using the proposition we can give the:

Proof of theorem 7. Let f € Diffi(M) be a point of continuity of all
maps LE,(-),p=1,...,d—1. Then J,(f) = 0 for every p. This means
that A\,(f,x) = A\ps1(f, z) for almost every z in the set I'y(f, 00).

Let x € M be an Oseledets regular point. If all Lyapunov exponents
of f at = vanish, there is nothing to do.

For each p such that A\,(f,z) > Ap11(f,z), we have (if we exclude
a zero measure set of x) z ¢ I',(f,00). This means that there is a
dominated splitting of index p, T, M = E, @ F,, along the orbit of
x. It is not hard to see that E), is necessarily the sum of the Oseledets
spaces of f, at the point f"z, associated to the Lyapunov exponents
M(f, ), ..., A\p(f, x), and F, is the sum of the spaces associated to the
other exponents. This shows that the Oseledets splitting is dominated
along the orbit of x. U

2.6. Symplectic diffeomorphisms. Now let (M,w) be a compact
symplectic manifold without boundary, of dimension dim M = 2¢. sub-
space of Diff, (M).

The Lyapunov exponents of symplectic diffeomorphisms have a sym-
metry property: A;(f,z) = —Agq—j+1(f,2) for all 1 < j < ¢. In partic-
ular, A;(x) > 0 and LE,(f) is the integral of the sum of all non-negative
exponents. Consider the splitting

.M =El®E)®E,,

where E}, E2 and E are the sums of all Oseledets spaces associated
to positive, zero, and negative Lyapunov exponents, respectively. Then
dim E = dim E; and dim E is even.

Theorem 8. Let f € Sympli(M) be such that the map
f € Sympl, (M) — LE,(f) € R

is continuwous at f = fo. Then for p-almost every x € M, either
dim EY > 2 or the splitting T,M = E} & E, is uniformly hyperbolic
along the orbit of x.
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In the second alternative, what we actually prove is that the splitting
is dominated at z. This is enough because, for symplectic diffeomor-
phisms, dominated splittings into two subspaces of the same dimension
are uniformly hyperbolic.

Theorem 3 follows from theorem 8: As in the volume preserving
case, the function f +— LE,(f) is continuous on a residual subset R,
of Sympli(M ). Also, there is a residual subset Ry C SymplL(M ) such
that for every f € Ry either f is an Anosov diffeomorphism or all its
hyperbolic sets have zero measure. The residual set of theorem 3 is
R=RiNR,.

The proof of theorem 8 is similar to that of theorem 7. Actually
the only difference is in the first step. In the symplectic analogue
of proposition 2.2, we have to suppose that the spaces F and F' are

Lagrangian 2.

3. PREVALENCE OF EXPONENTIAL BEHAVIOR

We are going to outline the proof of theorems 5 and 6. In the pre-
sentation we focus on the uniform case, with comments about the main
additional ingredients in the extension to the general case. Complete
proofs can be found in [Via].

Before getting into explaining the arguments, let us make precise
what we mean by uniform hyperbolicity and by local product structure.

Uniformly hyperbolic maps. Let f : M — M be a homeomorphism on
a compact metric space M. For x € M and € > 0 define

Wi(x) ={y € M : dist(f"(x), f"(y)) < e for all n > 0}
and
Wi(z) ={y € M : dist(f "(z), f "(y)) < e for all n > 0}
We say that f is uniformly hyperbolic if there exist K > 0, 7 > 0,

£>0, 6 > 0 such that

(1) dist(f™(z), f*(y)) < Ke ™dist(z,y) for all n > 0 and y €
W2(x) and dist(f~ ( ), ["(y)) < Ke ™dist(z,y) foralln > 0
and y € W2(z).

(2) If dist(z,y) < & then W2(z)NW2(y) contains exactly one point,
denoted [z, y], and this point varies continuously with z and y.

2A subspace E of a symplectic vector space (V,w) is called Lagrangian when
dimE = 1 dimV and w(vy,v2) =0 Vvy,v; € E.
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Measures with local product structure. Given any z € M and small
d > 0, the set of points W2 (z) N\WZ(y) with z € W§(z) and y € W§(z)
is a neighborhood B(z, 0) of z, homeomorphic to Wj*(z) x W§(z). Given
a non-atomic f-invariant measure u, let u* be the measure defined on
Wi'(z) by
p(E) = p([B, W3 (2)]).

