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1 Definitions and Examples

Let f: M — M be a measurable map on some measurable space M. Let pu
be a probability measure defined on the o-algebra of M, invariant under f:

w(f~H(B)) = w(B) for every measurable set B C M.

We use ¢, to represent the Dirac measure supported on a point p in M.

Definition 1.1. The basin of pu is the set B(u) of points z € M such that,
1 n—1
— Z(Sfj(z) — p in the weak” sense, as n — oo. (1)
n
=0

In other words, z € B(u) if and only if the time average

I

Jim ~ ]Z:;so(f (2))

exists and coincides with the space average [ ¢ dyu, for every continuous func-
tion ¢ : M — R. Then one also says that z is a generic point of p.

The main concept in this section is that of observable invariant measure:
if an initial state z € M is chosen at random then z € B(u) with positive
probability, in a physically relevant sense. In which case, the measure p can
be computed as the time average along the orbit of z. To turn this into a
definition, one has to express the idea of physical chance precisely: as usual,
we postulate that this corresponds to Lebesgue measure in the space M.

For this last notion to be defined M should have some smooth struc-
ture, e.g., a finite-dimensional manifold, or branched manifold, possibly with
boundary. More generally, M could be a subdomain, or even a tower over a
subdomain of such a manifold. Then we call Lebesgue measure to any mea-
sure m on the Borel g-algebra of M that is generated by a volume form. More
precisely, for every p € M there exists a volume form w, on a neighbourhood
Vp of p, so that

m(B) = / dw, for every measurable set B C V.
B

Of course, this is not uniquely defined. However, since different Lebesgue
measures in M are all equivalent, in the sense that they all have the same



zero measure sets, it is often irrelevant to which of them we are referring. So,
except where otherwise specified, we use “Lebesgue measure” to mean any
measure in the Lebesgue class.

Definition 1.2. An f-invariant Borel probability measure p is a physical,
or Sinai-Ruelle-Bowen (SRB) measure for f if its basin B(u) has positive
Lebesgue measure.

The previous definitions extend naturally to continuous-time dynamical
systems, i.e. systems described by flows or by semi-flows. Let X* ¢ > 0 be
a semi-flow on M: X° is the identity, and each X* ¢ > 0, is a measurable
transformation on M, with X' = X' o X for every ¢,s. A probability
measure g is invariant under the semi-flow if it is invariant under every map
Xt t>0.

Definition 1.3. The basin of u is the set B(u) of points z € M such that,
given any continuous function ¢ : M — R,

%/0 gp(Xt(z))dt—>/<,0d,u as T — 4o0. (2)

We say that u is a physical, or Sinai-Ruelle-Bowen (SRB) measure for X if
its basin has positive Lebesgue measure.

Example 1.4. Suppose the map f : M — M admits an invariant probability
measure p that is absolutely continuous with respect to Lebesgue measure,
and ergodic. Then p is a physical measure for f, as a simple consequence
of Birkhoff’s ergodic theorem. Indeed, the theorem states that B(u) has
non-zero (even full) measure for p, and so it must have non-zero Lebesgue
measure.

For the same reasons, ergodic absolutely continuous invariant measures
of a semi-flow are physical measures for the semi-flow.

Example 1.5. Let f : [0,1] — [0, 1] be a piecewise C? map with a neutral
fixed point at the origin, as in Figure 1. That is, we suppose that f(0) =0
and f'(0) = 1, but the second derivative f”(0) is non-zero. On the other
hand, |f(z)| > 1 for every z # 0, including z = ¢*. It can be seen that the
orbit of Lebesgue almost every point z € [0, 1] spends almost all the time in
an arbitrarily small neighbourhood of the origin: given any ¢ > 0,

L0 n- PRI <0} 1 asnow
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Figure 1: A map with a neutral fixed point

It follows that, given any continuous function ¢ : [0,1] — R and any ¢ > 0,

we have
1 n—1

=3 e(2) - 0(0)] < €
=0
for every large n. So, for every continuous function ¢ and Lebesgue almost

every point z,

n—

i L) = wl0) = [ i

7=0
This means that the Dirac measure at zero is the unique SRB measure of f.

Now we describe an example, due to Bowen, of a flow in the plane for
which time averages fail to converge for a whole open set of points. In
particular, there is no physical measure whose basin intersects this open set.
Similar arguments apply to the time-1 map f = X! of this flow.

Example 1.6. The flow is described in Figure 2. A main feature is the
existence of a double saddle-connection between saddle-points A and B. We
denote by L the region bounded by the separatrices that form this connection.
Let —A4 <0 <04 and —Ag < 0 < op be the eigenvalues of the flow at A
and B, respectively. We assume that

AAAB

0A0B

> 1,

to ensure that the boundary of L attracts the orbits of all points z € L
that are close enough to it. Then those orbits must visit, alternately, the
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Figure 2: A flow without physical measure

vicinities of A and B. Fix cross sections X%, 3% close to A and intersecting
its stable and unstable separatrices, respectively. Similarly, let X%, 3% be
cross sections intersecting the stable and unstable separatrices of B. Fix z
and let

- <TR(0) <TA(G) <T(y) <Tp() <TiG+1) <---

be the successive times at which the orbit of z intersects these cross-sections.
Then 74(j) =T3(j)—T5(j) and 75(j) = Tg(j)—T5(j) correspond to the suc-
cessive times spent by the orbit near each of the saddles. It is an elementary
exercise to check that

o 74(j) = 75(j) and 75(j) ~ Ta(j+1), where ~ means that the quotients
of the two expressions are bounded by some constant independent of 7;

e both sequences 74(j) and 75(j) increase exponentially fast with j, at
the rate (AyAg)/(0a0B);

e the transition times T5(j) — T4(j) and T5(j + 1) — TH(j) are bounded
by some constant independent of j.

As a consequence, each visit time is comparable to the total time elapsed
thus far: there exists ¢ > 0 such that

Ta(j) = cT3(j) and  75(j) = cT3()),

for every j. Now we may easily conclude that the time averages T~ [ dx+(,) dt
do not converge as 17" — 400, for any point z € L close to the boundary of



L. Indeed, suppose otherwise, and let 4 be the limit. Let V' be some neigh-
bourhood of A as in Figure 2. Up to slightly modifying V' we may suppose
that its boundary has zero p-measure. Then p(V) = limy_, 1o 7 (T), where

() = 7 / Xy (X1(2)) dt

is the fraction of the time interval [0, T] spent by z in V. Now,

TV(Tzo))z;é((?)zc but (TG4 1) <

for every j. This implies that 7y (7") has no limit as 7 — o0, and so we
have reached a contradiction.

(T3 ()

Such examples show that SRB measures need not exist for all systems.
Existence results are usually difficult, and are known only for certain classes
of systems. In particular, it is unknown in which generality do the basins
of physical measures cover at least a full Lebesgue measure subset of the
phase-space M. We will return to this fundamental problem later.

Right now, let us suppose that a map f : M — M does have some SRB
measure . Let m denote Lebesgue measure restricted to the basin of u, and
normalized so as to be a probability. By definition,

%Zw(fj(Z)) — /(pdu

for every z € B(u), and every continuous function ¢ : M — R. Suppose,
for the sake of simplicity, that M is compact. Then the sequence on the left
is bounded in norm by sup |p|. As a direct consequence of the dominated
convergence theorem,

n—1
1 )
/EE <pof9dm—>//<pd,udm:/cpd,u.
=0

The expression on the left is precisely the integral of ¢ with respect to the
measure 1! Z;.:& fim. In other words, we have proved that

n—1
fom — u in the weak® topology. (3)

G=0

1

n



This simple observation suggests that SRB measures might be found as
limits or, at least, accumulation points of the averages of forward iterates fim
of Lebesgue measure, possibly restricted to some subset of the phase-space
M and normalized.

It is a well-known consequence of the Banach-Alaoglu theorem that the
space of probability measures on a compact metric space is compact with
respect to the weak* topology. See [33, Section 1.8] for instance. Therefore,
accumulation points

p=lim — 3 fim (4)

always exist. Moreover, assuming that the map f is continuous on M, the
push-forward operator f, : n — f.n is also continuous, relative to the weak*
topology in the space of Borel measures in M.

Using this fact, one concludes readily that any such accumulation point
44 is an invariant measure for f. In fact,

nE—1 nE—1

= i ., — _ J (£
fepp = lim Zf m = lim me—i—hm k(f m—m).

k—o0 Ty, k—o0 Ty, k—o0
7=0 7=0

The first limit on the right is u, by assumption, and the second one is iden-
tically zero: given any continuous function ¢,

1

(po f™ —p)dm — 0 asng — 0.
Tk

This shows that f,u = p, which is just the same as saying that yu is invariant.

On the other hand, there is no a priori reason for a measure p as in (4)
to have particularly interesting properties: recall for instance Example 1.6.
Indeed, to be able to conclude that such a p is an SRB measure one must
keep a fair control of the sequence

n—1
=3 fim, (5)
j=0

which is where most of the difficulty lies.

In the next three sections we present some important cases where such a
control is possible: the measures y,, are all absolutely continuous with respect
to Lebesgue measure, with uniform bounds on the densities (Radon-Nikodym
derivatives). More general situations will appear subsequently.
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2 Uniformly Expanding Maps

In this section we prove that any uniformly expanding map on a compact
(connected) manifold with Holder continuous Jacobian admits a unique phys-
ical measure . Moreover, the basin of u is a full Lebesgue measure subset
of the manifold. See Theorem 2.1 for the precise statement. This is a central
result from Ruelle’s theory [?] of equilibrium states for expanding maps.

2.1 Definitions and Basic Properties

Let M be a compact manifold and f : M — M be a C! map.

Definition 2.1. We say that f is (uniformly) expanding if there exist con-
stants C > 0 and o > 1 such that

|IDf"(z)v]| > Co™||v|| for every x € M, v e T,M,andn>1. (6)

Here || - || denotes an arbitrary Riemannian norm on the manifold M:
since all norms are equivalent, (6) holds for || - || if and only if it holds for any
other norm, apart from the fact that the constants may vary. As a matter of
fact, up to choosing a convenient norm, we may always suppose that C' = 1.

Indeed, let (6) hold for some norm || - ||, and constants C,o. Given any
1 <o, <o, fix N > 1 large enough so that C(c/5,)Y > 1. Then, consider
the Riemannian norm || - ||, defined by

N-1
[0l =Y o | D (z)v]?,
j=0

for each x € M and v € T, M. Direct substitution gives
IDf(z)v|l« > o.||v||s for every x € M and v € T, M. (7)

A Riemannian norm as in (7) is said to be adapted to f. It also follows
from these remarks that the set of expanding maps is open in the C"* topology:
if f satisfies (7) then, up to slightly reducing o, > 1, so does any map g in
some C! neighbourhood.

Example 2.2. Let F' : R* — R” be a linear map such that F(Z") C Z".
Then there exists a unique map f on the n-dimensional torus M = R"/Z"
such that fom = mo F, where 7 : R* — M is the canonical projection. If

all the eigenvalues A, ..., A\, of F' have norm larger than 1 then this map f
is expanding: any 1 < o < inf; |\;| will do in (6).
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According to [55], every expanding map on the n-torus is topologically
conjugate to a linear model f as in Example 2.2. More generally, cf. [21],
a manifold admits expanding maps if and only if it is an infranilmanifold,
and then any such map is topologically conjugate to an algebraic expanding
endomorphism. In general, the conjugacy is a singular map: it does not
preserve the class of sets with zero Lebesgue measure.

Definition 2.3. Let X, Y be metric spaces and f : X — Y be a continuous
map. Given C > 0 and 0 < v < 1, we say that f is (C,v)-Holder if

dY(f(xl)a f(%)) < CdX(x1,$2)V for every x,,z9 in X.

When v =1 we also say that f is C'-Lipschitz. In general, f is v-Holder if
it is (C, v)-Holder for some C > 0.

The following theorem summarizes results of existence and uniqueness of
SRB measures that we prove in Subsections 2.2 and 2.3.

Theorem 2.1. Let f : M — M be a uniformly expanding map on a compact
manifold M. Assume that there exists 0 < vy < 1 such that the logarithm
M > x — log|det Df(x)| of the Jacobian of f is vy-Holder.

Then f admits a unique invariant measure p which is absolutely contin-
uous with respect to Lebesgue measure. Moreover, u is ergodic, its support
coincides with M, and its basin B(u) is a full Lebesque measure subset of M.
In particular, u is the unique SRB-measure of f.

The assumption of expansiveness is used in the proof of this theorem
through the consequences provided by the following proposition. We fix,
once and for all, a Riemannian norm || - || adapted to f, and denote d(-,-)
the corresponding distance on the manifold.

Proposition 2.2. Let M be a compact manifold and f : M — M be a C*
expanding map. Then there exists k > 1 such that every point y € M has
exactly k pre-images under f. Moreover, there exists pg > 0 such that given
any pre-image x of a point y € M there exists a C* map h : B(y, po) — M
with f o h =1id, h(y) =z, and

d(h(y1), h(y2)) < o " d(y1,y2) for every yi,y2 € B(y, po)-



Proof. We only sketch the arguments, as they are quite standard. Clearly,
(6) implies that the derivative Df is an isomorphism at every point. So,
given any x € M there exists py > 0 such that f maps some neighbourhood
V(z) of z diffeomorphically onto the ball of radius py around y = f(z). By
compactness, py may be chosen independent of z. Then the number of pre-
images of any y € M must be finite and even bounded. It also follows that
the set of points with exactly n pre-images is open, for every n > 0. So, by
connectedness, the number of pre-images must be the same for every y € M.
Finally, let us denote h = (f | V(z))~!. Since the norm is adapted to f,

IDh(2)|| = IDf(h(2))7}]| < o~
for every z in the domain of A, and so h contracts distances by a factor o1,
as stated. O

Maps h as in the statement are called (local) inverse branches of f. More
generally, we can define inverse branches A" of f, n > 1, as follows. Given
y € M and z € f~™(y), let hq,..., h, be inverse branches of f with

hi(f" 4 (@) = f1 7 ()

for every 1 < j < n. Since each h; is a contraction, its image is contained
in a ball of radius less than py around f*7(z). Then h™ = h, 0---0 hy is
well-defined on the ball of radius py around y. Clearly, f” o A" = id and
h*(y) = z.

2.2 Upper Bounds on the Densities

It is easy to see that the pre-image of a zero Lebesgue measure set under
an expanding map f also has zero Lebesgue measure. It follows that if
a probability measure v is absolutely continuous with respect to Lebesgue
measure, then the same is true for its push-forward f,v under f. Let m be
Lebesgue measure on M, normalized so that m(M) = 1. Then, in particular,
fm is absolutely continuous with respect to m for every n > 1.

We prove in Proposition 2.4 that if f is an expanding map with Holder
continuous Jacobian, as in the statement of Theorem 2.1, then the densities
d(f"m)/dm are bounded by some constant independent of n > 1. From
this we deduce that any accumulation point of the sequence (5) is absolutely
continuous with respect to Lebesgue measure, with density bounded by that
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same constant. In particular, f has some invariant measure p that is abso-
lutely continuous with respect to Lebesgue measure.

The main step is the following result of bounded distortion, which is also
the only place where the assumption of Holder continuity is needed in the
proof.

Lemma 2.3. There exists C; > 0 such that given anyn > 1, any y € M,
and any inverse branch h"™ : B(y, po) — M of f",

| det DA™ (y1)|

A DAl = vy < 200 )"0
| det Dhn ()| = exp(C1d(y1, y2)") < exp(C1(2p0)™°)

for every y1,y2 € B(y, po)-

Proof. Let us write h™ as a composition h™ = h, o---o0 hy of inverse branches
of f. We also denote h* = h;o---0oh; for 1 <i < n, and h® = id. Then

[det DR ()] L »
LV PR)| S og | det Dhy( _log | det Dhy (i |
8 | det DA (1) ; og | det Dh;(h" " (y1))| — log | det Dh;(h" (y2))]

Note that log| det Dh;| = —log | det D f|oh; and, by assumption, log| det D f|
is (Co, vp)-Holder for some Cy > 0. Moreover, cf. Proposition 2.2, each h; is
a o~ !-contraction. Then,

et DR ()| s
- w7 K 0 < E %) Vo
g ‘ det Dhn(yg)‘ = Z:ZI CO d(h (yl)a h (yQ)) ~ CO g d(yl, yz)

i=1
So, to prove the lemma it is enough to take C; = Cp Y o, oo, O

Proposition 2.4. There exists Co > 0 such that (fI'm)(B) < Com(B) for
every measurable set B C M and every n > 1.

Proof. 1t is no restriction to take B contained in some ball By = B(z, py) of
radius py around a point z € M. Lemma 2.3 implies that
m(h"™(B det Dh™| dm m(B
(0(B) _ Jpldet DIl dm oy miB)
m(h™(Bo))  [p, | det Dh"|dm m(Bo)

for each inverse branch A" of f™ at z. Moreover, (f'm)(B) = m(f ™(B)) is
the sum of m(h"™(B)) over all inverse branches, and analogously for By. So,

we get that (Frm)(B) (B)
+m)(B voy M
(rm)(By) = P OCR )
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Of course, (f'm)(By) < (f'm)(M) = 1. Moreover, the Lebesgue measure
of the balls of fixed radius p, is bounded from zero by some oy > 0 that
depends only on py . Now it suffices to take Cy = exp(C1(2p9)"°)/ . O

Lemma 2.5. Let v be a probability measure on a compact metric space X,
and ¢ : X — [0,+00) be integrable with respect to v. Let p;, i > 1, be a
sequence of probability measures on X converging to some u, in the weak*
sense. If pu; < v for every i > 1 then u < @v.

Proof. Let B be any measurable set. For each € > 0, let K, be a compact
subset of B such that u(B\ K.) and (pv)(B\ K.) are both less than £. Then
let A be the open neighbourhood of K, defined by A, = {z: d(z, K.) <1},
where 7 > 0 is small enough so that the measure of A, \ K. is less than ¢ for
both p and pv. Changing r if necessary, we may suppose that the boundary of
A; has zero p-measure (there are at most countably many exceptional values
of r). Then p = limy; implies u(A:) = limp;(A:) < (¢v)(Ae). Making
e — 0 we get u(B) < (¢v)(B). 0O

Now we apply this lemma to our situation, with ¢ = Cy, v = m, and
pi = n;t Z;“:Bl fim for any subsequence (n;); such that (u;); converges to
some measure y. We immediately get

Corollary 2.6. Every accumulation point j of the sequence n™* Z?;é fim is
an f-invariant measure absolutely continuous with respect to Lebesgue mea-
sure.

2.3 Ergodicity and Uniqueness

Now we show that the probability measure p constructed above is ergodic
and so, recall Example 1.4, is a physical measure for f. We also get that the
basin of p is a full Lebesgue measure subset of M. In particular, the physical
measure is unique.

We begin by fixing some partition Py = {Uy,...,Us} of M into regions
with non-empty interior and diameter less than pg. Then, for each n > 1,
we let P,, be the partition of M consisting of the images of each of the U;,
1 <4 < s, under corresponding inverse branches of f”. The diameter of P,,

defined as the supremum of the diameters of its elements, is less than pyo™".