Define p* on W§(z) analogously. We say that u has local product struc-
ture if p | B(z,0) is equivalent to the product measure defined by

(u* x w) ([, F]) = u*(E) p*(F),
for every z and 0. Equivalently: the unstable holonomy is absolutely
continuous with respect to the family of conditional measures of y along
local stable sets in B(z,d). This condition does not change if the roles
of stable and unstable are interchanged.

Remark 3.1. This notion extends to the general hyperbolic case as
follows. Let u be a hyperbolic measure for a C'*¢ diffeomorphism f.
By Pesin’s stable manifold theorem [Pes76], p-almost every z € M
has a local stable set W) (z) and a local unstable set W% (z) which
are C' embedded disks. Moreover, these disks vary in a measurable
fashion with the point. So, for every £ > 0 we may find M, C M with
u(M.) > 1 — ¢ such that W (z) and W (z) vary continuously with
x € M, and, in particular, their sizes are uniformly bounded from zero.
Thus for any x € M, we may construct sets H(x,d) with arbitrarily
small diameter d, such that

(i) H(x,0) contains a neighborhood of x inside M, ;
(ii) every point of H(z,d) is in the local stable manifold and in the
local unstable manifold of some pair of points in M, ;
(iii) given y, z in H(z,d) the unique point in W*(y) N W*(z) is also
in H(z,0).
Then we say that u has local product structure if y | H(z,d) is equiva-
lent to p"x p*, where u* (respectively p*) is the projection of p | H(x, )
onto W*(z) (respectively W#(z)).

The proof of theorem 6 has three main types of ingredients, which
are explained in the three sections that follow. We may consider r > 1,
because the Holder cases 0 < r < 1 are immediately reduced to the
Lipschitz case by a change of the metric. Moreover, it is no restriction
to assume that y is ergodic: any invariant measure measure with local
product structure has only finitely (in the general, non-uniform case:
countably) many ergodic components, and they also have local product
structure. Finally, we consider real-valued cocycles but the arguments
apply also (they are even easier at a final step) in the complex case.
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3.1. Dominated behavior and invariant foliations. Let us con-
sider f : M — M to be uniformly hyperbolic, with constants K, 7, &,
d,and A : M — SL(d,R) to be a C" cocycle, r > 1.

Definition 3.2. A point x € M is dominated if there are N > 1 and
6 < 7 such that

k-1
[T HAY (PN @AY (Y () 7H] < 0 forall k> 1,
J=0

and analogously with f and A replaced by their inverses. The set of
such points is denoted D4 (N, 6).

Remark that ||B]|||B~!|| is an upper bound for the expansion ex-
hibited by the projective maps By and B# induced on the projective

space CP4! by a linear isomorphism B : C¢ — C? and its inverse B~ 1.

Proposition 3.3. Suppose M\(A, 1) = 0. Then u-almost every point is
dominated.

The key to the proof is to express the Lyapunov exponent, which is
defined by a sub-additive limit

1 n
MA2) = lim * log||A"(@)]
in additive terms (a Birkhoff average):

Lemma 3.4. Suppose A(A,u) = 0. Given 6 > 0 and p-almost every
x € M there exists N > 1 such

k—1

1 1 .

- ) :NlogHAN(fJN(x))H <8 forallk>1.
j=0

Proof. Fix € > 0 small so that 4esuplog||A|| < J. Let n > 1 be large
enough so that the set A, of points x € M such that

1 d

~ log || A" < -

log |47(2)]] < 5
has p(A,) > (1 — £?). Let 7(x) be the average sojourn time of the f-
orbit of z inside A,, and I';, be the subset of points for which 7(z) >
1 — €. By sub-multiplicativity of the norms

1 ki—1 1

k—1
1 1 . .
12 — — log ||A( filn < — —log ||A"(f7"
(12 13 gl ATGT@)I < 5 X log |4 @)
Jj=0 7=0
for any x € I';, and any k,! > 1. Fix [ large enough so that for any
n > [ at most (1 — 7(x) + €)n of the first iterates n of x under f”
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fall outside I';). Then the right hand side of the previous inequality is
bounded by

0 0
3 + (1 —7(x) +¢)suplog ||4]| < 2 + 2e suplog || A]| < 6.

This means that we may take N = [n. On the other hand,

u(T,) + (1 — e)u(M\T,) > / 7(2) dp(z) = p(A,) > (1— )

implies that p(I';)) > (1—¢). Thus, making e — 0 we get the conclusion
for p-almost every x € M. O

To deduce Proposition 3.3, choose 46d < T and observe that ||A7!|| <
|A]|4~" because these matrices have determinant 1.

Remark 3.5. Ergodicity is not necessary for Proposition 3.3 nor for
Lemma 3.4. On the other hand, in the ergodic case similar arguments
show that for every § > 0 there exists a uniform N > 1 such that

k—00

k-1
1 1 ,
lim z jg_o N log [|[AY (f7N(z))|| < 6 for u-almost every z € M.

Proposition 3.6. Suppose x is dominated. For every y, z € W (x),
- L -1
H. = lm A"(z)"A"(y)

exists and satisfies Hy , = Hy ,oHy , and H} ) ¢, = A(z)oH; ,0A(y)~
and ||H; , —id|| < Ldist(y,z) for some L > 0 that depends only on
K,7,N,6.

Using domination and exponential contraction of orbits inside W} (z),
one shows that A"(z)™'A"(y) is a Cauchy sequence: for all n > 0,

A" (2) TP AT (y) — A™(2) 7 A™(y)|| < comst €™ dist(y, 2).

The other claims in the proposition follow easily. There are analogous
results for

Hy, = lim A™(2)T A (y)

n——0o0

when y, z € W¥(z).

Remark 3.7. We say a point is k-dominated, £ > 1 if the condition
in Definition 3.2 holds with k6 < 7. Proposition 3.3 remains true for
k-domination, any k£ > 1. Assuming 2-domination we also have

|1 H i), pi(z) — id || < const =) dist(y, z) < const dist(y, 2)

for all 7 > 1, which is useful for the sequel of the arguments.
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Now we consider the projective cocycle f4 : M xRP4 ! — M xRP¢*
associated to A, as well as the projectivizations
hi,:RP™' - RP*' and A%, :RP“' — RP*"

of the linear isomorphisms H; , and H,,. Given a dominated point
x € M, the Lipschitz graphs

W (@,8) = {(y, h3,(€)) - y € Wi ()}
and

W (@, €) = {(z, hy ,(€)) : z € Wi (z)}
are the strong-stable set and the strong-unstable set of any (x,§) €
{r} x RP% . Indeed,

Lemma 3.8. For any y € W(x) and &, n € RP* 1,
(1) lim sup—logdlst (fA(2,8), FA(y h54(€)) < —T and

(2) lim supllogdlst (fA(iE €), f4(y, xy(f))) <—0en= h’i,y(g)'

n—+oo
with z € W*(x).

Analogously for h®
We call hy , the strong-stable holonomies, and hy, , the strong-unstable
holonomzies of the projective cocycle.

ZIy2

Remark 3.9. An easy, yet important, observation is that domination
is a robust property: given any N, 6, and 6’ > 0 there exists a C°
neighborhood U of A such that

Da(N,0) C Dg(N,0¢') forall BeU.
The following proposition summarizes most of this section:

Proposition 3.10. Suppose M\(A,pn) = 0. Then there exists an in-
creasing sequence of compacts My whose union has full p-measure in
M, and there exist neighborhoods U;, of A in C"(M,SL(d,R)) such
that, given any x € My and any B € UL, the strong-stable set and
the strong-unstable set of every (z,£) € {x} x RP“™" for the projective
cocycle fg are L-Lipschitz graphs over W2 (x) and W(x), respectively.

Remark 3.11. The definitions and results extend to general hyper-
bolic systems, considering hyperbolic blocks as in remark 3.1, that is,
compact sets where we have
e uniform estimates for the contraction along stable sets and the
expansion along unstable sets
e uniform lower bounds for the angles between the Oseledets sub-
spaces and for the sizes of stable sets and unstable sets.

Proposition 3.10 remains true as stated.
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3.2. Invariant measures of projective cocycles. Consider the pro-
jective cocycle
fa: M x RP — M x RP4!

associated to A : M — SL(d,R). We are going to analyze the f4-
invariant measures m on M x RP¢~! which project down to u, that is,
such that (m).m = p.