Lemma 2.7. Let P,, n > 1, be a sequence of partitions in a compact metric
space with diameters converging to zero as n — oo. Let v be a probability

12



measure in that space, and B be any measurable subset such that v(B) > 0.
Then there are V,, € Py, for n > 1, so that

v(BNV,)

l/(Vn) —1 asn— oo.

v(V,) >0 and
Proof. Given any 0 < ¢ < v(B), let K. be some compact subset of B with
v(B\ K;) < e. As the diameter of the partitions converges to zero, the

measure of the union A, ,, of all the elements of P, that intersect K, satisfies
v(A.n \ K:) < € for every large enough n. If we had

v(B) —¢

Ks n Si
v(K.NV,) I/(B)+5V

(V)

for every V,, € P, that intersects K., it would follow that

v(B) —¢

v(B) —¢
V(Ks) < m

ml/ (V(Ks)‘f‘&)gy(B)_g’

(Aep) <

a contradiction. So, there must be some V,, € P,, with

v(B) —¢

v(BNV,) > v(K.NVy) > W(B)+e

v(Va)

and this also implies v(V},) > 0. The statement follows, taking ¢ — 0. O
We say that A C M is an invariant set of f: M — M if f~'(A) = A.

Lemma 2.8. Let A C M be an invariant set of a C'T expanding map f
such that m(A) > 0. Then A has full Lebesque measure in some U; € Py,
that is, there erists 1 < i < s so that m(U; \ A) = 0.

Proof. By Lemma 2.7, there exist V,, € P, such that m(V,, \ A)/m(V},) con-
verges to zero as n — oco. Let Uy = f*(V,). Applying Lemma 2.3 to the
inverse branch of f" mapping Uje,) to V,, we conclude that

mUm \4) _ m(f"(Va) \ A) m(V, \ A)
= < exp (C1(2p9)"°) —F———
Uy~ vy = P G
also converges to zero. Since Py is finite, there must exist 1 < ¢ < s such
that i(n) = 4 for infinitely many values of n. Then m(U; \ A) = 0. O

13



Corollary 2.9. Any C*t" expanding map f : M — M has some ergodic
absolutely continuous invariant measure.

Proof. As a consequence of the lemma, there exist at most #P; two-by-two
disjoint invariant sets with positive Lebesgue measure. It follows that M
can be partitioned into finitely many minimal positive Lebesgue measure in-
variant sets Aq,..., A;, s < #Pp: minimality means there are no invariant
subsets B; C A; with 0 < m(B;) < m(4;). Given any f-invariant abso-
lutely continuous measure f, there is some i such that p(A;) > 0. Then the
normalized restriction p; of u to A;,

oy MBN4)
il B) = (A

is invariant, absolutely continuous, and ergodic (because A; is minimal). O

This argument also gives that there exist only finitely many measures as
in the statement. The last step in the proof of Theorem 2.1 is to show that,
in fact, such a measure is unique. This requires the following topological
result.

Lemma 2.10. Given any non-empty open set U C M, there exists N > 1
such that fN(U) = M.

Proof. Let x € U and r > 0 be such that the ball of radius r around z is
contained in U. Given any n > 1, suppose that f"(U) does not cover the
whole manifold. Then, there is some curve vy connecting f™(z) to a point
y € M\ f*(U), and v may be taken with length less than diam M + 1. By
lifting « through the local diffeomorphism f™ we get a curve 7, connecting
x to a point y, € M \ U. Then r < length(7y,) < o~"(diam M + 1), which
gives an upper bound on n. Thus, f"(U) = M for every large enough n, as
stated. O

Corollary 2.11. If A C M is an f-invariant set with positive Lebesque
measure, then A has full Lebesque measure in the whole manifold M.

Proof. Let U be the interior of a set U; as given by Lemma 2.8, and let
N > 1 be such that f¥N(U) = M. Then m(U \ A) = 0, and so M \ A =
YO\ fY(A) € fN(U \ A) also has zero Lebesgue measure. O

The following statement completes the proof of Theorem 2.1.

14



Corollary 2.12. Let p be an absolutely continuous invariant measure of
f. Then p is ergodic and its basin B(u) has full Lebesque measure in M.
Moreover, the support of u is the whole manifold M.

Proof. If A is an f-invariant subset of M then, by the previous corollary,
either A or A€ have zero Lebesgue measure. So either u(A) = 0 or u(A¢) = 0.
This proves ergodicity. Then B(yu) is an invariant set with positive Lebesgue
measure, and so it must have full Lebesgue measure. Similarly, as the support
of u is a compact invariant subset with positive Lebesgue measure, it must
coincide with M. O

In particular, the map f has a unique absolutely continuous invariant
measure y. It can be shown, from our previous arguments, that the density
du/dm may be taken Holder continuous and bounded away from zero on M.

3 Piecewise Expanding Maps

In quick terms, we call a transformation f : M — M piecewise expanding
if the ambient manifold M or, at least, a full Lebesgue measure subset of
it, can be partitioned into countably many domains restricted to which the
transformation is expanding and sufficiently differentiable. Precise definitions
will appear later. Figure 3 describes some simple examples we have in mind.

Example 3.1. We say that f : [0, 1] — [0,1] is a tent map if it is continuous
and there exists ¢ € (0, 1) such that

e the derivative Df is constant and larger than one in norm, in each of
the intervals [0, ¢) and (0, 1].

See Figure 3. More generally, one may consider maps that are affine and
expanding on each interval (¢;_1,¢;), 1 < ¢ < N, for some finite sequence of
points 0 =cy <c1 < -+ <cy = 1.

The next class of examples play a key role in the theory of Lorenz-like
attractors of flows, see [2], [22].

Example 3.2. We call f : [0,1] — [0,1] a Lorenz-like map if there there
exist ¢ € (0,1) and o > 1 such that

e fis C? on each of intervals [0, c) and (c, 1], with a discontinuity at c;
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Figure 3: Tent map and Lorenz-like map

e |Df(z)| > o for every x € [0,1] \ {c}

e the left and the right derivatives at ¢ are both infinite, and 1/|Df|
extends to ¢ as a Lipschitz function on [0, 1].

See Figure 3. This can also be generalized, to include maps with any number
of singular points (any number of regularity intervals).

Besides the intrinsic interest of this class of systems, there are several
reasons for studying piecewise expanding maps. For one thing, they provide
a fairly simple setting for dealing with difficulties that are common to much
more complicated systems. This point will be illustrated in a little while. At
least as important, piecewise expanding maps are often found in the course
of studying other dynamical systems, such as Lorenz-like attractors of flows,
unimodal maps of the circle or the interval, or more general non-uniformly
hyperbolic transformations on manifolds: properties of the system can be
understood through constructing and analyzing certain piecewise expanding
maps that are associated to it.

In this section we only deal with one-dimensional maps, that is, we always
take M to be either the circle S* or the compact interval I = [0, 1]. Through-
out, m denotes some normalized Lebesgue measure in M. The higher dimen-
sional case is discussed in Section 4.

3.1 Definitions and Statements

Let f : M — M be so that there exist C > 0, ¢ > 1, and a family P! of
two-by-two disjoint intervals covering a full Lebesgue measure subset of M,
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such that f is C? restricted to each £ € P!, and
|Df"| > Co™ forn>1, (8)

at any point where the derivative exists. For each n > 1, let P™ be the
family of regularity intervals of f™. That is, the elements of P" are the
maximal intervals 7 such that f’(n) is contained in some atom of P!, for
every 0 <7< n—-1.

Suppose that log |Df | €] is Lipschitz continuous for every £ € P!, with
uniform Lipschitz constant. This holds, for instance, if P! is finite and every
f | € admits a C? extension to the boundary. Then, the same arguments
as in Lemma 2.3 give that the inverse branches h}' = (f* | n)~" of f" have
uniformly bounded distortion: there exists K > 0 such that

Dhp(
s { [ ot o € () < K )
for every n € P" and n > 1. In particular, each measure f*(m | n) is abso-
lutely continuous with respect to Lebesgue measure on f"(n), with density
bounded by some uniform constant.

Since fIm is the sum of the f(m | n) over all n € P", one may hope
to show that the measures f'm, n > 1, have uniformly bounded densities,
which would imply that f has some invariant measure absolutely continuous
with respect to Lebesgue measure. This would follow from the proof of
Proposition 2.4, if one knew that the Lebesgue measure of the intervals f™(n),
n € P", n > 1, is uniformly bounded away from zero. However, this is
generally not the case, even if f has finitely many regularity intervals.

This fact is a main source of difficulties, and we shall return to it in a
while. Before that, let us briefly discuss a special class of maps for which a
lower bound for the measure of the f™(n) does exist.

Markov Expanding Maps Suppose the map f: M — M satisfies

(M1) the image f(&) of every £ € P! coincides with some union of elements
of P!, up to a zero Lebesgue measure set;

(M2) there exists § > 0 such that m(f(£)) > ¢ for any £ € P

The first condition implies that f*(n) contains the image f(£) of some £ € P*,
for every n € P". Then (M2) gives m(f"(n)) > ¢ for every n > 1. So, the
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Figure 4: The Gauss map

proof of Proposition 2.4 carries on to this case. It follows, as in Corollary 2.6,
that f has absolutely continuous invariant measures.

Moreover, we can combine this condition (M2) with the distortion bound
(9) to conclude, as in Subsection 2.3, that any f-invariant set A with positive
Lebesgue measure must have m(A) > §. As a consequence, f has finitely
many ergodic absolutely continuous invariant probabilities, and any abso-
lutely continuous invariant measure is a linear combination of the ergodic
ones. Finally, if f is transitive (in the sense that for any &, € P!, there
exists n such that £ N f™(n) has positive Lebesgue measure) then it has a
unique absolutely continuous invariant probability.

These facts are often referred to as the Folklore theorem. See e.g. [11]
for references and a discussion of the origin of this statement.

Observe that the proof still works if we just assume log|D(f | £)| to be
Holder continuous, with uniform constants. In fact, it also extends to higher
dimensions, assuming log |det Df| is Hélder continuous on each regularity
domain, always with uniform constants.

Example 3.3. The Gauss map G : [0,1] — [0,1] is defined by
G(r)=1/x—[1/x] forxz#0, and G(0)=0.

The family of regularity intervals is P! = {(1/n+1,1/n) : n > 1}. Note
that |[DG(z)| = 1/2? > 1 wherever the derivative is defined. Moreover,

|DG(z)| > 2 if +<2/3 and |DG*(z)| >4 if x> 2/3.

This implies (8), with 0 = 2 and C = 1/2. Finally, given any 1/(n + 1) <
z<y<l1/n,

|log [DG(x)| —1og [DG(y)|| < 2(n+1)(y — ) < 4(y —2)'/”.
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So log Df is (4,1/2)-Holder on each element of P'. Properties (M1) and
(M2) are clear, with § = 1.

Now we go back to general, possibly non-Markov, piecewise expanding
maps in dimension one. As we already mentioned, the “chopping” that takes
place at the boundary of the regularity intervals may cause the length of the
iterates f"(n), n € P", to be arbitrarily small. Then, conceivably, one might
have several small intervals f"(n) piling-up in a same region, thus causing
the density of f'm to grow unbounded as n — oo.

That this does not actually occur was first proved by [29], for maps with
finitely many regularity intervals: the densities

_ d(fym)
On=—1
have uniformly bounded variation and, hence, they are uniformly bounded.
Existence of some absolutely continuous invariant measure is a direct conse-
quence, cf. Corollary 2.9.

Building on this approach, [30] showed that f admits some ergodic ab-
solutely continuous invariant measure, and the number of such measures is
finite. It was observed by [60] that similar arguments apply under a weaker
regularity assumption, see (E2) below, that allows for maps with unbounded
derivative as in Example 3.2. Then [?] extended these results to maps with
infinitely many regularity intervals.

Definition 3.4. We call f : M — M a piecewise expanding map, on either
M = S' or M = [0, 1], if there exists a countable family P! of two-by-two
disjoint intervals covering a full Lebesgue measure subset of M, such that

(E1) the restriction of f to each £ € P! is a C' monotonic map, and the
function £ > x — 1/|D f(z)| has bounded variation;

(E2) there exist constants C' > 0 and ¢ > 1 such that |Df"(z)| > Co™ for
every n > 1, and every x € M for which the derivative is defined.

We call P! a partition into reqularity intervals of f. We say that f has
finitely many regularity intervals if the partition P! may be chosen finite.
The boundary points of the regularity intervals £ € P! that are not on the
boundary of M are called singular points of f.

The following theorem is proved in Subsections 3.3 and 3.4.
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Theorem 3.1. Let f be a piecewise expanding map of the circle or the in-
terval, with finitely many reqularity intervals.

Then f has some ergodic invariant probability measure absolutely contin-
uous with respect to Lebesgue measure, and the number of such measures is
bounded by the number of singular points of f. The union of their basins is
a full Lebesque measure subset of M. Moreover, any absolutely continuous
tnvariant measure |4 can be written p = em where ¢ has bounded variation.

It is not difficult to see that this result can not hold in the general infinite
case. The following counterexample is due to [?], another had been given by
[29].

Example 3.5. Let f: [0,1] — [0, 1] be given by f(0) = 0 and
flz) =22 -2 for z€ (277,277 and each j > 1.

Then f(z) < z for every x € [0, 1], and the equality holds if and only if
is in Fix(f) = {27% : k > 0} U {0}. Then, by Poincaré’s recurrence theo-
rem, every f-invariant measure is supported in Fix(f), and so it is a linear
combination of Dirac measures on fixed points of the map. In particular, f
has no absolutely continuous invariant measure. We leave it to the reader to
check that Lebesgue almost every orbit of f converges to 0, and so the Dirac
measure at zero is the unique SRB measure.

On the other hand, [?] also provides a natural condition under which most
of the conclusion of Theorem 3.1 does extend to piecewise expanding maps
with infinitely many regularity intervals. For each £ € P!, let g¢ : M — R
be the function defined by

. 1 . . :
ge(x) = D7) ifxeg and  ge(x) =0 otherwise. (10)
x
Conditions (E1) and (E2) in the definition imply that each g has bounded
variation. So, the next result generalizes Theorem 3.1.

Theorem 3.2. Let f be a piecewise expanding map of the circle or the in-
terval. Assume that, for some choice of a partition P,

Z var ge < 00.

&ept
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Then f has some ergodic invariant probability measure absolutely continuous
with respect to Lebesque measure, and there are finitely many such measures.
The union of their basins covers a full Lebesgue measure subset of M. More-
over, if i is any absolutely continuous invariant measure then p = pm where
@ has bounded variation.

The proof of this theorem is given in Subsection 3.5, where we also de-
scribe a few examples and applications.

3.2 Bounded Variation Functions

Let us begin by recalling the definition and some elementary properties of
the notion of variation of real functions defined on the circle or the interval.
See, for instance, [?] for more information.

Definition 3.6. Let ¢ : M — R and 1 = [a, b] be a compact interval in M.
The variation of ¢ on 7 is

n
varg =sup Y lp(zi1) = ()
=1

where the supremum is over all finite sequences a = o < 21 < --- <z, = b,
n > 1, with < representing an arbitrary orientation on 7.

The variation var, ¢ of ¢ on an arbitrary connected subset 1 of M (in-
cluding n = M = S') is the supremum of its variations over all compact
intervals contained in 7. We represent the variation var,; ¢ over the whole
ambient manifold M simply as var (.

Definition 3.7. A function ¢ : M — R has bounded variation if var ¢ is
finite. Given any connected subset 1 of M, ¢ has bounded variation on n if
var, ¢ < 00.

The following properties follow directly from the definition.
Lemma 3.3. Let 1,2 : M — R and n be a connected subset of M.

1. var(p1 + p2) < var o + var @y,
n n n

2. var(; p2) < var @1 sup |pa| + sup |¢1| var @q;
n n n n n
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1
3. supp; <vary; +inf ¢, <varp; + —— /(pl dm;
n n n n m(n) J,
4. var || < varpq;
n n
5. var(p;oh) = X(al; 1 if h:m — h(n) is a homeomorphism.
n n

The claims in the next lemma are also simple consequences of the defini-
tion. See for instance [?] for proofs.

Lemma 3.4. Suppose ¢ : M — R has bounded variation on some interval
nC M. Then

1. the restriction of ¢ to n can be written as the difference o1 — o of two
non-decreasing functions;

2. ¢ has at most countably many discontinuity points;

3. the lateral limits lim,_,,+ @(x) exist at every point z € n (for points on
the boundary consider only the limit from the inside of n).

Now we prove Helly’s theorem: sets of functions which are uniformly

bounded and have uniformly bounded variation are relatively compact in
LY (m).

Lemma 3.5. Let K, Ky > 0 and ¥, : M — R, n > 1, be a sequence of
functions on M such that sup ¥, < Ky and var, < Ky for every n > 1.

Then there exists a subsequence (Vn, )r and a function 1y : M — R with
sup || < K; and varvy < K, such that vy, converges to vy as k — oo,
m-almost everywhere and in L*(m).

Proof. We consider M = [0, 1], the case of the circle is analogous. Write

U (z) = vat Y, and Y, =Y — Y,
0,z
Then (1), and (¢;"), are uniformly bounded sequences of non-decreasing
functions. Choose (ny)y so that ¢E () converges to some real number ¢ (q)
as k — oo, for every rational ¢ € [0,1]. Clearly, ¢i(q;) < #F(g2) whenever
¢1 < g». Then, extend ¢F to non-decreasing functions in the whole [0, 1] by
setting

¢5 (z) = inf{$5(q) : ¢ € [,1] N Q}.
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We claim that ¢ (z) converges to ¢y (z) as k — oo, for every continuity
point = of QSO (a co- countable set). Indeed, given any such z and any 6 > 0,
we may fix rational numbers ¢; < x < g9 such that

¢ () — 6 < 5 (1) < 5 (2) < ¢5 (g) < @5 (x) + 6.

Then, for every sufficiently large k&,

¢ (2) — 26 < ¢ (a1) — 6 < Uy, (a1) < Uy, (2)

and, analogously, YL (2) < ¢y (x) + 26. This proves the claim.

Next, let ¢0 be rlght continuous functions coinciding with qﬁo at every
point of continuity of ¢F, and define 1y = ¥ — ¥y It follows that Yn,
converges to Yy except, possibly, on a countable set of points E. In particular,
Y, — o m-almost everywhere and in L'(m). Finally,

[%o(@)] = lim [y, (2)] < SUp SUp ¢n,  and

Z |¢0 .’L'] 1/J0 .’13] 1 ‘ - hmz ‘wnk x] %k(ﬂﬂjq)\ S Sl;PVarlbnk,

for every z and 2y < z; < --- <z, in [0, 1]\ E. Since vy is right-continuous,
this implies that sup || < K; and var ¢, < K. d

It is useful to extend the notion of bounded variation to elements of the
space L'(m), in the following way.

Definition 3.8. The variation var,[p] of an element [p] € L'(m) on an
interval n C M is the infimum of the variations var, ¢ on 7 taken over all
representatives of [¢]. We say that [¢] has bounded variation on 7 if var,[¢]
is finite.

Remark 3.9. It is not difficult to check that a representative ¢ realizes the
infimum in the definition of var,[¢] if and only if ¢ is continuous at the
boundary points of 7, and ¢(z) is between lim,_,,- p(z) and lim,_,,+ ¢(2)
for every point z in the interior of 7.

Moreover, the variation of such a function ¢ over any [a,b] C 7 coincides
with the supremum of > 7 |¢(z;) — ¢(zi—1)| taken only over the sequences
a=1)<x <---<xy_1 <z, = bsuch that ¢ is continuous at every z;.
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Lemma 3.6. For any [p] € L*(m) with bounded variation and any interval
neM,

var [¢] = sup {‘ /(prdm| tw € Cy(n) with sup|w| < 1}.
K n
where C§(n) is the space of all C' functions on M that are zero in the com-

plement of .

Proof. Let ¢ be a representative of ] such that var,¢ = var,¢] < oo.
According to Lemma 3.4, we can always extend ¢ continuously to the closure
of n. This extension is also a representative of ||, and its variation on clos(n)
is equal to var, ¢. Therefore, it is no restriction to suppose that 7 is compact

n = [a, b].
The lemma is a consequence of claims (1) and (2) below.

(1) Given any sequence a =z < 1 < --- < Tp,_1 < T, = b, such that ¢ is
continuous at z; for every 0 < ¢ < n, and given any ¢ > 0, there exists
w € Cy(n) with sup |w| < 1, satisfying

|/<pr dm‘ > Z lo(xi) — @(xim1)| — €.
n i=1

Fix § > 0such that |p(z)—¢(z;)| < £/2n for every z such that |z—z;| < 0,
and every 0 <4 < n. Let w be any C! function on 7 such that

e w(z;) =0 for 0 < i < n, and w is monotone (either non-increasing or
non-decreasing) on [z; 1,2; 1 + 6] and on [z; — 6, z;], for all 1 <7 < m;

o w|[z; 1+ 6,z — 0] =sgn(p(zi1) — ¢(z;)) for every 1 <i <n.

Here sgn denotes the usual sign function sgn(z) = z/|z|, with sgn(0) = 0.
Let 1 <7 <n be fixed. Then

z; Ti—1+9 T;
/ @Dwdm:/ goDwdm—l—/ @ Dwdm.
Ti—1 Ti—1 z;—0

If sgn(p(x;—1) — ¢(z;)) = 1 then Dw > 0 in the first integral, and Dw < 0 in
the second one. It follows that the integral of ¢ Dw on [z; 1, z;] is bounded
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from below by

c Ti—1+0
(o(zi1) — 2—) / Dwdm + ( 2n / Dwdm
€ £

= (<P(33z'—1) - %) - (‘P(l"z) + Qn) lo(2i) — @(xim1)| — .

Analogously, we get the same conclusion also when the sign is —1 or zero.
Then, adding over all 1 <17 < n,

/ @Dwdm>2\<p —o(xi_1)| — €.

=1
This proves (1), which implies the inequality < in the statement.

(2) Given any function w € Cj(n) with sup|w| < 1, and given any & > 0,
there exists a sequence a = 2o < x1 < -+ < x,_1 < T, = b, satisfying

Z|<P $z1|>|/g0Dwdm‘—g

Let n >1landa =2y < 2y < - < xp_1 < x, = b be arbitrary. We
use £ to represent various expressions converging to zero as sup, |z; — ;1|
converges to zero. On the one hand,

/(pr dm = Z o(x;)Dw(z;)(z; — zim1) + €.

=1

Since w is C' and w(z¢) = w(z,) = 0, the term on the right can also be
written as

n—1

Zgo ;) —w(@im1)) + €= Z (o(ziz1) — (i) w(®izt) + €.

=2

As sup |w| < 1, it follows that

|/<prdm| <Z\g0 o(;- 1)|+5<Z|90 z;) — p(zia)| + €.

=1

This means that any sequence with sufficiently small sup; |z; — x; 1| satisfies
the inequality in (2). O
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3.3 Absolutely Continuous Invariant Measures

Let f be an expanding map of the circle or the interval, and P! be a cor-
responding partition into regularity intervals. Here, as well as in the next
subsection, we assume that P! is finite. However, finiteness is used only in
Proposition 3.9 and in Corollary 3.14.

For every n > 1, let P™ be the partition into regularity intervals of f",
defined by P™(z) = P"(y) if and only if P'(f’(z)) = P*(fI(y)) for all 0 <
J <n. For each n > 1 and n € P", we define gy : M — R by

1

gr(y) = D7 ° ("I~ ) ifye ),

and g7'(y) = 0 otherwise. For simplicity, we also write g, = g, for n € P*.
Observe that, cf. part 5 of Lemma 3.3,

sup g, =supg, and varg, <varg,, (11)

where g, was defined in (10). Actually, the two variations coincide except,
possibly, if f(n) is the whole M.

In general, given any ¢ : M — R we consider ¢ o (f* | n)~" as a function
on M, identically zero in the complement of f"(n).

Lemma 3.7. For every integrable function ¢ : M — R, and everyn > 1, the
iterate of Lebesgue measure under f™ can be written fI'(om) = p,m, with

on=>_gr(eo(fmIm™

where the sum is over all n € P™ such that m(n) > 0.

Proof. Let B C M be an arbitrary measurable set. By definition,

f2(em | 0)(B) = pm(f~"(B) ) = / o(z) dm(z).

f=™(B)n

Changing to the variable y = (f™ | n)(z), we find

flom I nB) = [ e (7m0 dm().
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The term on the right can be rewritten as [, g7 - (¢ o (f" [ n)~") dm, since
the functions in this last integral are identically zero outside f™(n). This
proves that the density of each f'(¢m | 7)) is given by g7 - (0o (f* [ 1)),
for every n € P™. On the other hand,

frlem) =Y filem| n),

nepPn

and the intervals n with m(n) = 0 play no role in this sum, since the cor-
responding term fI(pm) is identically zero. The conclusion of the lemma
follows by summing over all the n € P™ having non-zero Lebesgue mea-
sure. 0

Remark 3.10. By definition, for every n > 1 we have

[ endm= [ vatszem) = [1d(em) = [ oam

Let |¢|, be the sequence one obtains as in the previous lemma, when ¢
is replaced by |¢|. Then —|p|, < ¢, < |@|n, since —|p| < ¢ < Jp|. In
particular,

/|<pn\dm§/|g0|ndm:/\<p\dm for every n > 1. (12)

Lemma 3.8. There exist C; > 0 and 0 < Ay < 1 such that
supgy < C1AY and varg, < Ci\}  for everyn > 1 and n € P".

Proof. The first claim is a direct consequence of the definition of g;' and the
expansivity condition (E2): it is enough to take C; > 1/C and A\; > 1/o.
Next, given n € P* and 0 < j < n, let & € P/, n; € PL, (; € P" 7! be
defined by
n C &, 7 (n) Cny, FH () C ¢

By definition, there exists some constant Cy > 0 such that, for every £ € P!,

o(f 16~

Varg§<var o(f &7t +2sup

IDfI IDf\

1 1
< var +2 sup
|Df] |Df\
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(the supremum term bounds the variation of g¢ at the boundary points of
f(£)). Since g; = géj In; gg_J_l for every 0 < j < n, using Lemma 3.3 we
obtain

n—1 n—1
: : C
—j—1 2 -2
var gy <) sup gl varg, supg; ' < Gagn=i = (C2C o)na™.
J=0 7=0

Fixing A\; > 1/0 and choosing C; > sup{C,C 20 n (A\10)™ : n > 1}, we get
the second claim. O

The crucial ingredient for most results in this section is the following
result of [29], stating that the variations of the densities ¢, tend to decrease
as m grows.

Proposition 3.9. There are Cy > 0 and 0 < Ay < 1 such that, given any
bounded variation function ¢ : M — R,

var ¢, < Cy Ay var ¢ + Cj / lp|dm

for every n > 1, where ¢, s as in Lemma 3.7.

Proof. Combining Lemma 3.8 with properties in Lemma 3.3 we find

var ¢, < Zvarg,'; sup || + supg,’;(vgrgo + 2sup |¢l)
. 7 77

(13)
< Z 3CI AT Sl71’p lp| + C1AT var .

n

Note that the expression in parentheses is an upper bound for the variation
of oo (f™ | n)~!, taking into account the jumps at the boundary of f*(n).
Using the third property in Lemma 3.3 we get

1
var @, < 2401 ?vgrw+30y\?m/|€0|dm
n ! (14)
§4Cl)\’fvar<p+K(n)/|90|dm;

where K(n) = 3C1A\Tsup{1/m(n) : n € P™}. Recall that we only have to
deal with intervals n € P™ with positive Lebesgue measure.
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This is close to what we want, but we still have to explain why K(n) can
be replaced by some constant independent of n. For that, we fix N > 1 such
that 4C; A\ < 1/2, and we denote Ky = max{K(n) : 1 < n < N}. Then,
given any n > 1, we write n = ¢/N +r with ¢ > 0 and 1 <r < N. Using the
previous bound with ¢ replaced by ¢n_n, ..., Yn_gn, and ¢, respectively,
and recalling (12),

1
var ¢, < KO/ |90an| dm + EVarQOan
1
< (144270 KO/ lo|dm + 2¢ VAT ¥
1
<(1+---4279 KO/ lo|dm + §4Cl)\§ var .

To finish the proof of the proposition, choose Cy > max{2K,,4C;} and
Ao > max{2-'N A} O

Remark 3.11. Let v and p,, n > 1, be finite measures on a compact metric
space, such that u, is absolutely continuous with respect to v for every n > 1.
If the Radon-Nikodym derivatives dy,,/dv converge in L'(v) to some function
1 then pu, converges to pu = v in the weak* topology. Indeed, given any
continuous function ¢ : M — R,

dtr,
\/wdun—/e@du\ S/\w\\d—’i—wldvﬁup\w\l\

and the last term converges to zero as n — o0.

diin
dv Q/J|

17

In particular, the densities ¢, of the iterates fI'm of Lebesgue measure
are uniformly bounded: by Proposition 3.9 and Remark 3.10,

sup¢n§var</5n+/¢ndm§(00+1)/1dm:Co+1, (15)

for every n > 1. Hence, as in Corollary 2.9, we may conclude that f has
some absolutely continuous invariant measure. In fact, we can prove more:

Corollary 3.10. The map f has some absolutely continuous invariant prob-
ability measure p whose density du/dm has bounded variation.
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Proof. Let ¢, be as above, and define v,, = n~! E;:& ¢j foreach n > 1. Then
fy = n 1 Z?:_(} fim can be written as u, = 1), m. Proposition 3.9 implies
that var ¢; < C for every j, and so var i, < Cj for every n > 1. Moreover,
by (15), we have sup [i,| < Cy + 1 for every n > 1. This means that we
may apply Lemma 3.5 to conclude that there exists a subsequence (v, )k
converging in L!(m) to some function ¢, with var g, < Cy. In particular,
cf. Remark 3.11, (u,, )i converges to p = ¢om in the weak* topology. This
ensures that p is invariant under f. O

3.4 Bounding the Number of Physical Measures

Now we show that a piecewise expanding map has finitely ergodic absolutely
continuous invariant measures. This was proved under a C? assumption by
[30], see also [28]. Then [60] observed that the bounded variation condition
(E1) in Definition 3.4 suffices for the argument. The main step is the following
consequence of Proposition 3.9.

Proposition 3.11. Any absolutely continuous probability measure v of a
piecewise expanding map can be written v = 6 m where 6 has bounded varia-
tion.

Proof. By assumption, one may write v = 1 m for some integrable function
¢ with L'-norm ||¢|ly = [ |¢|dm equal to 1. We want to prove that ¢
coincides Lebesgue almost everywhere with some bounded variation function
6.

Let (&); be some sequence of bounded variation functions converging to
v in L'(m). Tt is no restriction to suppose that ||&]|; < 2 for all I. For each
n>1land !l >1,let

f:(¢m) = wnm and ff(glm) = fl,nm
where 1, and §,, are obtained from 1) and &, respectively, as in Lemma 3.7.
Note that, since v = ¢m was taken invariant, f*(¥»m) = ¥»m and so ¥, = ¢
Lebesgue almost everywhere. Applying Proposition 3.9 to & we get that
var &, < CoAg var § + Co/ &l dm < 3C)

for every large enough n. Moreover, by Lemma 3.3 and Remark 3.10,

sup | &l Svar{,fl,n+/|§l,n|dm§3Co+/|§l|dm§300+2.
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Hence, the sequence (&), satisfies the assumptions of Lemma 3.5, for each
fixed I. As a consequence, there exists some function 6; with sup |6;| < 3Cy+2
and var@;, < 3Cp, and there exists a subsequence (ny); such that (£, )k
converges to 6, in L*(m).

On the one hand, using (12) for the function ¢ = & — 1) we get that

16—l = Jim €, — Gl = Jim [n, — 1 < &= ¥l

for every I. This implies that 6; converges to ¢ in L!(m), since & does. On the
other hand, we may apply Lemma 3.5 to the sequence (6;);, to conclude that
some subsequence (6;,); converges in L' (m) to a function § with var § < 3Cj.
This implies that ¢ = 6 Lebesgue almost everywhere. Therefore, v = ¢ m =
Om. 0

Remark 3.12. We even obtained a uniform bound 3C) for the variation of
any density ¥ of an absolutely continuous invariant measure.

Lemma 3.12. Given any f-invariant set A C M with positive Lebesgue mea-
sure, there exists some absolutely continuous f-invariant probability measure
va such that va(A) = 1.

Proof. Let A be the set of points z € A such that every neighbourhood
of x intersects A in a positive Lebesgue measure subset. By Lebesgue’s
differentiation theorem, A contains a full Lebesgue measure subset of A,
and so m(A) = m(A) > 0. Moreover, A is close to being invariant, in the
following sense. Let x € A and suppose that x is not a singular point. Then
f is a local diffeomorphism near z. In particular, since every neighbourhood
of = intersects A in a positive Lebesgue measure subset, the same is true
for f(x). In other words, f(z) is also in A. Thus, we have shown that A
is contained in the union of f~1(A) with the (finite) set of singular points.
Then, A is also contained in the union of f‘”(/i) with some finite set, for
every n > 1.

Let (m | A) represent the normalized restriction of Lebesgue measure to
fl, and consider the sequence of probability measures
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By definition, (m | A) = om where ¢ = X;/m(A). Let ¢, be the corre-
sponding density of f*(m | A), as given in Lemma 3.7. Then, cf. (15),
1 Co+1

. < — . < - for every 5 > 0.
(Pj_m(A)(b]_m(A) YJ=z

~

This implies that p 4, admits a density bounded by (Cy+1)/m(A) for every
n > 1. It follows from Lemma 2.5 that every accumulation point of the
sequence [ 4, is an absolutely continuous invariant measure. Let p4 be any
of these invariant measures.

The property of almost invariance of A we proved before implies that
fim | A)(A) > (m | A)(A) = 1 for every j > 1. This gives pan(A) = 1
for every n > 1, and so yi4(clos(A)) = 1. On the other hand, by Proposi-
tion 3.11, we have uys = 6,4m for some function 6,4 with bounded variation.
Since bounded variation functions have at most countably many disconti-
nuity points, there exist some open interval J C M and some ¢ > 0 such
that 64(z) > § for every x € J. This implies that the restrictions of j14 and
m to J are equivalent measures. As the closure of A has full measure for
14, it must intersect J in a full Lebesgue measure subset. In particular, A
has some point in J, and so A N J has positive Lebesgue measure. Then,
wa(A) > om(AnJ) > 0.

Finally, let 4 be the normalized restriction of u4 to A:

_ ra(BN4)
valB) ==

Then v4(A) = 1 and v4 is absolutely continuous with respect to Lebesgue
measure, since it is absolutely continuous with respect to 4. Moreover, v4
is invariant under f, because A and u,4 are f-invariants. O

for any measurable set B.

Corollary 3.13. Every f-invariant set A C M with positive Lebesgue mea-
sure has full Lebesgue measure in the neighbourhood of some singular point:
there are ¢ > 0 and a singular point ¢ of f such that m([c—¢,c+¢€]\ A) = 0.

Proof. Let v be any absolutely continuous invariant measure so that v(A) =
1. By Proposition 3.11, v = fm for some function # with bounded variation.
In particular, there exists an open interval J C M such that the infimum of
6 on J is strictly positive. Then, v(J \ A) = 0 implies m(J \ A) = 0.
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Now we consider the iterates f*(J), n > 1, of the interval J. The expan-
sivity condition (E2) in Definition 3.4 implies that

length(f™(J)) > Co" length(J)

as long as f7(J) does not intersect the singular set of f, for any 0 < j < n—1.
So, since o > 1 whereas the term on the left is bounded by the diameter of
M, there must be a first time N > 1 such that fV(J) contains some singular
point c. In particular, f¥ | J is a diffeomorphism onto its image. Then,
Y (J) is an open interval and m(f~(J)\ A) = m(fN(J\ 4)) = 0. O

The last step in the proof of Theorem 3.1 is

Corollary 3.14. The map f has some ergodic absolutely continuous invari-
ant probability measure, and the number of such measures does not exceed the
number s of singular points of f. Moreover, their basins cover a full Lebesque
measure subset of M.

Proof. 1t follows from Corollary 3.13 that there are at most s two-by-two
disjoint f-invariant sets with positive Lebesgue measure. As a consequence,
the manifold M can be partitioned into r < s invariant sets Aq,..., A,, such
that m(A4;) > 0 for every 1 < ¢ < r, and which are minimal: there is no
invariant set B; C A; with 0 < m(B;) < m(A;). As we have seen, for each
1 <12 < r there exists an absolutely continuous invariant measure v; such
that v;(A;) = 1. The fact that A; is minimal implies that v; is ergodic.

Moreover, given any absolutely continuous invariant measure p we may
write g = Y. p1(A;)pi, where the sum is over all the values of ¢ such that
w1(A;) > 0, and p; denotes the normalized restriction of i to A;. Since v; and
w; are both ergodic, either they coincide or they are mutually singular. The
second possibility would contradict the assumption that A; is minimal, and
so we must have u; = v;. This proves that vy, ..., v, are precisely the ergodic
absolutely continuous invariant measures of f.

Finally, let E be the complement of B(v;) U---U B(v,) in M. Then E
is f invariant, and v;(E) = 0 for every 1 < i < r. As a consequence, F has
zero measure with respect to any absolutely continuous invariant measure of
f- By Lemma 3.12 the set £ must have zero Lebesgue measure. O

Example 3.13. In particular, maps with a unique singular point have a
unique absolutely continuous invariant probability measure, and it is is er-
godic. This includes the tent maps and the Lorenz-like maps as in Figure 3.
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On the other hand, piecewise expanding maps with more than one singu-
lar point may have several physical measures:

Example 3.14. Let f :[0,1] — [0, 1] be given by

1/2) —[1/2 —2x| forx €(0,1/2
flo) = { gi |)3/2|—/2:1c| | for z € [(1/2/,1]].

Both 24Xy ;/9ym and 24[; 5 1ym are invariant, ergodic, and absolutely contin-
uous.

This shows that to ensure uniqueness one needs some assumption of in-
divisibility of the dynamics.

Definition 3.15. We say that a piecewise expanding map f : M — M is
transitive if there exists some compact I, C M such that

(1) f(I,) C I, and the orbit f™(x), n > 0, of Lebesgue almost every z € M
intersects the interior of I,;

(2) given any pair of intervals V] and V5, contained in I, there exists n > 0
such that f™(V;) NV, has positive Lebesgue measure.

Corollary 3.15. If f is transitive then it has a unique absolutely continuous
invariant probability measure p. Moreover, the support of p coincides with
I..

Proof. As part of the proof of Corollary 3.14, we showed that any abso-
lutely continuous invariant measure can be written as a linear combination
of finitely many ergodic ones vy, ...,v;. Therefore, to obtain the first claim
we only have to prove that there exists at most one of these ergodic measures.
Let 1 <17 < s. We also know, from Corollary 3.13, that there exists
some interval U; such that m(U; \ B(v;)) = 0. Transitivity implies that for
Lebesgue almost any point x € U; N B(v;) there exists n > 1 such that f*(x)
is in the interior of I,. Take x such that neither iterate f/(z), j > 0, is a
singular point. Then f* is a local diffeomorphism near x. Hence, there exists
some open neighbourhood V; C U; of x, such that f*(V;) C I,. Moreover,

m(f* (Vi) \ B(i)) = m(f*(V; \ B())) = 0.