We consider a family of conditional measures {m, : x € M} of
m along the projective fibers: each m, is a probability on the fiber
&, = {z} x RP*!, depending measurably on z, and

m(E) = / ma(E N &) dp(z)

for every measurable set E C M x RP*'. Such a disintegration into
conditional measures always exists and is essentially unique.

The first result is that if the Lyapunov exponents vanish then the dis-
integration of any such m is py-almost everywhere invariant under local
strong-stable holonomy and under local strong-unstable holonomy:

Proposition 3.12. Suppose M\(A, 1) = 0. Then for every fa-invariant
probability m and for each L > 1 there exists a full p-measure subset
E;, of W (M) such that

My, = (hgjl,yz)*mm

for any y1, yo € E, on the same local stable set. Moreover, there is an
analogous statement for unstable holonomies.

The proof is based on the following result of Ledrappier:

Proposition 3.13 (Ledrappier [Led84]). Let (M., B., i.) be a proba-
bility space and T : M, — M, be a measure-preserving transformation.
Let B C B, be a o-algebra and B : M, — GL(d,R) be a measurable
function such that

(1) T-Y(B) C B and {T™"(B) : n € Z} generates B, p.-mod 0

(2) B is B-measurable p,-mod 0
Suppose A\(B,x) = 0 at p.-almost every x € M. Then for any fp-
invariant measure m on M x RP* 1 with (71)«m = ., the disintegra-
tion {m, : x € M.} is B-measurable.

If one considers B = o-algebra of measurable subsets of M, = M
consisting of entire local stable manifolds of 7" = f, then the theo-
rem is saying that if a cocycle is constant along local stable manifolds
and the Lyapunov exponents vanish, then the conditional measures of
any 1nvariant probability are almost everywhere constant on local stable
manifolds.
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Roughly, to deduce Proposition 3.12 we carry out an affine change of
coordinates on the fibers to turn A into a cocycle B constant on local
stable manifolds. This change of coordinates is defined through local
stable holonomies, and it does not affect the Lyapunov exponents, as
we are going to explain.

For simplicity, we use some Markov partition R of f (this is neces-
sary, see Remark 3.14 below concerning the general hyperbolic case).
The local stable manifold Wy _(z) is the set of points with the same
forward itinerary as z, relative to R. Fix an atom R € R and let
n(z) > 1 be the first return time of a point z € R to R. Then define

B() ={ APIE e PN with 025 <n(2)

Observe that in the first case

A(f(2)) = by iy - AQ) R

Hence, the two cocycles are conjugate, by a bounded projective conju-
gacy. In particular, |B*1]|| is bounded, which ensures that Oseledets
theorem applies to B, and the two cocycles have the same Lyapunov
exponents at almost every point. Under our assumptions that means
that

A(B,z) = A(A,z) =0 p-almost everywhere.
Consider the o-algebra B of measurable sets £ C M such that, for any
z€R,

W) NE#0 = f1(Wie(2)) C E.
The assumptions of theorem 3.13 are easily checked:

(1) f~1(B) C B and {f*(B) : n € Z} generates M p-mod 0.
(2) the cocycle B is B-measurable (constant on each f7(Wiec(2)))-

Then, by theorem 3.13, the conditional measures of any fg-invariant
probability measure are constant on local stable manifolds almost ev-
erywhere on R. Reversing the conjugacy, this means that the condi-
tional measures of any f4-invariant probability measure are invariant
under local stable holonomies almost everywhere on R.

Remark 3.14. In the general hyperbolic case one proves that for pu-
almost every x € M, there exists a neighborhood R of x inside M,
which is foliated by a family of stable disks {S(z) : z € H"} with a
Markov type property:

e S(z) C Wi(z) and S(z) contains a disk of uniform size around
z inside the stable manifold

e 2 varies on a subset H" of the local unstable manifold of x and
R = U,cnuS(z) is a neighborhood of z inside M7,
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o f1(S(w)) N S(z) # 0 implies f/(S(w)) C S(z).
Then we have the statement as before, on a full measure subset of this
set R, through similar arguments.