Consequently, m(W; \ B(u;)) = 0 where W; = U, f*(V;). On the other
hand, the second condition in Definition 3.15 implies that W; N W; has pos-
itive Lebesgue measure, for any 1 < j < s. In particular, B(v;) N B(v;)
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must be non-empty, which implies that v; = v;. This proves uniqueness and
ergodicity.

The proof of the second claim is similar. Since the density of y has
bounded variation, there exists an interval U such that du/dm > 0 on U.
Then, U is contained in the support of u. As before, we can find £ > 1
and an open interval V' C U such that f*(V) C I,. On the one hand, W =
U . f™(V) is contained in the support of u. On the other, the properties in
Definition 3.15 imply that W is a dense subset of I,. Thus, I, is contained
in the support. Finally, since p is ergodic and I, is an invariant set with
non-zero p-measure, u(M \ I,) = 0. As I, is compact, this implies that no
point outside I, is in the support of . O

Let f: I — I be a tent map as in Figure 3, with ¢ denoting the singular
point. We already know that f has a unique absolutely continuous invariant
measure p. As an application of the previous corollary, we show that if the
derivative D f is large enough then the support of 1 coincides with the interval
I, = [f*(c), f(c)]. Moreover, in that case the map is transitive. Neither of
these conclusions is true, in general, if the derivative is only larger than 1.

Lemma 3.16. If f is a tent map with |Df(z)| > o > /2 then f is transitive,
with I, = [f%(c), f(c)] and a strong form of property (2): for any interval
J C I, there exists N > 1 such that f¥(J) = L.

Proof. The first condition in Definition 3.15 is easy: since |Df| > 1, no orbit
f™(z) with z # 0,1 can remain forever in [0, f2(c)] U [f(c), 1]. We are left to
prove the last statement in the lemma.

We claim that f"(J) must eventually contain the fixed point p > ¢ of f.
Indeed, otherwise one would be able to construct a sequence of intervals

J=J DS D--DJpyD---
in the following way.

e If f"~1(J,_1) does not contain c, take .J, = J,_;. Observe that in this
case m(f"(Jn)) = o m(f" 1 (Jn_1))-

o If f*7!(Ju-1) does contain c, then take J, C Jn—y such that f*'(J,)
coincides with the largest of the two intervals

P (Tnm) N [f2 ), or f7 N (Jamt) N fe, £(0)]-
Then m(f"(Jn)) = (o/2)m ("~ (Jn-1))-
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Moreover, in this last case f™(J,) can not contain ¢, since we suppose that
p & f"*1(J,). This means that for the construction of J,;; we fall in the
first case: J,41 = J,,. In particular,

(" (Tn)) 2 om(F(J) 2 Sm(" " (Ja))-

As we suppose o2 > 2, it follows that the sequence m(f™(J,,)) is unbounded, a
contradiction. This proves that p € f™(J,,) for some n; > 0, as we claimed.

Then, p € f*(J) for every n > n; and, by expansivity, [¢,p] C f"2(J) for
some ny > n;. It follows that [f3(c), f(c)] C f™T3(J). On the other hand,
it is easy to check that f3(c) < p for all ¢ > v/2. Now there are two cases
to consider. If f3(c) < ¢, we get [f?(c), f(c)] C f™2**(J), as we wanted to
prove. Otherwise, there must be some odd number k > 3 such that f*(c) < ¢
and [f*(c), f(c)] € fP™(J). Then [f?(c), f(c)] C fr2T**1(J) and this also
proves that I, is contained in some iterate of J. O

Example 3.16. A similar argument applies if f is a Lorenz-like map with
IDf(x)] > o > /2 for all x # c. See [22]. Assuming f(c) = 1, f(ct) = 0,
as in Figure 3, then for any subinterval J of I, = [0, 1] there exists N > 1
such that f¥(J) = I,. Therefore, the map is transitive. Furthermore, the
support of the absolutely continuous invariant measure is the whole interval
0, 1].

3.5 Maps With Infinitely Many Branches

In this subsection we prove Theorem 3.2, and describe a few useful applica-
tions. Throughout, f is a piecewise expanding map as in the theorem: there
exists a partition P! into regularity intervals of f, such that

Z var g, < 0o.

nePl

As was pointed out before, finiteness of regularity intervals intervened
only in two occasions while we were proving Theorem 3.1: in Proposition 3.9
and in Corollary 3.14. Our first step is to extend the proposition to the
present situation. For this we need the following lemma.

Let g¢ be the weight functions introduced in (10), for each £ € P'. More
generally, given any ¢+ > 1 and any interval J contained in an element 7 of
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Pt we define §% : M — R by

. 1 )
95(r) = —=——~ ifzeJ and g'(z) =0 otherwise.

[Dfi(z)|

It is clear from the definitions that the variation of these functions depends
monotonically on the domain: if J C L then var g% < varg;.

Lemma 3.17. For everyn > 1,
Z Varg;‘ < Z V&I‘@:IL < 0.
nepn nepn

Proof. Using part 5 of Lemma 3.3, one checks easily that var g; < var g, for

every 11 € P™. In fact, these variations can be different only if f” maps n onto

the whole M. Compare (11). The first inequality is a direct consequence.
Next, given n > 1 and any n € P*1,

Gy = (G © )3y

So, using Lemma 3.3 once more,

var ﬁ,’;“ < Var ga(y) Sup gy 4 Sup gyn(y) var gy .

Observe that sup g, < var g;, because inf g; = 0, and analogously for g ().
Let £ € P" and ¢ € P! be defined by n C £ and f"(n) C (. Then, the
previous inequality can be replaced by

var f]f,“ < 2var ggn(, var g, < 2vargc var g .

Since each pair (£,¢) € P x P! determines n € P"*! uniquely, we obtain
Z var gptt <2 Z var g Z var gg .
nepntl ceP gepn
Now the claim in the lemma follows immediately, by induction on n. O

Now we can prove, following [?], that Proposition 3.9 remains valid in the
generality of Theorem 3.2.
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Proposition 3.18. There are Cy > 0 and 0 < Ay < 1 such that, given any
bounded variation function ¢ : M — R,

var @, < Co)\gvargp+00/|<p|dm

for any n > 1, where @, is as in Lemma 3.7.

Proof. Using Lemmas 3.7 and 3.3 we get, as in (13),

var @, < Z var g, sup || + sup gy (var ¢ + 2sup |¢|),
n n
n
recall that the sum is over the intervals n € P™ that have positive Lebesgue
measure. Moreover, sup g, < varg, because infg, = 0. So, the previous
inequality may be replaced by

var g, < Zvarg;‘(3 sup |¢| +vznir ©). (16)
n
n

The terms involving variation pose no problem: using Lemma 3.8,

Zvar gy varp < C1AT Zvargo < CiAlvar o
1 ! n

One would like to replace supremum by variation and integral in the remain-
ing terms, using part 3 of Lemma 3.3, as we did before in (14). The problem
is that the measure m(n) of these intervals is no longer bounded away from
ZEero.

To bypass this, we split the sum into two parts. Given any finite subset
Q" of P", we may estimate the sum corresponding to the intervals n € Q™ in
the same way as in the finite case. On the other hand, using the summability
in Lemma 3.17, we may choose Q" in such a way that the total contribution
of the remaining terms is much smaller than sup |¢| < varg + [ |p|dm.

More precisely, we begin by fixing a finite subset Q™ of P™ such that

Z var g, < C1A7.
ngQ™

Then,

Z 3var g, sup |¢| < 3sup |¢| Z var g; < 3C1A7 sup [
n¢Q” K ngan

< 3C1A\T varg0+301)\’f/\<p|dm.
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On the other hand, compare (14)

1
Z 3 var g, sup || < Z 301)\?(V31"<P+ m/|€0‘dm)
n

neQr g neQr

< 3C) A\ var o + K(n) / lp| dm,
with K(n) = 3C1 AT sup{1/m(n) : n € Q™}. So, 16 leads to
var @, < TC1 A} var o + 2K (n) / lo| dm.

Now we only have to remove the dependence on n of the integral term,
and this can be done in the same way as in the proof of Proposition 3.9.
Fixing a large enough integer N > 1 so that 7C1A\Y < 1/2, we get that it
is enough to take \g > max{27'/N \;} and Cy > max{4K,,7C;}, where
Ky =max{K(n):1<n< N} O

Combining this proposition with Lemma 3.5 we immediately get the ana-
log of Corollary 3.10:

Corollary 3.19. The map f has some absolutely continuous invariant mea-
sure whose density has bounded variation.

It would not be difficult to obtain the remaining claims in Theorem 3.2 at
this point, but we do not do it right away. Instead, we postpone the proof to
Subsection 4.2 where analogous facts are obtained in much more generality.

In the rest of the present section we indicate some applications of the
previous results.

Definition 3.17. A piecewise expanding map f : M — M has long branches
if there exist § > 0, K > 0, and a partition P! into regularity intervals such
that

(a) the restriction f | n of f to each n € P! is C?, and

[D2(f | )

— UL <K forevery n € P
[D(f [ m)|?

(b) the image of every interval n € P! has Lebesgue measure m(n) > 4.
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The next proposition shows that if f has long branches then it satisfies
the assumptions of Theorem 3.2.

Proposition 3.20. If P! satisfies (a) and (b) above, for some 6, K > 0,
then ZnePl var g, < 0o. Therefore, f has some ergodic absolutely continuous
inwvariant measure, and there are finitely many such measures.

Proof. Let n be any element of P!. Condition (a) can be rewritten as

© ()| <%

which implies

1

AN rar e A (5773) ‘ dm < Km{n).

On the other hand, by the mean value theorem there exists some z,, € 7 such
that

1 _ omm 1
Diy)] ~ mGm) =™

In particular,

W G Tl < ST Tl o T < K+ 5o
Then,
A 1 1 2
vardn SV STt 2P g T < CGF +5)m)

and so D p1 var g, < (3K +2/6).
The last part of the statement is now a consequence of Theorem 3.2 [

Example 3.18. Let f : [0,1] — [0,1] be a map with a neutral fixed point
as in Example 1.5. From f we construct a new map f : [0,1] — (0,1], as
follows. See Figure 5. Let hq : (0, f(¢)) — (0,¢) be the inverse of f | (0, c).
Then let ¢; = ¢ and ¢j41 = ho(c;), for each j > 1. Finally, define f by

f| (c1,1] = f | (e1,1] and f\ (Cjt1,¢4) = 1 | (¢j41,¢j) for each j > 1.
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€32 €1 f(c)l

Figure 5: Inducing near a neutral fixed point

For completeness, we also set f(x) = f(c) for any z € {0,...,¢c3,c2, 1},
although this is quite arbitrary. Clearly, f is C? in the interior of each
element of

Pr={(cj+1,6] 15 = 1} U {(er, 1]}

Let o = inf{|Df(z)|: z € (¢cz,¢1) U (c1,1]}. Then o > 1, and |Df(z)| > o at
every point x where the derivative is defined. Moreover,

~

F((eel) = (e f(@)] for j>1 and f((er,1]) = (0, F(1)].

So, f satisfies condition (2) in Definition 3.17, with § = min{|f(c)—c/, | f(1)|}.
It is not difficult to check that f also satisfies condition (1), and we leave
this as an exercise to the reader. Altogether, this shows that f is a piecewise
expanding map with long branches, and so Theorem 3.2 applies to it.

4 Piecewise Expanding Maps in Higher Di-
mensions

The ergodic theory of piecewise expanding maps in higher dimensions is
presently much less satisfactory than in the one-dimensional case, despite
the progress attained over the last two decades.

The first existence results for absolutely continuous invariant measures
(apart from the Markov case) appeared in [?], [27]. Other constructions
were proposed e.g. in [7] and [20]. See this last paper for an account of
results obtained in the eighties. More recently, the scope of these results was
considerably extended in works such as [1], [?], [?], [?], [59]
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In essentially all the cases, the authors consider some notion of variation
for functions in higher dimensional domains, and prove a Lasota-Yorke type
of inequality, as in Proposition 3.9. Ergodic and spectral properties of the
system can then be deduced along the lines of the one-dimensional case.

We discuss this approach in the next subsection, sketching an application
to a class of multidimensional piecewise expanding maps with long branches.

4.1 The Bounded Variation Approach

The theory of bounded variation functions on higher dimensional domains is
presented in [19] and [16]. Here quote some main notions and facts that are
more directly relevant for our purposes.

First, we give a definition of variation for functions on domains of RY,
any d > 1. Instead of Definition 3.6, that depends strongly on the order
structure of 1-dimensional manifolds, our starting point is Lemma 3.6.

Let U be an open subset in some Euclidean space R, and ¢ : U — R
be a Lebesgue integrable function. Given a C* vector field w : U — R¢, we
denote by divw its divergent. That is

8wd

0
divwza—z—i----—i-a—% if w=(w,...,ws).

Definition 4.1. The variation of ¢ : U — R on U is
var ¢ = sup {‘/(gp divw)dm | :w € Cy(U) with sup ||w|| < 1}
U

where C(U) is the space of C! vector fields w : U — R¢ whose support is a
compact subset of U. A function ¢ has bounded variation on U if vary ¢ < oo.

Clearly, the variation of a function depends only on its L' class, that is,
functions that coincide Lebesgue almost everywhere have the same variation.
The space of L! classes with bounded variation on U is denoted BV (U).

The next proposition provides a useful criterium for deciding whether
a function ¢ : U — R has bounded variation by, basically, reducing the
problem to dimension 1. Assume that ¢ has compact support. Then it may
be extended to the whole R?, with the same support and vargs ¢ = vary ¢.
Hence we may just as well take U to coincide with R¢. Given 1 <4 < d and
T= (371, ey Li 1y Tjg1y e - - ,.’L'd) S Rd_l, let

viz ' R—=>R with ¢;:(z) =@(@1,...,Ti1, %, Tig1, .-, Ta)-
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We represent by vary, ) [¢;,z] the variation of the L' class of ¢; ; over any com-
pact interval [a, b], recall Definition 3.8. Moreover, my ; denotes Lebesgue
measure in R4,

Proposition 4.1. Let ¢ : R? — R be an integrable function with compact
support. Then & — varjep) [@;z] is measurable, for every 1 < i < d and any
real numbers a < b. Moreover, ¢ has bounded variation in R? if and only if

/ var [p; 2] dmg—1 (%) < oo

K [a7b]

for every 1 < i < s, every a < b, and any compact subset K of R,
For a proof see Lemma 1 and Theorem 2 in [16, Section 5.10].

Example 4.2. Let oo > 0 and ¢ : R? — R be defined by
o) =|lz||”* if O0<|lz| <1 and ¢(x) =0 otherwise.

Then ¢ has bounded variation in R? if and only if & < d — 1. Indeed, for any
1 <i < dand 2 # 0, the function ¢; ; is monotone increasing on (—oo, 0]
and monotone decreasing on [0, +00). So, given any a < —1 < 1 < b,

Vaﬁ (i) = 20i3(0) = 2||2|| .

[a,

Now it suffices to note that, if K is the closed unit ball in R¢~!,
/ 2||2]|7*dmg-1(2) < 0o ifand only if a<d-—1.
K

This example shows that bounded variation functions in dimension higher
than 1 need not be bounded. On the other hand, the next proposition
(Sobolev’s inequality, see Theorem 1.28 of [19]) ensures that functions with
bounded variation on a d-dimensional domain are in an L space, where p is
determined by the dimension d. It also follows from Example 4.2 that the
expression of p in the proposition can not be improved.

Proposition 4.2. There exists C(d) > 0, depending only on d, such that,
for any bounded variation function ¢ : U — R with compact support, we have

d

P 1/p < _
(/U|<P| dm)""? < C(d) var ¢ where p 1

In particular, BV(U) C LP(U, m).
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Proposition 4.3. If ¢, : U — R, n > 1, are bounded variation functions
converging to ¢ : U — R in L' (U, m) then

var © < lim inf var
gy =1 gt ¥

In other words, the variation is lower semi-continuous, with respect to
the L' norm. Proposition 4.3 is contained in Theorem 1.9 of [19]. It is not
difficult to deduce, cf. Remark 1.12 in [19], that the expression

lellay = vare + o]l (17)

defines a complete norm in the space BV(U).

Also related to Proposition 4.3, we have the following important extension
of Lemma 3.5, for domains with Lipschitz boundary in any dimension: sets
of functions with uniformly bounded variation are relatively compact with
respect to the L' norm.

Proposition 4.4. Suppose the domain U is bounded, and its boundary is
Lipschitz continuous. Let Ki,Ky > 0 and ,, n > 1, be a sequence in
LY (U,m) such that ||p,||1 < K1 and vary ¢, < Ko for every n > 1. Then
there exists a subsequence (ny)y, such that (¢n, )x converges in LY(U,m) to a
function @y with ||@o||s < K71 and vary ¢p < K.

A proof of this last fact can be found in Theorem 1.19 of [19]. The bounds
on ||gol|: and vary ¢y follow from the L' convergence and Proposition 4.3.

These results show that some of the main tools from the one-dimensional
case remain valid for bounded variation functions in any dimension. On the
other hand, this notion of variation is very sensitive to the geometry of the
domain. For instance, cf. Example 1.4 in [19], if E C U is a compact domain
bounded by a C? hypersurface, then

var Xg =my 1(0F), (18)

where X is the characteristic function Xz of E and my_,(0F) denotes the
(d — 1)-dimensional Hausdorff measure of the boundary of E. So, even char-
acteristic functions of open sets may have unbounded variation.

This observation is at the origin of serious difficulties one encounters in
higher dimensions. Not surprisingly, the cases of high dimensional piecewise
expanding maps one has been able to treat depend on restrictive conditions
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on the geometry of the domains of smoothness of the map, e.g. their bound-
aries should be fairly regular. At least in some cases, see the discussion in
[48], such conditions are an artifact of this method, and not really necessary
for the existence of absolutely continuous invariant measures. Alternative
notions of variation have been proposed, but they also require technical re-
strictions on the shapes of the smoothness domains.

Maps with Long Branches Here we outline an application of the pre-
vious ideas to a class of piecewise expanding maps in any dimension that
generalizes the one-dimensional maps with long branches treated in Proposi-
tion 3.20. This is due to [20], for maps with finitely many regularity domains,
and [?] in the general case.

Let R be a bounded region in R?. We say that f : R — R is a C?
piecewise expanding map if there is a partition P! of R into domains 1 such
that

(E1) the boundary of 7 is piecewise C? and has finite (d — 1)-dimensional
Hausdorff measure

(E2) the restriction of f to the interior of 7 is a C? diffeomorphism onto its
image, and it admits a C? extension to the closure of 7;

(E3) there is o > 1 such that ||Df(z)!|| < o~ ! for every point x where the
derivative is defined.

We say that a C? piecewise expanding map f : R — R has long branches
if it satisfies two additional properties, (D) and (G), resemblant of parts (a)
and (b) of Definition 3.17. The first one is a condition of bounded distortion:

(D) There is some K > 0 such that

1D £, )
\Jf7t

where J f, "' = det D(f | n)~" is the Jacobian of the inverse of (f | 7).

< K, forevery n € P,

(G) is a geometric requirement on the images f(n) of the regularity do-
mains: they should not be too small (sizes uniformly bounded away from
zero), and the angles at the border corners should also be bounded from
below. More precisely, we suppose that
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(G) There are « > 0, § > 0, and for each € P! there is a C' unitary
vector field H, on the boundary of f(n), such that

1. |sinangle(v, Hy(x))| > « for every x € 0f(n) and any vector v
tangent to df(n) at x;

2. the segments [z,z + 0H,(z)|, x € 0f(n), are two-by-two disjoint
and their union is a neighbourhood of the boundary in f(n).

By convention, a vector field is C' on the boundary of f(n) if its restric-
tion to each smooth component of the boundary is C' on that component.
Moreover, the tangent space of f(n) at a corner point is the union of the
tangent spaces of all the smooth components that contain that point.

Theorem 4.5. Let f : R — R be a C? piecewise expanding map with long
branches, i.e., f satisfies (E1)-(E3), (D), (G). Assume that

o>1+a L.

Then f has some invariant probability measure absolutely continuous with
respect to Lebesque measure in R.

Let m be the d-dimensional Lebesgue measure on R?, normalized so that
m(R) = 1. As in Lemma 3.7, given any integrable function ¢ : R — R and
any n > 1, there exists ¢, : R — R such that f*(pm) = p,m. In fact, we
may take

on=>_gr- (o (/")) (19)

where the sum is over all the regularity domains 7 of ™ with m(n) > 0, and

1

:Wo(f” () Hy) = Jf,"(v) if y € f"(n),

95 ()

with g7(y) = 0 otherwise. Moreover, as in (12),

/\gon|dm§/\(p|dm for every n > 1. (20)
R R

The main step in the proof of Theorem 4.5 is the following version of
Proposition 3.9:
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Proposition 4.6. Suppose f is a C? piecewise expanding map with long
branches. Then there exists Cy > 0 such that

var p; < Avarg + CO/ lo| dm, A=o (1+al),
R R R

for every ¢ € BV(R).

Then, an absolutely continuous invariant measure for f can be found as
follows. Fix ¢ = 1. By Proposition 4.6 and (20),

var @, < Avarp, 1 + C’O/ lon_1]dm < Avar g, 1 + Cy
R R R R

for every n > 1. Recall that we are assuming A < 1. It follows that the
sequence (¢, ), has uniformly bounded variation: for every n > 1,

C
-1 0
v%rgpng/\"v%rgp—k(;’o(l—k---—k/\" )Sl—/\

Therefore, the variation of the sequence v, = n™! Z;:& @; is also uni-

formly bounded, by the same constant. Using Proposition 4.4, we con-
clude that (i), has some subsequence (i, )r converging in L'(R,m) to
a a bounded variation function vy . In particular the sequence of measures

1 nk—l
N <
7=0
converges to ;1 = g m, an invariant absolutely continuous measure. This
completes our sketch of the proof of Theorem 4.5.

4.2 Finiteness of Physical Measures

In this subsection we prove that, quite in general, a Lasota-Yorke type of
inequality suffices to ensure that there are finitely many ergodic absolutely
continuous invariant measures. We also need the map to be piecewise regu-
lar, but not necessarily piecewise expanding. The result applies to maps in
any dimension and with any number of regularity domains, including the sit-
uations in Subsection 3.5 and in Theorem 4.5 as special cases. The main idea
in the proof is the approximation argument used by [30] to obtain Proposi-
tion 3.11.

Let M be a compact domain in R¢, whose boundary is contained in a
finite union of C? hypersurfaces. We assume that f : M — M satisfies
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(H1) there exists an open set U C M such that M \ U has zero Lebesgue
measure and f is a local C! diffeomorphism at every point of U;

(H2) there exist constants Cy > 0 and 0 < g < 1 such that for any bounded
variation function ¢ : M — R we have fI(pm) = p,m for some
function ¢, : M — R with

< n .

var g, < CoXp var g + C'O/ lp| dm

Theorem 4.7. If f satisfies (H1) and (H2), then it admits ergodic absolutely
continuous tnvariant probability measures vy, ...,vs such that

1. the union of the basins of v, ...,vs has full Lebesgue measure in M ;

2. every absolutely continuous invariant measure u s a linear combination
of vi,...,Vs;

Moreover, the density du/dm of any such measure i has bounded variation.
The main step is the following proposition.

Proposition 4.8. Given any function v : M — R with [ [¢)|dm =1, there
erists a subsequence (ng)r and a function 6 : M — R with vary 0 < 4C,
such that
d 1 nE—1 .

( ng(wm)) —0 in LY(M,m).

dm \ ny 4
Jj=0

Proof. Let (&), be some sequence of bounded variation functions converging
to ¢ in L'(M,m). We may suppose that every & has L'-norm less than 2.
Foreachn >1and [ > 1, let

ffWm) =y,m and fH(&m) =& .m

where 1, and ,, are obtained from 1 and &, respectively, as in (19). Let
us fix [ for a while. Assumption (H2) implies that

V]%l" gl,n S Co)\g Vj\ajl"é-l + C()/ |§l| dm S 300

48



for every large enough n. So, increasing n if necessary,

1 n—1 1 n—1
var (ﬁ Zofl,j) < - ZOVAE}II”&,J' < 4C.
= =

It follows from Proposition 4.4 that there exists a function 6, and a sequence
(m(l,4)); — oo such that

m(li

Z 7]—)0l

7=0

as i — oo. Moreover, by Proposition 4.3, we have var 6, < 4C).

Then, using Proposition 4.4 for the sequence #;, we conclude that there
exists a subsequence (l)x such that 6, converges in L'(M, m) to some func-
tion # with vary; 0 < 4C,. It follows, by a triangular inequality argument,
that there exists a subsequence ny = m(ly,ix), k > 1, such that

nkl

Zglk,j — 0
7=0

in L*(M, m) as k — oco. On the other hand, as ||&; — ;|1 < ||& — |1 for
every 7,1,

nkl nkl

H—Z&w vl < — Zn&k ol = & — ¥l

and the last term goes to zero as K — oo. This implies that

as claimed. O

Corollary 4.9. Any absolutely continuous probability measure p of a piece-
wise expanding map can be written u = 0 m where @ has vary; 0 < 4C).
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Proof. By assumption p = t¢m for some ) € L'(M,m) with ¢ > 0 and
f ¥dm = 1. Proposition 4.8 states that a subsequence

converges in L'(M,m) to some function # whose variation is bounded by
4Cy. Now, v, = 1 for every n because y is invariant. This implies that
W =4. O

Lemma 4.10. Given any f-invariant set A C M with positive Lebesgue mea-
sure, there exists some absolutely continuous f-invariant probability measure
va such that va(A) = 1.

Proof. Let (m | A) represent the normalized restriction of Lebesgue measure
to A. In other words, (m | A) = ¥»m where ¢ = X4/m(A). Let us consider
the sequence of probability measures

n—1

HAn = %Zfﬁ(m | A).

J=0

By Proposition 4.8, there exists a function 64 with var,, 84 < 4Cj such that
some subsequence

d,uA,nk

dm

as k — oo. By Remark 3.11, the sequence p4,, converges to v4 = 4m in
the weak™ sense. Moreover, v, is an absolutely continuous invariant measure
for f. Since A is assumed to be invariant, f/(m | A)(4) = (m | A)(A) = 1 for
every j > 1. This gives uan,(A) =1 for every n > 1. Finally, L' convergence
of the densities implies that

—0,4 in L'(m),

va(A) = / Oadm = lilzn/ %dm = lilzn,uA,nk(A) =1.
A A

So, v4 does satisfy the conclusion of the lemma. O

It is worth pointing out that the argument in Lemma 3.12 does not
carry on to higher dimensions. This is because the support of functions
with bounded variation may have empty interior, see the following example.
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Example 4.3. Let U be an open subset of R? containing the closed unit
ball B;(0) around the origin. Let {g, : n € N} be a countable dense subset
of B;1(0), and B, be the open ball of radius 27" ! around each g,. Define
E, = B1(0)\Uj_,Bj and E = B;(0) \ U, B;. Note that £ is non-empty, in
fact it has positive d-dimensional Lebesgue measure:

—(+1)d o(d)
ma(E) = o(d) = Y270+ V() = T2,

j=1

where o(d) is the Lebesgue measure of the unit ball in R?. Clearly, E, E,
are compact, and E is nowhere dense. According to (18)

for every n > 1, with w(d) denoting the (d — 1)-dimensional measure of the
unit sphere in R?. Then, var X < liminf, var Xz, < 2w(d), as a consequence
of Proposition 4.3.

Corollary 4.11. If A C M 1is an f-invariant set with positive Lebesgue
measure then m(A) > (4CoC(d)) =1/,

Proof. Let v4 be an absolutely continuous invariant measure giving full
weight to A, as in Lemma 4.10, and 64 = dva/dm. Let p = d/(d — 1)
and ¢ = 1/d, with p = oo in the case d = 1. By Sobolev’s inequality Propo-
sitionp.vsobolev,

104, < C(d) v]%rGA < 4C,C(d).

Combining this with Holder’s inequality we get
1= [0l < [|0allp m(A)7 < 4CoC(d) m(A),
as we claimed. O

Corollary 4.11 implies that there are finitely many two-by-two disjoint f-
invariant sets with positive Lebesgue measure. As an immediate consequence,
M can be partitioned into finitely many minimal f-invariant sets:

Corollary 4.12. There ezist f-invariant sets Ay, ..., A such that

1. m(A;) >0 for every 1 <i<s,and M = A U---UA;
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2. there are no f-invariant sets B; C A; with 0 < m(B;) < m(A4;).

Finally, let v4,...,v; be absolutely continuous invariant measures with
vi(4;)) = 1fori=1,...,s, as in Lemma 4.10. The fact that A; is minimal
implies that v; is ergodic and B(y;) has full measure in A;. Moreover, any
absolutely continuous invariant measure y can be written as =, u(A;)v;.
To see this, write pn = Y, u(A;) i, where the sum is over the values of i such
that p(A4;) > 0 and p; is the normalized restriction of u to A;. Each p; is
also an ergodic measure, because A; is minimal. Consequently, either u; = v;
or there exists some invariant subset B C A; with p;(B) = 0 and v;(B) = 1.
The last case would imply 0 < m(B) < m(4;), contradicting the minimality.
So, we must have u; = v; for every 1.

This shows that these measures v; satisfy all the conclusions of Theo-
rem 4.7. We have finished the proof of the theorem.

5 Hyperbolic Sets

Here we recall the definitions and some basic facts about hyperbolic sets of
diffeomorphisms, specially attractors. Proofs may be found in [41], [33], [56],

2).

5.1 Definitions and Examples

The next definition involves the notion of splitting E* @ E? of the tangent
space Th M of the manifold M over a subset A. By that we understand a map
z — (EL, E?) associating to each point z € A two complementary subspaces
of the tangent space T, M. We always assume that the subspaces E. have
constant dimension at every point x € A, then the same is true for the E2.
We call the splitting continuous if given any p € A there exist continuous
vector fields X,..., Xy, Y7,...,Y, on a neighbourhood U, C A of p, linearly
independent at every point and such that E! is the subspace generated by
Xi(z),...,Xy(z) and E? is the subspace generated by Yi(z),...,Y;(z), for
every z € Up.

Definition 5.1. Let f : M — M be a C! diffeomorphism and A be a
compact subset of M that is invariant under f, that is, f(A) = A. We say
that A C M is a (uniformly) hyperbolic set for f if there exists a continuous
splitting ThM = E* & E? of the tangent space M over A such that
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1. the splitting is snvariant under the derivative D f: for every z € A
Df(x)™ - Ey = Ef -1,y and Df(x)- By = Ej,);
2. the subbundle E" is ezpanding and the subbundle E* is contracting for
D f: there are constants C' > 0 and A < 1 so that
IDf™"(@)|EZll < CA" and || Df*(2)|E7|| < CA"
for every x € A and every n > 1.

Clearly, this last condition is independent of the choice of the Riemannian
norm ||-|| on M, that affects only the value of the constant C' > 0. According
to the next lemma, we can always find a Riemannian norm on the manifold
M for which C' = 1. Such a norm is said to be adapted to f on A.

Proposition 5.1. Let A be a hyperbolic set for a diffeomorphism f. Then,
given any A € (A, 1), there exists a Riemannian norm || - ||« on M such that

IDf(z) o ]l < Mllo"lle - and  IDf(@)v°[le < Adllo®ls
for every v* € EY, v* € E}, and x € A.

Proof. Fix A < A, < A, and N > 1 large enough so that C(A\/A;)" < 1.
Given any vector v = v* +v° in B} @ E}, define

ol = N l3 + Nl

with
N—1 . N—1 '
"% =Y APIDf P (@)t]® and  [lot||3 =D AT D ()0l
j=0 §=0

It is easy to see that this defines a continuous norm on A, and
IDf(2)~ 0" le < Asllo”lly and IDf(z)v’]l+ < Apll’fls (21)

for any v* € E¥, v € E?, and z € A. In general, the subbundles E® and
E" do not admit smooth extensions to a neighbourhood of A, and so || - ||+
may fail to extend to a smooth norm on M. However, this can be easily
solved. Let || - ||« be any C* Riemannian norm on M whose restriction to
A is uniformly close to || - ||: if the two norms are close enough then (21)

remains valid with || - ||, in the place of || - ||, and A, in the place of A,. O

23



Example 5.2. (Linear Anosov maps) Let A € SI(d,Z), that is, A is a linear
isomorphism of R?, d > 2, with determinant equal to +1 and whose matrix
relative to the canonical basis of R¢ has integer coefficients. Then A pre-
serves the lattice Z¢, and so there exists a unique smooth map f from the
d-dimensional torus M = R?/Z% to itself satisfying 7 o A = f o, where
7 : RY — M is the canonical projection. Besides, f is a diffeomorphism:
its inverse may be obtained through the same construction, with A~! in the
place of A.

Now, suppose the isomorphism A is hyperbolic: all its eigenvalues have
norm different from 1. For example, this is the case for the 2-dimensional

isomorphism
2 1
A= ( 2 1 )

Let E* and E* be the direct sum of the (generalized) eigenspaces of A cor-
responding to the eigenvalues with norm larger than 1 and smaller than 1,
respectively. Given any point w € M, choose z € R? such that 7(z) = w,
and then let

E* = Dn(z)-E* and E° = Dn(z)- E°.

These objects do not depend on the choice of z, and so this defines subbundles
E* = (E")yenm and E® = (E3),enm of the tangent space of M. Moreover,
E"@ E? is a hyperbolic splitting for f: the derivative D f leaves both E* and
E* invariant, while expanding the vectors in £* and contracting the vectors
in E°.

Indeed, let 0 < A < 1 be fixed close enough to 1 so that no eigenvalue of
A has norm in the interval [\, \7!]. Let || - || be any norm in R?, and endow
T¢ with the Riemannian metric || - || defined by ||Dn(2)v| = ||v||. for every
z € R? and v € R, Then

| | Bal = A7 | Bl and | Df"(w) | Byl = A" | |,

are less than C'A\" for all w € M and n > 1, as long as the constant C is
fixed sufficiently large. This proves that the ambient manifold A = M is a
hyperbolic set for f.

A fundamental property of hyperbolic sets is that they are a robust feature
of the system: if a diffeomorphism f has a hyperbolic set A then any other
diffeomorphism ¢ in a C'! neighbourhood has a hyperbolic set A, close to A.
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Furthermore, the dynamics of g on A, is topologically equivalent (conjugate)
to that of f on A. That is the content of the next theorem.

Theorem 5.2. Let A be a hyperbolic set for a diffeomorphism f: M — M.
Then there is a neighborhood N of f in Diff'(M), and there is a continuous
map ¢ : N — Emb(A, M) such that ¢(f) is the inclusion map of A in M
and Ay = ¢(g)(A) is a hyperbolic set for every g € N'. Moreover,

d(g)o (f [ A)=(g]Ag)oo(g)

Emb(A, M) denotes the space of continuous one-to-one maps from A to
M, endowed with the topology of uniform convergence. For r > 1, Diff" (M)
is the space of C" diffeomorphisms on M, with the C" topology. We call A,
the hyperbolic continuation of A for g. Similarly, we call £ = ¢(g)(x) the
hyperbolic continuation of x € A for g.

Example 5.2 is somewhat special in that we were able to exhibit the hy-
perbolic splitting explicitly, which is hardly ever possible. Fortunately, in
order to prove that an invariant set is hyperbolic it suffices to have some rea-
sonable approximation of the invariant subbundles E* and E*. The precise
formulation uses the notion of stable and unstable cone fields.

Let E @ F = Tx M be a splitting of the tangent space Th M over some
subset K C M. Given a > 0, the cone field of width a around E is the family
Co(E) = (Cu(E, x))weK defined by

Co(E,z) ={v1+1v2 € EDF : ||vo|| < a < ||luil}-
Definition 5.3. C,(E) is an unstable cone field for f on K if
1. Cu(E) is forward invariant: there exists # < 1 such that
Df(z) - Co(E,z) C Cya(E, f(z)) (22)
for every z € K N f~1(K).
2. there exist C' > 0 and o > 1 such that,
I1Df"(@)v]| = Co™||v]] (23)

for every v € C,(E,z),n>1,and z € KN f~Y(K)Nn---n f(K).

95



Observe that we do not require the splitting £ & F' to be continuous.
Note also that Cy(F) depends on the choice of the Riemannian norm || - ||
in M, besides the subbundles £ and F. A cone field is stable, respectively
backward invariant, for f if it is unstable, respectively forward invariant for

=

Proposition 5.3. Let A be a compact invariant set of a diffeomorphism f.
Suppose there is a splitting TAM = E@® F and there are constants a > 0 and
b > 0 such that C,(E) is an unstable cone field and Cy(F) is a stable cone
field for f on A. Then A is a hyperbolic set for f.

The converse is also true: if A is a hyperbolic set with splitting E* & E*
then any cone field with sufficiently small width (relative to an adapted norm)
around E* is an unstable cone field for f and, analogously, any cone field
with small width around E? is a stable cone field for f on A.

It is important to observe that the conditions in Definition 5.3 are open:
if C,(F) is an unstable cone field for f, then it is also an unstable cone field
for any other diffeomorphism C! near it. This leads to

Corollary 5.4. Given a hyperbolic set A of a diffeomorphism f : M — M,
there exists a neighbourhood U of A in M, and a neighbourhood N of [ in
Diff' (M), such that if g € N and T is any compact subset of U that is
wnwvariant under g, then T is a hyperbolic set for g.

Example 5.4. We say that f: M — M is an Anosov diffeomorphism if the
whole manifold M is a hyperbolic set for f. See [4]. A special case are the
hyperbolic automorphisms of the d-torus 7T¢ constructed in Example 5.2. As
an application of the previous corollary, the class of Anosov diffeomorphisms
is open in the C! topology.

Anosov diffeomorphisms on tori are always topologically conjugate to a
hyperbolic automorphism as in Example 5.2, cf. [18], [35]. More generally,
Anosov diffeomorphisms may be constructed on infranilmanifolds [58], and
then they are topologically conjugate to algebraic models. It is not known
whether these diffeomorphisms may exist on other manifolds. On the other
hand, by [17], [39] Anosov diffeomorphisms such that either E* or E* have
dimension 1 exist only on topological tori.

Example 5.5. (Solenoids) Let S' = R/Z, D? be the closed unit disk in the
complex plane, and let @ be the solid torus Q@ = S! x D?. Given constants
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Figure 6: A solenoid

0<A<p<1/(2n),let f:Q — Q be the map given by
f(8,2) = (20 mod Z, pe*™ + \z).