Let us give an informal outline of how the argument will proceed.
Suppose the Lyapunov exponents of A vanish. We are going to consider
periodic points p; and po, and a heteroclinic point ¢ € W*(p;)NW*(py),
all contained in the Markov set R. One may choose the periodic points
so that all the eigenvalues of D f*i(p;), k; = per(p;) have distinct norms:
the cocycles for which such points do not exist form an co-codimension
subset. Then every D f-invariant probability on the projective fiber of
p; must be a convex combination of the Dirac measures supported on
the points in RP4~! corresponding to the eigenspaces of the derivative.

We want to apply this to the conditional measure m,, of some fy-
invariant measure m on the projective fiber of p;. Then we want to
argue, using the holonomy invariance proposition 3.12, that

(13) ht (F1)=h (Fs)

P1,q P2,q

for some eigenspaces E; of D f* (p;) and E, of Df*2(p,). See figure 1.

EI"[\ hgl »q
al |
%
Y
D1

FiGure 1. Breaking holonomy invariance

Now, we may modify the cocycle near f(q) to change the right hand
side of (13) without affecting the left hand side, thus breaking the
equality. In this way we shall conclude that the set of cocycles with
vanishing exponents is locally contained in a closed hypersurface. Since
there are infinitely many periodic points in R, we just have to vary p;
and ps to conclude that this set has co-codimension.
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One obvious difficulty with this plan is that conditional measures
are uniquely defined only almost everywhere, so that it does not really
make sense to speak of m,,. Another, is that proposition 3.12 only gives
invariance under holonomy on a full measure subset: a priori, it is not
guaranteed that either p;, ps, or ¢ are in this set. These difficulties are
overcome by the continuity statement that follows. This is the main
step where we use the assumption of local product structure.

Proposition 3.15. Suppose M\(A, ) = 0. Then for every fa-invariant
probability m and for each L > 1, there exists a disintegration {m,} of
m such that

(1) z +— m, is continuous relative to the weak* topology
(2) {m.} is invariant under both strong-stable holonomy and strong-
unstable holonomy

everywhere on the support of p | W.(Mr) N W (Myg).

Proof. Let {m,} be any disintegration of m. Using proposition 3.12
twice, we find a full y-measure subset G, of W (Mp)NW (ML) such
that {m,} is invariant under strong-stable holonomy and under strong-
unstable holonomy for any pair of points of G, (in the same local stable
manifold or local unstable manifold, respectively).

Fix some local unstable leaf 4* with p*(v*\ G1) = 0. Then define
{m!} by forcing h*-invariance from {m,} restricted to v*:

miu = (hi,w)*mz ifwe I/Vlf)c(z), = ,Yu

Note that m! = m, almost everywhere, so {m/} is still a disintegra-
tion of m. This disintegration is invariant under local strong-stable
holonomy and, consequently, m/, varies continuously on local stable
manifolds.

Next, fix some local stable leaf * with p*(y* \ Gr) = 0 and also
u({z € v*: m!, # m,}) = 0. Then define {m?} by forcing h*-invariance
from {m’} restricted to y°:

my, = (h ), if w € Wig(2), 2z € 7"

Then {m?} is a disintegration of m which is invariant under local
strong-unstable holonomy and varies continuously with the point z on
Wige (ML) N Wit (My).

Now construct a disintegration {m*®} by a dual procedure, inter-

changing stable with unstable. Then
e m¥ =m; at p-almost every point of W (M) N W (My).
e mY is h¥-invariant and m] is h*-invariant.
e z — mY and z — m$ are continuous on W (M) N W (Myg).
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This implies that m% = m? on the support of p | W (Mp)NW . (ML).
It suffices to take m, = m% = m] on this set. 0

Remark 3.16. By local product structure, the support of u | W.(M7,)
consists of entire local unstable manifolds, and analogously for the sup-
port of u | Wi (My). Moreover,

K, = supp (p [Wige (M) N Wi (ML) =
= supp (1 | Wise(ML)) Nsupp (i | Wi (ML)).

In particular, this set K; has local product structure.

3.3. Periodic points and obstructions to zero exponents. Now
we implement the strategy outlined in the previous section. Previously,
we have constructed compact sets K with local product structure and
p-measure going to 1 when L — oo, such that

(a) points in K; are dominated, with uniform estimates on the
constants N and @ in definition 3.2;

(b) strong holonomies over the stable and unstable manifolds of
points in K, are Lipschitz, with uniform Lipschitz constants;

(c) m admits a disintegration which is continuous and invariant
under strong-stable and strong-unstable holonomies over K7, .