Geometrically, f acts on the solid torus by contracting along the D? direc-
tion, and stretching and wrapping the image twice around the S* direction.
See Figure 6. The assumptions on p and A ensure that f is an embedding of
@ strictly into itself. Then the set

A=) @)

n>0

of those points whose orbit is defined for all times (both positive and negative)
is a hyperbolic set for f. Indeed, as the reader may check,

Ca(p) = {(6,2) € T,(S" x D) : |2] < alf]}

Ci(p) = {(9,2) € T,(S" x D?) : 8] < b2[}

are, respectively, unstable cone field and stable cone field for f on Q, ifa =1
and b is sufficiently small.

An invariant set A of a diffeomorphism f : M — M is isolated if there
exists a neighbourhood U of it such that A is the set of points whose orbits
never leave U, neither in the future nor in the past:

A=) ).

neZ
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Theorem 5.5. If A is an isolated hyperbolic set for a diffeomorphism f, then
its hyperbolic continuation A, for a nearby map g is an isolated hyperbolic
set for g, indeed Ay = Nyezg™(U).

We say that an invariant set A of a transformation f is transitive if there
exists some x € A whose forward orbit {f"(z) : n > 0} is dense in A.

Definition 5.6. A transitive hyperbolic set A is a hyperbolic attractor for
f:+ M — M if there exists an open neighbourhood U of A such that

cos (f(U)) cU and  A=()f"U).

n>0
A set A is a hyperbolic repeller for f if it is a hyperbolic attractor for 1.

If f is a transitive Anosov map then A = M is a hyperbolic attractor (and
a hyperbolic repeller) for f. The solenoids in Example 5.5 are transitive sets
and, thus, they are hyperbolic attractors for the corresponding maps.

Clearly, hyperbolic attractors are isolated hyperbolic sets. In particular,
the hyperbolic continuation of a hyperbolic attractor is again a hyperbolic
attractor. Similar facts hold for repellers.

Definition 5.7. The basin of a hyperbolic attractor A is the set B(A) of
points z € M such that

d(f"(2),A) >0 as n— 400 (24)

It is easy to see that B(A) coincides with the union of all backward iterates
f~™(U), for any neighbourhood U as in Definition 5.6.

5.2 Stable and Unstable Manifolds

Among the most important geometric properties of hyperbolic sets is the
existence of invariant foliations (or laminations) that are dynamically defined.
This is the subject of the present subsection. For the time being A denotes
any hyperbolic set of a C" diffeomorphism f : M — M, r > 1. Near the end
of the subsection we focus on the case when A is an attractor.

Definition 5.8. The stable manifold W*(x) of x € M is the set of points
y € M whose forward orbit is asymptotic to that of z:

Nimd(f"(x), f"(y) =0.
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Given € > 0, the local stable manifold of size & of a point x € M is the set
W#(x) of points y € M such that

Jm d(f*(z), f*(y)) =0 and d(f*(z), f*(y)) <e foralln>0.

It follows immediately from the definitions that y € W*(z) if and only if
f™(y) is in the local stable manifold of f™(z) for some n > 0. That is,

We(z) = J F (W2 (f"(2))).
n>0

In general these sets are not submanifolds of M, in fact they may have a very
complicated geometric structure. However, according to the next theorem,
if z belongs to some hyperbolic set then W?(z) is a disk C" embedded in M.
Then, W*(z) is a C" immersed submanifold.

We represent by Emb® (N, M) the space of C* embeddings of a manifold
N in M, for any integer s > 1.

Theorem 5.6. Let A be a hyperbolic set for a diffeomorphism f. Provided
e > 0 is small enough, every local stable manifold Wi(zx), x € A, is a disk
C" embedded in M, with T,W?(z) = E?.

Moreover, W2(zx) wvaries continuously with the point x € A: given any
p € A there exists a neighbourhood V,, of p in A, and a continuous map

¢, : V, = Emb"(W:(p), M),
such that ®,(p) is the inclusion of W2(p) in M, and every Wi(z), v € V,,, is
given by the image of W2 (p) under ®,(x).

The local unstable manifold of size ¢, denoted W*(x), and the unstable
manifold, W*(zx), of a point z € M are defined in the same way as the
local stable manifold and the stable manifold, respectively, replacing f by its
inverse. By Theorem 5.6 applied to f~!, local unstable manifolds of points
in a hyperbolic set are C" embedded disks, and the unstable manifolds are
C" immersed.

Definition 5.9. Let A be a hyperbolic set for a diffeomorphism f in M. The
stable set W*(A) is the set of points x € M such that

WA ={ze M: 1_1)21 d(f™(z),A) = 0}.
The unstable set W*(A) of A is defined similarly, taking n — —oo.
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Clearly, W*(A) contains the union of the stable manifolds W?*(x) of all
the points x € A. In general, this inclusion may be strict but, according to
the next theorem, this never happens if the hyperbolic set is isolated: any
orbit that approaches an isolated hyperbolic set A is asymptotic to some
orbit inside A. A dual statement for unstable manifolds follows immediately,
by considering the inverse map f~1.

Theorem 5.7. If A is an isolated hyperbolic set, W3 (A) = UpeaAW*(z). In
fact, given any € > 0 there exists a neighbourhood U, of A such that

{reM: f*(zx) € U: for alln >0} C U WZ(x).

TEA

In particular, this theorem applies when A is a hyperbolic attractor. By
definition, in that case W*(A) = B(A) contains a neighbourhood of A. In
fact, this last property characterizes attractors among the transitive hyper-
bolic sets:

Theorem 5.8. Let A be a transitive hyperbolic set for f : M — M. The
following conditions are equivalent:

1. A s a hyperbolic attractor for f;
2. W*(A) contains a neighbourhood of A in M;

3. W (p) C A for every p € A.

Foliated Charts Let A be a hyperbolic attractor and F* be its unstable
foliation, i.e., the family of unstable manifolds of the points in the attractor.
Let € > 0 be fixed, small enough so that the conclusion of Theorem 5.6 holds
for A.

Given any p € A, let V,, be a neighbourhood of p in A, and

@y : V, = Emb" (W, (p), M)

be a continuous map as in Theorem 5.6: W¥(z) = ®,(z)(W(p)) for every
z € V,NA. Moreover, let ¥, be some smooth disk transverse to the unstable
foliation at p, in the sense that T,%, ® Ej = T,M. We take ¥, small enough
so that it intersects each local unstable manifold of size ¢ in not more than
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Figure 7: A foliated chart

one point. Note that, by transversality, >, does intersect the local unstable
manifold of any point of A close enough to p. We denote, cf. Figure 7,

W,=W*p)nV, and S,=X,NV,NA.

Up to replacing V), by some smaller compact neighbourhood, we may suppose
that W, is a compact disk around p and S, is also a compact set. Then we

define
Op 2 Wp X 5p = A, ¢p($a y) = q)p(y)(x)

Observe that ¢, does take values in A, by the last property in Theorem 5.8.
Moreover, as a consequence of Theorem 5.6,

(A1) ¢, is a homeomorphism onto a neighbourhood Z, of p in A, with
op(x,p) = x for every x € Wp;

(A2) every ¢, = ¢, | (W, x{y}) is a C" diffeomorphism onto a neighbour-
hood of y inside W*(y);

(A3) the diffeomorphisms ¢,, vary continuously with the point y € Sp, in
the C™ topology.

We call ¢, : W, x S, = Z,, a foliated chart for the unstable foliation F* at
the point p.

Observe that the size of W, S,, Z, is essentially determined by & > 0.
In particular, foliated charts can be constructed at any point p of A in such
a way that Z, contains a neighbourhood with fixed radius around the point.
Of course, decreasing € we can also make Z, arbitrarily small.
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6 Partial Hyperbolicity

Here we introduce an important extension of the notions discussed in the
previous section: partially hyperbolic sets and attractors. As we shall see,
partial hyperbolicity is intimately related to robustness of the dynamics, e.g.,
attractors that can not be destroyed by any small perturbation of the system.

6.1 Definitions and Examples

Definition 6.1. Let A be a compact invariant set for a C' diffeomorphism
f:M— M, and T\M = E' ® E? be a continuous D f-invariant splitting of
the tangent space over A. We say that the splitting is dominated if there are
constants C' > 0 and 0 < A < 1 such that

IDf(f"(2)) | Epnol IDf"(2) | Egll < CA
for every z € A and n > 1.

Recall that whenever we speak of a splitting of the tangent space it is
implicit that the subspaces E. and E2 have constant dimensions over the
invariant set. The condition in the definition may be rewritten

1D/ @)eall _ e
D f"(@)v.]
for every norm 1 vectors v; € E? and v, € E?, and x € A. So, roughly

speaking, the splitting is dominated if E' is more expanding/less contracting
than E2.

Definition 6.2. Let A be a compact invariant set for f : M — M. We say
that A is partially hyperbolic if there is a dominated splitting T\ M = E'® E?
such that

1. either E' is expanding: |Df™"(z) | E}|| < CA" for every x € A and
n>1,

2. or E” is contracting: ||[Df"(z) | EZ|| < CA™ for every z € A and n > 1.

In the first case we write E! = E*, E? = E°, and say that the partially
hyperbolic set A is of type E* @ E. In the second one we write E' = E,
E? = E*_ and say that A is of type E<* @ E*.
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Definition 6.3. A diffeomorphism f : M — M is partially hyperbolic (of
type E* @ E°, respectively F® @ E*) if the manifold M is a partially hy-
perbolic set for f (of type E* @ E, respectively E @ E?).

A is partially hyperbolic of type E* & E for f if and only if it is of type
E® @ E* for the inverse f~!. Of course, hyperbolic sets are also partially
hyperbolic, of both types. In the sequel we describe a few other examples.
The first one, a generalization of Example 5.2, illustrates the fact that, unlike
in the hyperbolic case, the splitting in Definition 6.2 is usually not unique.

Example 6.4. Let d > 3 and A € SI(d,Z) be such that the spectrum of A
splits into three nonempty subsets, contained in

Db< AL, ia< A <bl, AN <al.

for some 0 < a < 1 < b. Let R = F*@ [ @ F* be the corresponding
splitting of R? into invariant subspaces: A preserves the three subspaces, the
eigenvalues of A | E™ have norm larger than b, those of A | F'* have norm
smaller than a, and the eigenvalues of A | F¢ are all in (a,b). Let M = T% be
the d-dimensional torus, 7 : R — M be the canonical projection, and f be
the diffeomorphism induced in M by A, cf. Example 5.2. Then F* = Dr-F*,
F¢=Dgx-F ¢ F°=Dr- F's are continuous subbundles of the tangent space
of M. It is easy to see that both

Fl=F' E’=F°@F° and E'=F'@F°¢ E?=F",

define splittings of TM as in Definition 6.2, respectively of type E* @ E**
and E““ @ E*. Note that this construction is valid even if A is hyperbolic (in
which case f is Anosov).

Remark 6.5. Partial hyperbolicity is sometimes defined through a stronger
condition: existence of a dominated splitting into three subbundles, one of
which is expanding whereas another is contracting. Here such systems are
called strongly partially hyperbolic. That is, a compact invariant set A is
strongly partially hyperbolic for f if there exists a continuous splitting

T\M =FE"® E°® FE°

of the tangent bundle into three D f-invariant subbundles, such that E* is
uniformly expanding, E* is uniformly contracting, and both splittings

EF'=F“ E?=E°@FE* and E'=E“©EF‘, E*>=E*

are dominated.

63



Example 6.6. Let (X');cg be an Anosov flow on a compact manifold M:
(X%, is a C* flow without singularities such that there exists a continuous
splitting TM = E* & E° @ E* of the tangent bundle of M into three sub-
bundles that are invariant under DX?, for every ¢ € R; moreover, E“ is
expanding and E? is contracting: there are C' > 0 and 0 < A < 1 such that

IDX~| E*|| < CX, ||DX"| E*|| < CN, fort>0,

and E° is the one-dimensional subbundle generated by the vector field. Let
f = X' be the time-1 map of the flow. Then M is a strongly partially
hyperbolic set for f, with splitting

E*® E°® E°.

More generally, a hyperbolic set of a flow is strongly partially hyperbolic for
the corresponding time 1 diffeomorphism.

Now we state a generalization of Proposition 5.3 for partially hyperbolic
systems. The terminology is as in Definition 5.3.

Proposition 6.1. Let A be a compact invariant set for f : M — M.

1. A admits a dominated splitting if and only if there exists a continuous
splitting TAM = E & F and there exists a > 0 such that the cone field
Co(E) is forward invariant.

2. A is partially hyperbolic of type E* & E* if and only if C,(E) may be
taken to be an unstable cone field for f.

As a consequence, one also gets an analog of Corollary 5.4: if A is a
partially hyperbolic set for f, there exists a neighbourhood U of A in M
and a neighbourhood N of f in Diff'(M), such that if g € M and T is any
compact subset of U that is invariant under g, then I" is partially hyperbolic
set, for g.

Example 6.7. Let f: M — M be a diffeomorphism with some hyperbolic
attractor A, e.g. an Anosov diffeomorphism. Let ThyM = E* & E* be the
corresponding splitting of the tangent space over A. Fix A < 1 and some
Riemannian metric on M so that

IDf~'| E*| <X and |Df]|E*|| <\
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Figure 8: Deforming an Anosov diffeomorphism

Now let g : N — N be any diffeomorphism on a compact manifold N such
that ||Dg|| < X and ||[Dg~!|| < A. Note that this is satisfied by any map close
enough to the identity. Then A x N is a strongly partially hyperbolic set for
the map f X g: M x N — M x N, with splitting

(E* x {0}) ® ({0} x TN) @ (E* x {0}).

Example 6.8. Partially hyperbolic sets can also be obtained by deformation
of hyperbolic ones, as in the following construction of [31]. Start with an
Anosov diffeomorphism f; in 72 that admits an invariant splitting into three
subbundles

Fu oy Fws oy Fss'

Here F'* is expanding, and F'* and F'*® are contracting, with '** dominating
F™%: there are A < 1 and a Riemannian metric on M such that

IDfo | EZINIDf | Fiyll < A

for every z. Let p be a fixed point of f;. Deform f, by isotopy in a small
neighbourhood of p, as described in Figure 8: keep the diffeomorphism es-
sentially unchanged in the directions of F'* and F'**, while modifying it in the
direction of F'™* so that the fixed point goes through a pitchfork bifurcation,
that gives rise to two new fixed points. As shown in [31], this can be done in
such a way that the whole M = T? is a partially hyperbolic transitive set for
the resulting diffeomorphism f, as well as for any other one in a C' neigh-
bourhood of it. Since f has periodic saddles with either 1 or 2 contracting
eigenvalues, it can not be an Anosov diffeomorphism.
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6.2 Invariant Foliations

Partially hyperbolic sets share some of the nice geometric properties of hy-
perbolic sets. Crucial among these is the existence of invariant foliations
tangent to expanding or contracting subbundles, stated in the next theorem.

By a foliation F on a set A C M we mean a family of two-by-two disjoint
C" immersed submanifolds, 1 < r < oo, called the leaves of F, such that
every one of them intersects A, and every point p € A is contained in some
of the leaves. The foliation is f-invariant if f(F(p)) = F(f(p)) for every
p € A, where F(p) denotes the leaf that contains p.

All the foliations we deal with here are continuous, in the sense of The-
orem 5.6: given any p € A there exists a neighbourhood V}, of p in A, a disk
W, around p inside F(p), and a continuous map

®, : V, — Emb’ (W, M),

such that ®,(p) is the inclusion of W), in M, and the image ®,(z)(,) of the
embedding ®,(z) is a neighbourhood of z inside F(z). When the value of r
is relevant, we say that F is a continuous foliation with C" leaves.

Theorem 6.2. Let A be a partially hyperbolic set of type E* & E° for a C”
diffeomorphism f, anyr > 1. Then there exists a unique f-invariant foliation
F* on A such that T,F"(p) = E} at every point p of A. This foliation
s continuous, its leaves are C" submanifolds, and they are exponentially
contracted by backward iterates: there is A\ < 1 and, for each pair of points
21, %9 tn a same leaf of F*, there exists C > 0 such that

d(f™"(z1), f"(22)) < CX",  for everyn > 1.

See [13, Section 2|, [25], and [56, Appendix IV]. We call F* strong-unstable
foliation of A. Dually, given a partially hyperbolic set of type E“ & E? there
exists a unique f-invariant strong-stable foliation F° tangent to E*. Further-
more, it is continuous, its leaves are at least as smooth as the diffeomorphism
f, and they are exponentially contracted by forward iterates. This follows
from applying Theorem 6.2 to the inverse map f 1.

Definition 6.9. A transitive partially hyperbolic set A is a partially hyper-
bolic attractor for f : M — M if there exists an open neighbourhood U of A
such that

cos(f(U)) cU  and A=[)f"U).

n>0
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Figure 9: A local holonomy map for F*

The following extension of Theorem 5.8 is part of [46, Proposition 1].

Proposition 6.3. If A is a partially hyperbolic attractor then it is a union
of entire unstable leaves: F"(p) C A for every p € A.

For the remainder of this section we take A to be a partially hyperbolic
attractor of type E* @ E°. At some points we suppose that A is hyperbolic,
and then it is always implicit that the subbundle £ is contracting, that is,
the splitting is the one in Definition 5.1. In this case we also call F* the
unstable foliation, and F* the stable foliation of A.

The continuity of F* allows us to define foliated charts ¢, : W, xS, = Z,
for the strong-unstable foliation F" at each point p in A, just as we did for
hyperbolic sets at the end of Subsection 5.2. Let p € M and ¢, : W, x S, —
Z, be a foliated chart for F* at p. Let ¥; and X, be C' submanifolds
embedded in Z,, with dim }; = dim £“* and transverse to the strong-unstable
foliation: ¥; intersects each strong-unstable disk ¢,(W, x {y}) in at most
one point, and this intersection is transverse, for ¢+ = 1, 2.

Define f]l to be the set of points z; € ¥; such that the unstable disk
op(W, x {y}) passing through z; intersects Xy in some point zo = 7(2;). See
Figure 9. The local holonomy map of F* from ¥; to Y is

7221%22, 21|—>7T(21):ZQ.

Since ¢, is a homeomorphism, 7 is a homeomorphism onto its image ¥,.

According to Theorem 6.2, the leaves of the unstable foliation are at least
as smooth as the diffeomorphism f itself. In general, one can not expect the
local holonomy maps to be very regular: holonomy maps of real analytic
Anosov diffeomorphisms may fail to be Lipschitz continuous. However, one
always has at least Holder regularity, as long as the diffeomorphism is twice
differentiable:
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Theorem 6.4. If A is a partially hyperbolic attractor of a C? diffeomor-
phism f, every local holonomy map of the strong-unstable foliation is Hélder
continuous, with uniform Holder constants.

Somewhat related to this, we also have that the invariant subbundles E™
and E° are Holder continuous if f is C2. Recall that a splitting is continuous
if the subbundles are locally generated by continuous linearly independent
vector fields. Correspondingly, we say that the splitting TA M = E" @ E* is
Holder continuous if those vector fields can be taken Holder, with uniform
Holder constants.

Theorem 6.5. If A is a partially hyperbolic attractor of a C? diffeomorphism,
the corresponding splitting TAM = E* & E is Holder continuous.

See [13, Corollary 2.1] and [24, Theorem 6.4]. If A is strongly partially
hyperbolic, as in Remark 6.5, then the splitting TA\M = E* & E° @ E° is
Holder continuous (the definition extends immediately to splittings into any
number of subbundles).