Lemma 3.17. For p-almost every z € K;, N D4(N,0) and any & > 0
there exists a pertodic point p of f such that

(1) d(f7(p), f7(2)) < € for all 0 < j < per(p)
(2) p is dominated, with constants N' = N and 0' ~ 0.

Proof. By the Poincaré recurrence theorem, given any ¢ > 0 then the
fN-orbit of almost every z € K, returns to Ky, in the 6-ball around z:
there is £ > 1 such that f¥¢(z) € K, N B(z,6). Choosing ¢ sufficiently
small with respect to &, we may use the shadowing lemma [Bow75] to
find a point p € M such that fN(p) = p and d(f’(p), f(z)) < € for
all 0 < j < N/.

Consider any ¢ > f. Since z is dominated with constants N and 6,
taking € > 0 to be sufficiently small we ensure (just by continuity) that

k—1
TTIHAY Y EDITAN (7N (p)) | < &N forall 1 <k < .
3=0

Since p has period N/, it follows that inequality is true for every k£ > 1.
So, p is dominated with constants N and 6'. O

Remark 3.18. In the general hyperbolic case use Katok’s closing
lemma [Kat80] instead: for any hyperbolic block H and any ¢ > 0
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there exists § > 0 such that if z and £ > 1 are such d(z, fN(2)) < ¢
and both points are in H then there exists some p € M such that

e fN¢(p) = p and p is a hyperbolic saddle.

e d(f/(p), f1(z)) <eforall 0 <j< NL.
The proof also provides uniform estimates on the eigenvalues of D f¥*(p)
and on the sizes of the Pesin stable and unstable manifolds. In partic-
ular, on is able to deduce that p is dominated, with constants N/ = N

and 0" ~ 0, and that its stable/unstable manifold intersects the unsta-
ble/stable set of K7, .

We construct two such periodic points p; and p,, close enough so
that their local stable and unstable manifolds intersect at some point
g. An important technical step is to construct a larger compact set

K, > K U{pi,p2,q}
with local product structure, and such that properties (a), (b), (c) at
the beginning of the section remain true, with slightly worse estimates.
Roughly speaking, K, is obtained as the intersection of the saturation

¥
]

D2 \
- /

pl‘ Tq

—H
—H

Ky

1
1
L~

FiGure 2. Constructing a larger hyperbolic block
towards p; and ps of the stable and unstable manifolds through K.
See figure 2. Using that u has local product structure one ensures that

(14) supp(p | K1) D {p1,p2,4}.
Let {7, } be a disintegration of an invariant probability m continuous
over K, relative to the weak* topology. Then

Lemma 3.19. A" (p;).m,, = m,, fori=1,2, where k; = per(p;).

This is easy to prove. First, since m is invariant A*(2).m, = my(,)
for any k > 1 and almost every z. By continuity, this extends to the
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support of u restricted to any positive measure set. Hence, by (14), it
holds at our pair of periodic points.

Our previous constructions are robust under small C° changes of the
cocycle, cf. remark 3.9, so the following does make sense:

Lemma 3.20. For the majority of nearby cocycles B, the probabil-
ity My, 15 a conver combination of Dirac measures supported on the
eigenspaces of B (p;).

The proof is easy in the complex case: Almost all complex-valued
matrices (the complement of a subset with positive codimension) have
all their eigenvalues with different norms. Then the ergodic invariant
measures on the projective space are the Dirac measures supported on
the corresponding eigenspaces. In the real case the argument is quite
more subtle: actually, one may have to replace each periodic point p;
by a new one, with a much higher period but spending most of its
iterates close to p;. This construction is explained in the last section
in [BV00]. Of course, one needs to check that these new points satisfy
al the relevant estimates, like hyperbolicity or domination, with only
slightly worse estimates.

Now we have established the set-up described around figure 1, and
the argument may be completed as explained before: If the Lyapunov
exponents vanish then eigenspaces at p; and at p, must be sent to the
same point in the projective fiber over ¢ by the strong-unstable ho-
lonomy and the strong-stable holonomy, respectively. By considering
perturbations of the cocycle near f(g) one sees that this is a codi-
mension 1 phenomenon. Exploring the fact that there are infinitely
many distinct periodic points we conclude that vanishing of Lyapunov
exponents is an oo-codimension phenomenon.
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