Although, as mentioned before, holonomy maps of the strong-unstable
foliation need not be smooth in general, they do have a weaker regularity
property called absolute continuity: zero Lebesgue measure sets are mapped
into zero Lebesgue sets, at least if the diffeomorphism is twice differentiable.
That is the content of the next theorem, where my, and my, represent the
Riemannian volumes induced by the Riemannian metric on »; and s, re-
spectively.

Theorem 6.6. If A is a partially hyperbolic attractor of a C? diffeomorphism
f, there exists a constant Cy > 1, depending only on f, such that any local
holonomy map m of the strong-unstable foliation of A satisfies

L i, (B) < ms, (n(B)) < Cymy, (B)

for any measurable set B C Y1, and any transverse sections Y1, Yo as above.

This crucial fact was first established by [4], as a main step in the proof
that C? Anosov diffeomorphisms and flows that preserve Lebesgue measure
are ergodic. See also [5]. The extension to the partially hyperbolic context
was due to [13].
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7 Measures Absolutely Continuous Along F*

In this section we take f : M — M to be a C? diffeomorphism. We prove
that every partially hyperbolic attractor A of type E* & E, supports some
invariant probability measure p that is absolutely continuous along the strong-
unstable foliation F*. The precise statement will be given in Theorem 7.1,
after we have defined this last notion. We shall show that, in many situations,
such probabilities are physical measures for f on A. In particular, this is the
case if the subbundle E® is contracting, corresponding to A being hyperbolic.

We begin by defining absolute continuity of a measure along a foliation,
in an abstract setting. Let X, Y be compact metric spaces, and F denote
the partition of X x Y into “horizontal lines”

F={Xx{y}:yeY}.

Let v be some probability measure in X. We also denote 7x : X x Y — X
and my : X XY — Y the canonical projections. Given any measure p on
X x Y, welet i =my.(u). That is, i is the measure defined on Y by

(&) = p(myt(€)) = (X x &)  for every measurable set & C Y.

Definition 7.1. A measure p on X XY is absolutely continuous with respect
to v along the horizontal foliation F if there exists a measurable function
p:X xY —[0,+00) such that

W(B) = /B ple,y) dv(z) dp(y)

for every measurable set B C X x Y.

In other words, p is absolutely continuous with respect to v along F if
and only if 4 is absolutely continuous with respect to the product measure
v X fi. Then, p is the Radon-Nikodym derivative of y relative to v x 1. We
call {p(-,y)v:y € Y} conditional measures of y relative to F.

Going back to the dynamical context, let A be a partially hyperbolic
attractor of type E* @ E° for a C? diffeomorphism f : M — M, and let F*
be the corresponding strong-unstable foliation. The definition of absolute
continuity of a measure along F* uses the notion of foliated chart introduced
in Subsections 5.2 and 6.2.
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Definition 7.2. A measure p supported in A is absolutely continuous along
F* if for every p € A there exists a foliated chart ¢, : W, x S, = Z, for F*
at p such that the pull-back ¢,u of  under ¢, is absolutely continuous with
respect to Lebesgue measure along F.

The pull-back is the measure on W, x S, defined by ¢;u(B) = u(é,(B)),
for every measurable subset B.

Let U be any compact disk contained in some leaf of F*, and my be a
Riemannian volume on U. That is, my is the Lebesgue measure induced on
U by the volume element associated to some Riemannian metric of M. In
this section we prove the following result of [46].

Theorem 7.1. Any accumulation point of the sequence
1 n—1 .
=Y fimy
n‘=
15 an tnvariant measure for f, absolutely continuous along F*.

7.1 Conditional Measures

As a first step in the proof of Theorem 7.1, we obtain a few abstract results
about measures absolutely continuous along a foliation. The setting is the
same as in Definition 7.1: we suppose that y is a measure on the product
X x Y of two compact metric spaces, and v is a probability measure in X.

Lemma 7.2. Suppose there exists a measurable function ¢ : X — [0, +00)
with fwdu < 00, and a family R of rectangles A x £ C X XY generating
the o-algebra of all measurable subsets of X XY, so that

1(A x &) gﬂ(f)/Ade for every A x £ €R.

Then p is absolutely continuous with respect to v along F, with p(z,y) < ¥(z)
at (v x f1)-almost every point (z,y) € X x Y.

Proof. Tt is easy to check that the family of measurable subsets B C X x Y
for which

u(B) < /B () dv(z) di(y) (25)
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is a o-algebra. By assumption, this family contains R. Since we also take R
to be generating, (25) must hold for every measurable subset B. This implies
that u is absolutely continuous with respect to (v x ), with Radon-Nikodym
derivative p = du/d(v x 1) satisfying p(x,y) < 1(x) at (v x fi)-almost every
point. ]

Remark 7.3. In the same setting, let ¢ : X — [0, +00) be any measurable
function such that

WA X €) > () / b dv

for every A x £ in some generating family of rectangles. Then, by similar
arguments, the Radon-Nikodym derivative also satisfies p(z,y) > ¢(z) at
(v x [1)-almost every point.

Proposition 7.3. Let pg, k > 1, be a sequence of measures on X x Y
converging to some measure [ in the weak™ topology. Suppose there erists a
measurable function ¢ : X — [0,+00) with [ dv < oo, and a family R of
rectangles A x £ C X XY generating the o-algebra of measurable subsets of
X xY, so that

uk(Axﬁ)gﬂk({“)/AdeZ/ for every Ax &€ R and k > 1.

Then p s absolutely continuous with respect to v along F, with density p < ¥
at (v X [1)-almost every point in X X Y.

Proof. Let [i, = 7my.(px). By the previous lemma, for each k& > 1 there
exists pr : X x Y — [0,+00) such that ux = pp(v X fig) and p < 9 at
(v x [ix)-almost every point. In particular,

(A X €) < nk(f)/Awdu

for any measurable rectangle A x £ in X x Y. Since 7y is a continuous map,
the assumption pr — p implies that jiy — . Then, assuming the boundary
of & has zero ji-measure, [i;(£) converges to ji(£) as k — oco. Let us suppose,
furthermore, that A C X and £ C Y are open subsets. Then

(A % €) < limint (A x §) < tynintn©) [ wv = (e) [ v

Now the proposition follows from Lemma 7.2, together with the observation
that the family of open rectangles A x & such that 1(0£) = 0 generates the
o-algebra of X x Y. O
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Proposition 7.4. In the setting of Proposition 7.3, let ¢ : X — [0,400) be
any measurable function such that

,uk(Axg)zﬂk(g)/Aqﬁdu forany AxE€R and k > 1.

Then the derivative p satisfies p > ¢ at (v X [1)-almost every point.

Proof. This is similar to the previous proposition. According to Remark 7.3,
we have py > ¢ at (v X [i)-almost every point. In particular,

ie(A X €) > fuel€) / b dv

for any measurable rectangle A x £ in X x Y. Taking A C X and £ C Y
to be closed, and the boundary of £ to have zero measure for i, we conclude
that

(A x ) > limsup s (4 x €) > timsup ju(€) [ 6w =€) [ o
k k A A

Since these closed rectangles generate the o-algebra of X xY, the proposition
follows from Remark 7.3. O

7.2 Distortion Along Strong-Unstable Leaves

In what follows we suppose that some Riemannian metric has been chosen
on M: determinants and lengths of curves are always meant with respect to
this metric. This also determines a Riemannian volume on each of the leaves
of the strong-unstable foliation, that we denote m, . Given any measurable
subset B of some strong-unstable leaf, we let mp be the restriction of m,, to
B.

For j € Z and y € A, we let J*f/ be the norm of the Jacobian of f
restricted to the unstable subspace Ej :

JUf(y) = [det(Df(y) | )|
Let U be a compact disk contained in some leaf of F*.

Lemma 7.5. For any n > 1, we have fimy = (J*f™") mm ) .
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Proof. By definition, given any measurable subset B of f™(U),
Frmg(B) = / 1 dmy -
f=(B)
Changing variables y = (f™ | U)(x) in the integral, we get

frm(B) = / (S 1) dmgey

B

for any measurable subset B, as we claimed. O

Definition 7.4. Given points x and y in a same strong-unstable leaf F',
du(z,y) = {length(a) : « is a piecewise C' curve in F connecting = to y}.

It is easy to check that d,(-,-) defines a distance on each leaf F' of the
foliation F*. Since the derivative D f is uniformly expanding along the tan-
gent bundle E* = TF*, this distance is uniformly contracted by negative
iterates of f. Indeed, given any piecewise C' curve « connecting z to y
inside the leaf F, the length of f=7(q) is less than C ) length(a), for every
j > 1. Therefore,

du(f 7 (2), 7 (y)) < CNdy(z,y) for every j > 1. (26)

For completeness, we also set d,(z,y) = oo when z,y are in different strong-
unstable leaves.

Proposition 7.6. Given L > 0 there exists K > 0 such that
JUf " (y1)
JU " (y2)

for every n > 1 and any y1,y2 € A such that dy(y1,y2) < L.

<K

Proof. Since we suppose the diffeomorphism f to be C?, the tangent bundle
E" = TF" is vyg-Holder for some 0 < vy < 1. Recall Theorem 6.5. As a
consequence, the map

A =R, @“(z) =log|det(Df(x) | E3)l,
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is (Cy, vp)-Holder for some constant Cy > 0. In particular, its restriction to
each strong-unstable leaf is (Cp, vp)-Holder with respect to the d,-distance
on the leaf. Using the chain rule,

U

log T Zso — " (f (1))
By Hélder continuity and (26), this is less than

Zco ), [ (y2))" < Zco (CNdu(y1,92))"

7j=1

So, since we suppose that d,(y1,y2) < L,

JUf " () vo
lo < Cy(CL) e,
B e () = O Z
Thus, we may take K = Co(CL)™ Y22, M*. O

Corollary 7.7. Given any L > 0 there exists K > 0 so that, forn > 1 and
any domain D in f"(U) with d,-diameter less than L, we have

lmfn(U)(B) < ffmU(B) < Kmfn(U)(B)
Kmfn(U)(D) - meU(D) - M fn (1) (D)

for any measurable subset B of D.

Proof. This is a direct consequence of Lemma 7.5 and Proposition 7.6, with
the same constant K as in the proposition:

frmu(B) _ Jp(J" ™) dmpnwy o mgn (B)
frmu(D) - [p(Jef ) dmpnwy T mpny (D)

and the lower inequality is obtained in the same way. O

As another consequence of Proposition 7.6, we obtain the following result
about positive Lebesgue measure subsets of strong-unstable leaves: forward
iterates of the set fill-in an arbitrarily large fraction of some d,-ball with
given radius. The d,-ball of radius > 0 around a point ¢ € A is denoted
By (q).
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Proposition 7.8. Let r > 0 be fired. Let F be a leaf of the foliation F*,
and A be a subset of F' such that my,(A) > 0. Then there ezist p, € f"(A),
n > 1, such that

ma (f"(4) N B} (pn))

My (B}‘ (pn))
Proof. 1t is no restriction to suppose that A is compact. For each n > 1, let
Q@n be a maximal finite subset of f™(A) such that the open d,-balls B¥(q) of
radius r around the points of (),, are two-by-two disjoint. Then the d,-balls
of radius 2r around the points g € @,, cover f"(A). Since F* is a continuous

foliation with C? leaves, cf. Theorem 6.2, its leaves have uniformly bounded
curvature. As a consequence, there exists x > 0, depending only on 7, such

that (BL(0)
My, 2r q
S By ="

for any point ¢ € A. Then, taking L = 2r in Corollary 7.7,

_ mu(f(B,(9))
~ mu(f(B%q)))

for any n > 1 and g € @),,. Let us show that, for n large, there exists ¢ € @,
such that A fills-in a large fraction of f~"(B!(q)). More precisely,

ma(f (B \ A)
€0 (- (Be(a)

Proof. We prove the claim by contradiction. Suppose there exists § > 0 such
that, for every q € @,

mu (f (B (@) \ A) 2 om. (£ 7(B}(9)))-

Since the B¥(q), ¢ € Q. are two-by-two disjoint, adding over ¢ we get

mo( |J F(BH) \ A) > oma( | F(BM9))). (28)

q9€Qn q€Qn

On the one hand, the d,-diameter of f~™(B"(q)) is less than 2rC'A™, which
converges to zero as n — 0o. Since f~"(q) € A for all ¢ € @, it follows that
the union of the f~™(B"(q)) is contained in a small neighbourhood of A if

—1 asn— occ.

< Kk (27)

Claim:

—0 asn — oo.
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n is large. Thus, the left hand side of (28) goes to zero as n — oo. On the
other hand, by (27), the right hand side is bounded from below by

0 o 0
qEQn
We have reached a contradiction, so the claim is proved. O

For each n > 1 we pick p, to be a point in @), where the minimum
of the expression in the statement of the claim is attained. Then, using
Proposition 7.6 once more,

mu(Br(pn) \ f"(A)) < Kmu(f‘”(Br(pn)) \ 4)
mu(Br(pn))  — mu(fT(Br(pn)))

This proves the proposition. O

—0 asn— oo.

7.3 Proof of the Existence Theorem

Now, we are in a position to prove Theorem 7.1. Let u, be as in the state-
ment. We want to show that, given any accumulation point u of u, and any
point p in A, there exists a foliated chart ¢, at p such that the pull-back ¢;u
is absolutely continuous along the horizontal foliation F.

We fix p = limy p1,,, and the point p in all that follows. The choice of a
foliated chart ¢, : W, x S, — Z, is rather arbitrary: we only require that
the boundary of Z, have zero y-measure:

1(0Z,) =0, (29)

which can always be obtained, replacing W, and S, by slightly smaller sets
if necessary. We show that, for any such chart, ¢*u is indeed absolutely
continuous along the horizontal foliation.

Definition 7.5. We say that a connected component y of f/(U)NZ,, crosses
Zy if ¢,'(7) is a graph over W), that is, ¢, () projects homeomorphically
onto W, under the canonical projection 7 : W, x S, — W,,.

Each p,, n > 1, is supported in the union of the iterates f7(U) over all
0 <j <n-—1. We denote I'; the union of the connected components of
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A

Figure 10: Crossing and non-crossing components

f/(U) N Z, that cross Z,, and I'}° the union of all the other components.
Then we write the restriction of y, to Z, as

(tn | Zp) = iy, + b,

where pf is the part of the measure p, that sits on components crossing Z,,
and ¢ is the part of p, sitting on non-crossing components:

1 - c ne _ 1 ' ne
= S (fme) | TS and e = = 3 (fimg) | T

Firstly, we prove that the total mass of u..¢ goes to zero as n goes to
infinity.

Lemma 7.9. We have (M) = up(Z,) — 0 as n — oo.

Proof. Let j > 0 and z be any point in I'7°. Recall that I'}* C Z, N F2(U).
Since Z, can be written as a disjoint union

Zy = U ¢ (Wp x {y}),

YESp

there exists a unique y € S, such that z € ¢,(W, x {y}). Then the connected
component of Z, N f7(U) which contains z is a subset of the strong-unstable
disk ¢,(W, x {y}). Since this component does not cross Z,, the disk f/(U)
can not contain ¢, (W, x{y}). Therefore, there exists some 2z, € ¢,(W, x{y})
that is on the boundary of f7(U). In particular, d,(z, 20) < 8, where & > 0
is any upper bound for the d,-diameter of the ¢,(W, x {y}) over all y € S,
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and p € A. In other words, we have proved that I'7¢ is contained in the d,-
neighbourhood of radius dy of the boundary of f/(U) inside the corresponding
strong-unstable leaf.

Since D f expands distances uniformly along strong-unstable leaves, cf.
(26), we may conclude that f7(I'7¢) is contained in the d,-neighbourhood
N(0U, CNdy) with radius CAdy of the boundary of U. Therefore,

Fmy(T59) = my (f77(15°)) < my(N(OU, CN b))

for every j > 0. The last term mg (N (OU, CN &y)) converges to my(0U) = 0
as j — 0o, because A < 1. So ffmU(F}“") converges to zero as well, as 7 — oo.
As a consequence,

n—1
1 ; .
pin (M) = - > FHmy(T5) =0 as j— oo,
=0

as claimed in the lemma. O

It follows that the fraction of the u, that is supported on non-crossing
components has no effect on the limit measure u:

Corollary 7.10. We have ¢,pu = limy ¢ppy,

Proof. Let B be any measurable subset of W), x S, whose boundary 0B has
zero ¢yu-measure. In other words, 1(¢,(0B)) = 0. Since the boundary of
®p(B) is contained in 0Z, U ¢,(0B), assumption (29) implies p(0¢,(B)) = 0.
As a consequence,

u(6p(B)) = Jim jin, (85(B)) = lim s, (8,(B)) + 13 (6p(B)).
By Lemma 7.9, the last term on the right converges to zero. So,

u(6p(B)) = lim 4, (6,(B))
for any subset B as above. This is equivalent to the claim in the corollary. [

From now on we focus our attention on crossing components. For nota-
tional simplicity, we write n = ¢,u and 7, = ¢pu;,, and we let 7 and 7,
represent the quotient measures on Sy:

(&) = Gpu(Wy x §)  and (&) = dpptr, (W) X £).
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Lemma 7.11. There exists C7 > 1, depending only on the diffeomorphism
f, such that

1 my(A)
El mU(Wp)

my(A)
mu(Wp)

M (€) < dphn (A x ) < C 7 (€)

for any measurable sets A C W, and £ C S,.

Proof. We explain how to obtain the upper inequality, the lower one is anal-
ogous. The main step is the following

Claim: There exists C'; > 1, depending only on f, such that
fimy(6p(Ax ) 07) _ [, mu(4)
- <O
fmy(v) my(Wp)

for every 0 < j < n — 1, and every connected component v of Z, N fI(U)
crossing Z,, and intersecting ¢,(A X §).

Proof. Since v crosses Z,, there exists y € S, such that v = ¢,(W, x {y}).
Note that « intersects ¢,(A x £) if and only if y € £ and, in that case,

(Ax N Wy x{y}) = (A x{y}).

Now we use bounded distortion. Let d; be an upper bound for the d,-
diameter of the strong-unstable disks ¢,(1W, x {y}), over all y € S, and
p € A. By Corollary 7.7 there exists a constant Cy = K (dg) > 0 such that

iy (A% D)) _ , mpiey (64 % (u))
Fmy (6,(Wy x {y})) = mpiw) (6p(Wp x {y}))
Recall that, according to property (A2) stated at the end of Subsection 5.2,
Gpy = (0p | W, x {y}) is a diffeomorphism of W, x {y} onto . Recall also

that myi ) is just the restriction of the Rlemannlan volume m, to f7(U).
By the mean value theorem,

Myi(w (¢P(A x {y})) _ |det Doy (z1,y)| mu(A)
My (¢p(W X {?J})) | det D,y (w2, y)| mu (W)

for some z1,x2 € W),. The quotient of the Jacobians is uniformly bounded:

| det Doy, o (21, Y)
| det Doy, (22, )

(30)

(31)

G (32)

IN
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for some C3 > 1 and every 2,2, in W,. Moreover, by properties (A3) and
(A1) of foliated charts, the diffeomorphisms ¢, , vary continuously with the
point y, and ¢,, is, essentially, the identity on W,. Since A is compact,
these facts ensure that the constant C'; may be chosen depending only on
f (neither on y nor on p). Taking C; = CyCs, the claim follows from (30),
(31), (32). O

Going back to proving the lemma, we write

1 (Bp(A x €)) = ZZfﬂmU $p(A x )N 7), (33)

JO’Y

where the last sum is over the components v of Z, N f/(U) crossing Z, that
intersect @,(A x £). As noted in the proof of the Claim, any connected
component crossing Z, may be written as v = ¢,(W, x {y}). Moreover, it
intersects ¢,(A x &) if and only if y € £. Clearly, the last condition does not
depend on the set A. So, replacing A by W, in (33) gives

15, (p (W), x €)) Z > Fimy(y (34)

J =0
where the last sum runs over the same subset of connected components v of
Z, N fI(U) as in (33). Now, using the Claim to compare the sums in (33)
and (34) term by term, we find
(A X6 _ p(6,(Ax8) _ , mu(4)
>~ V1 )
T (€) /%cz (¢p(Wp X f)) my(Wp)

which is what we wanted to prove. O

Corollary 7.12. If p = limy pt,,, , p € A, and ¢, : Wy, X S, = Z, are as as
above, then ¢pu is absolutely continuous with respect to normalized Lebesgue
measure my/m,(W,) on W, along the horizontal foliation. In addition, the
density p is uniformly bounded away from zero and infinity: 1/Cy < p < C .

Proof. This follows from Propositions 7.3 and 7.4, with X =W, Y = 5,
¢pps,. in the role of g, n = ¢ju in the role of u, v =m, ¢ = Cy, ¢ =1/C,
and R being the family of all measurable rectangles A x & C W, x S,.
Lemma 7.11 states that the assumptions of the two propositions are satisfied.
Recall also Corollary 7.10.
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The propositions state that 1/C; < p < Cj on a subset with full m x -
measure. Then, modifying the values of p on the complement if necessary
(since the complement has measure zero, the new function is again a density
for ¢5uu), we may suppose that 1/C; < p < C) everywhere. O

Theorem 7.1 is contained in the following proposition, that summarizes
the main facts we proved in this section.

Proposition 7.13. For any accumulation point p of p, = n—! Z?:_é fimy,
and any point p € A, there exist foliated charts ¢, for the strong-unstable
foliation F* at p, so that ¢yu is absolutely continuous with respect to nor-
malized Lebesque measure along the horizontal foliation, with density p uni-
formly bounded away from zero and infinity by constants that depend only on
the diffeomorphism f.

Remark 7.6. The conclusion of Theorem 7.1 is also valid for the accumu-

lation points of
n—1

1
- j
-2 fl(pLeb),
7=0
where ¢ is any non-negative function supported in a sufficiently small neigh-
bourhood of A, and Leb is Lebesgue measure in the ambient manifold M.
See Theorem 3 of [46].

8 Sinai-Ruelle-Bowen Measures

The following fundamental result was first proved by Sinai [57] for Anosov
diffeomorphisms, and by Ruelle and Bowen [12], [?], [9] for general hyperbolic
attractors of diffeomorphisms or flows.

Theorem 8.1. Suppose that A is a hyperbolic attractor for a C? diffeomor-
phism f: M — M. Then there exists a unique invariant probability measure
u supported in A that is absolutely continuous along F*. This measure is
ergodic and its support coincides with A. Moreover, i is a physical measure
for f, in fact, B(p) is a full Lebesgue measure subset of the basin B(A) of A.

Let us begin by giving a sketch of the proof, the details are carried out
in Subsection 8.1. A similar approach can be applied to certain partially
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hyperbolic (non-hyperbolic) attractors, to prove existence and finiteness of
SRB measures, see the last subsection.

First, we prove that any invariant measure absolutely continuous along
the unstable foliation splits into finitely many ergodic components, that are
also absolutely continuous along F*. For this purpose we introduce an equiv-
alence relation, the accessibility relation, such that time averages are constant
on each equivalence class. This is defined in the (full measure) set of regular
points, which are the points at which forward and backward time averages
exist and coincide, for any continuous function. Accessibility is the smallest
equivalence relation such that regular points in a same stable or unstable
manifold, or in a same orbit, are in a same accessibility class.

There are only finitely many accessibility classes having positive weight
for some invariant measure y absolutely continuous along F*. The ergodic
components of any such p are its normalized restrictions to those accessibility
classes. As part of the proof we also get that ergodic measures absolutely
continuous along F* have the SRB property. This is based on the fact that
the stable foliation F? is absolutely continuous, cf. Theorem 6.6. Using,
for the first time, the assumption that f is transitive on A, we show that
the accessibility class is, actually, unique. In this way we conclude that u
is ergodic and unique. Moreover, its basin fills-in a full Lebesgue measure
subset of the whole basin of the attractor.

8.1 Hyperbolic attractors

Definition 8.1. A point z € M is regular if the forward and backward time
averages

1 n—1 - 1 n—1 '
] _ J — | _ —-J
lim = o(f(2) = lim — > o(f /(z))
Jj=0 j=0
exist and coincide, for every continuous function ¢ : M — R.

Note that, according to the ergodic theorem of Birkhoff, the set R of
regular points has full measure with respect to any probability measure that
is invariant under f.

Definition 8.2. Given z,y € R, we set z ~ y if there exist N > 1, regular
points x = 2g, 21,...,2n_1, 28 = Y, and integers ki, ..., ky, such that

2 € W*(f*(zim1)) UW?(f5 (2:21))
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Figure 11: The accessibility relation

for every 2 =1,...,N.

See Figure 11, corresponding to a situation with k& =--- =ky = 0. It is
easy to check that ~ is an equivalence relation. We refer to the equivalence
classes as accessibility classes. Note that, by definition, they are invariant
sets for f.

The usefulness of this notion stems from the following simple observation.

Lemma 8.2. The time averages of any continuous function ¢ : M — R are
constant on each accessibility class.

Proof. Suppose x and y are in a same stable set, that is, if d(f’(z), f?(y)) — 0
as j — 4o0o. Then |p(f/(z)) — o(f(y))| — 0 as j — +o0, and so the two
points have the same forward time average:

lim = icp(fj(x)) = lim

n—oo N, <

L iw(fj(y))-

n—oo N <

Similarly, points in a same unstable set have the same backward time aver-
ages. It is also clear that x and y are iterates of each other then they have
the same time averages, both in the future and in the past. Now suppose
x ~ vy, and let © = 2y, 21,...,2y = y be as in Definition 8.2. Since all these
points are assumed to be regular, the previous remarks show that they all
have the same time averages for . O

Corollary 8.3. If an invariant measure p gives positive weight to an acces-
sibility class A then its normalized restriction to A is an ergodic measure,
and 1t does not depend on L.
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Proof. A has full measure for this normalized restriction p_4, and we have
shown in the lemma that time averages are constant on it. So

. 1 n—1
pa = nh—>n§o - Zoéfj(z) for any z € A.
‘7:
This proves that u4 is ergodic and independent of . O

Everything we said so far in this subsection holds in great generality, e.g,
for homeomorphisms in metric spaces. Now we focus again on the context of
C? diffeomorphisms admitting a hyperbolic attractor A.

We use ¢, : S, x W, — Z as a generic notation for a foliated chart of
the stable foliation 7*° of A at the point p. Recall that, by definition, W is
contained in the local stable manifold of p, whereas SI’, is the intersection of
A with some cross section 33, of F* at p. For simplicity, we always assume
that ¥ is contained in the local unstable manifold of p. In that case, S
coincides with X, cf. Theorem 5.8, and they are contained in A.

Lemma 8.4. There exists r > 0 such that, given any accessibility class A in
A that intersects some unstable leaf in a positive m,-measure subset, there
exists pg € A so that m,-almost every point z the d,-ball of radius r around
pa is in the stable manifold of some point of A.

Proof. We fix r > 0 so that the d,-ball of radius r around any point p € A is
contained in the interior of Z, where 7 is the image of some foliated chart
for the stable foliation F* at p. Let F' be any leaf of F* for which A = ANF
has positive m,-measure. Note that f"(A) C A for every n > 1, because A
is invariant. So, according to Proposition 7.8, there exist points p, € A such

that
My (B;L (pn))

By compactness, we may suppose that the sequence (p,), converges to some
point p4 € A. In particular, the B*(p,) converge to the d,-ball of radius r
around p4. In view of our choice of r, By(p4) is contained in Z, and so is
B!(p,) for every large n. It follows from (35) and the absolute continuity
property of F*°, Theorem 6.6, that the local stable manifolds through points
in AN B¥(p,) intersect BY(p) in a subset G,, such that

My, (B;L (pA) \ Gn) My, (B;L (pn) \ A)
ma(Bron) 0 ma(B ()
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as n — 00. Let G = U,G,,. Then G has full m,-measure in B¥(p4), and any
z € G is in the stable manifold of some point in A. O

Lemma 8.5. Given r > 0 there exists s > 0 so that the following holds. Let
A be an accessibility class and p € A be such that m,-almost every point in
the dy-ball of radius r around p is in the stable manifold of some point of A.
Then the same is true for

1. Lebesgue almost every point in the s-neighbourhood By(p) of p in the
ambient manifold M,

2. and my-almost every point in F' N By(p), for any unstable leaf F.

Proof. We choose s > 0 small enough so that, given any point p € A, there
exists a foliated chart ¢, : S, x W, — Z for the stable foliation at p such
that Z, contains B,(p). We reduce s if necessary, so that m (Bs(p)) C B¥(p)
for every p € A, where 7, is the projection onto S}, along the stable leaves
inside Z, . In oth_er Words, T = ¢poTy 0 qﬁ;l, where 7, : S, x W) — S] is
the canonical projection.

Claim: Let ¥ be a C' embedded disk in the By(p) and transverse to F*.
Then my-almost every point in X is in the stable manifold of some point of

A.

Proof. Let m : ¥ — S, be the local holonomy map of F* from % to .

Our choice of s ensures that the image ¥ of 7 is contained in B%(p). By
Theorem 6.6, both 7 and its inverse 7~ map zero Lebesgue measure sets
into zero Lebesgue measure sets. So, the assumption implies that 7(z) is in
the stable manifold of a point in A, for my-almost every point. Of course, z
and 7(z) are in the same stable manifold, so the conclusion follows. O

Part 2 of the lemma is a particular case of the Claim. To prove part 1 it
suffices to consider any C! foliation G of B,(p) by disks transverse to F*. The
Claim applies to each of the leaves of G and so, by Fubini’s theorem, Lebesgue
almost every point in that s-neighbourhood is in the stable manifold of some
point of the accessibility class A. O

Corollary 8.6. 1. There exist only finitely many accessibility classes A,
..., An as in Lemma 8.4.
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2. The ergodic decomposition of any invariant measure |1 absolutely con-
tinuous along F* is given by p = Y. u(Ai)p; where the sum is over
the values of i such that u(A;) > 0, and each p; is the normalized
restriction of u to A;.

Proof. Suppose there are infinitely many distinct accessibility classes A;,
1 > 1. Then, combining Lemmas 8.4 and 8.5, there is s > 0 and there are
points p; € A, ¢ > 1, such that the union of the stable manifolds of the
points in A; contains a full Lebesgue measure subset of the s-neighbourhood
of p;, for every ¢ > 1. By compactness, we may suppose that the p; converge
to some p € A. Then, for every large i and j, the neighbourhoods B;(p;)
and B,(p;) intersect each other in a set with positive Lebesgue measure. In
particular, there exists ¢ € Bs(p;) N Bs(p;) that is in the stable manifolds
of points ¢; € A; and ¢g; € A;. This implies that ¢; and g; are in a same
accessibility class, contradicting the assumption that A; and A; are different.
Part 1 of the corollary is proved.

Now we prove part 2. In view of Corollary 8.3, we only have to show that
the union of all the accessibility classes as in Lemma 8.4 has full measure for
u. In equivalent terms, it suffices to prove that any measurable subset B of
A with p(B) > 0 intersects at least one accessibility class A that contains a
positive m,-measure subset of some unstable leaf.

Indeed, given any measurable set B C A with u(B) > 0, there exist
p € A and a foliated chart ¢, : W, x S, — Z, for F* at p such that
BN Z, has positive y-measure (consider some finite covering of A by images
of foliated charts). As the set R of regular points has full measure, we also
have p(B N Z, N'R) > 0. This can be rewritten as

¢:u(6, (BN Z,NR)) > 0.

Then, since ¢,u is absolutely continuous along the horizontal foliation of
W), x Sy, there exists y € S, such that ¢, (BN Z, N R) N (W, x {y}) has
positive m,-measure. Taking the image under the embedding ¢, | (W, x{y}),

mu((B NZ, NR) N (W x {y})) > 0.

The set (BN Z, N R) N ¢p(W, x {y}) is contained in the accessibility class
of any of its points, since it is contained in an unstable disk ¢,(W, x {y}).
The last inequality shows that this accessibility class intersects the unstable
disk in a subset with positive m,-measure. O
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Corollary 8.7. Any ergodic measure p absolutely continuous along the un-
stable foliation is a physical measure for f.

Proof. By Corollary 8.6, u is ergodic if and only if there is an accessibility
class A; so that u(A;) = 1. Moreover, cf. Corollary 8.3, in that case u is
given by the limit of n=! Z;:& dfi(z) a8 m — oo, for any point z € A;. By
Lemma 8.5, there exists p; € A such that Lebesgue almost every point in the
s-neighbourhood of p is in the stable manifold of some point of A4;. Since
points in a same stable manifold have the same forward time averages, it
follows that

n—1
1
p=lim Z;%(w)
j:

for a full Lebesgue measure subset of B,(p;). This means that the basin of u
contains that subset of B,(p;), and so it has positive Lebesgue measure. [

Observe that Theorem 7.1, together with the second part of Corollary 8.6,
imply that there does exist at least one accessibility class as in Lemma 8.4.
Now we use the assumption that f is transitive on A to show that, in fact,
such an accessibility class is unique. Thus, f has a unique physical measure
supported in A.

Lemma 8.8. Let p € A and A be any accessibility class as in Lemma 8.4.
Then my,-almost every point in BY(p) is in the stable manifold of some point

of A.

Proof. Let ¢, : S, x W) — Z, be a foliated chart for the stable foliation
at p, such that Z, contains the r-neighbourhood of p (recall the choice of
r in Lemma 8.4). By the second part of Lemma 8.5, there is p4 € A such
that m,-almost every point in F' N Bs(p4) is in the stable manifold of some
point of A, for any unstable leaf F intersecting the s-neighbourhood B;(p4).
The fact that f is transitive on A implies that there exist points ¢ — pa
and times ny — oo such that f™(qz) — p. In particular, g is in the s/2-
neighbourhood of p4 and B,(f™(gx)) is contained in Z), for every large k.
Then, m,-almost every point in the d,-ball of radius s/2 around gy is in the
stable manifold of some point in A. By the invariance of A, the same is
true for my,-almost every point in the f™ -image of this ball. Increasing ny
if necessary, this image contains the d,-ball BY(f™*(gx)). So, we have shown
that p is accumulated by points f™ (py) such that m,-almost every point in
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their d,-balls of radius r are in the stable manifold of some point in A. The
same argument as in Lemma 8.4 shows that this remains true for the d,-ball
of radius r around p. O

Corollary 8.9. There exists exactly one accessibility class that intersects
some unstable manifold in a positive m,-measure set.

Proof. In view of the remarks preceding Lemma 8.8, we only have to prove
uniqueness. Let p € A, and A, B, be any accessibility classes as in the
hypothesis. By the previous lemma, the stable sets of A and B fill-in full
measure subsets of B*(p). In particular, they must intersect each other, and
this implies that A = B. O

Corollary 8.10. There exists a unique invariant probability measure p ab-
solutely continuous along F*, and u is ergodic. Moreover, the basin of u
contains a full Lebesgue measure subset of the basin of A. Consequently, i is
also the unique SRB measure of f in A.

Proof. Uniqueness and ergodicity follow from Corollaries 8.6 and 8.9:

n—1
.1
p= lim — Z Ofi(z) (36)
=0

n—oo 7N

for any z in the unique accessibility class A.

Lemmas 8.5 and 8.8 imply that Lebesgue almost every point in the s-
neighbourhood of any p € A is in the stable manifold of some z € A. So,
(36) is true also for Lebesgue almost every point in the s-neighbourhood of
the attractor A. Since the basin B(A) is the union of the pre-images of this
neighbourhood, we have (36) for Lebesgue almost every point in B(A). The
last statement is an immediate consequence. O

8.2 Attractors of Type E" @ E

It is easy to see that a (transitive) partially hyperbolic attractor may support
infinitely many ergodic probability measures absolutely continuous along the
strong-unstable foliation. Moreover, in general they are not SRB measures
for the map.

Example 8.3. Let f; : My — M; and fy : My — M, be Anosov diffeo-
morphisms, with splittings TM; = E} @ E? for 1 = 1,2. Then f; X fy is an
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Anosov diffeomorphism on M; x M,. Taking f; and f, to be transitive, i.e.
so that there is some point whose forward orbit is dense in the corresponding
manifold, then f; x fs is also transitive. See e.g. Remark 9.3. Assume that
the contraction of f; along Ej is stronger than the contraction of f» along
E3, and the expansion of f; along EY is also stronger than the expansion of
fo along E¥. More precisely, there exists A < 1 such that

IDf | EI(Df | B3)7' <X and  [IDfe | ES|II(Df ] EY) 7 < A

Then we may also think of M; X M, as a strongly partially hyperbolic at-
tractor for f; X fy, with splitting

T(My x M) = (E} x {0}) ® TM> & (E; x {0}).

The foliation F* tangent to the strong-unstable bundle E} x {0} is given by
Fi(xy,29) = Fi(x1) X {z2}, where F}' is the unstable foliation of f;. Let
u; be the SRB measure of f; for : = 1,2, and v be an fs-invariant measure
supported on a periodic orbit of f;. That is, v is the average of the Dirac
measures supported on the points of the periodic orbit. Then p; X v is an
invariant ergodic measure for f; X fy, absolutely continuous along F*. But
the Anosov diffeomorphism f; X f; has a unique SRB measure p; X ps .

There are, however, relevant situations in which SRB measures can be
constructed via Theorem 7.1. The following sufficient condition was proposed
by [?], extending [?]. It holds for a C' open set of diffeomorphisms with
partially hyperbolic, possibly non-hyperbolic, attractors.

Let A be a partially hyperbolic attractor of type E* @& E°* for a diffeo-
morphism f : M — M. We say that E is mostly contracting if Df™ | E¢
is asymptotically contracting, as n — oo, over a large set of points: given
any domain U inside a strong-unstable leaf, there exists a positive Lebesgue
measure subset Uy of U, such that

1
limsup —log ||Df" | E*|| < 0 (37)
n—+oo T

for every z € Uj.

Theorem 8.11. Let A be a partially hyperbolic attractor of type E* & E<*
for a C? diffeomorphism, such that E is mostly contracting. Then any
ergodic measure absolutely continuous along the strong-unstable foliation F*
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1s an SRB measure. There are finitely many such measures and their basins
contain o full Lebesque measure subset of the basin of the attractor A. If
the orbit of any strong-unstable leaf is dense in the attractor then the SRB
measure s unique.

In the situation treated by [?], the partially hyperbolic attractor is ob-
tained from an initial Anosov diffeomorphism f, : M — M, through a defor-
mation by isotopy. In the simplest case, M is the 3-dimensional torus and
fo has hyperbolic splitting TM = E} @ E§ with dim E§ = 2. One deforms f,
close to a fixed point py, weakening the contraction along the stable direction
while keeping the unstable direction essentially unchanged. At some stage of
the deformation, the continuation of the fixed point py goes through a Hopf
bifurcation, after which it becomes a repeller (source). The complement A
of the unstable set of this repeller is a partially hyperbolic attractor for the
modified diffeomorphism f. It has a splitting TM = E" @& E“ such that
dim F° = 2, and the orbit of any strong-unstable leaf is dense in A.

In Theorem 8.11 it is not necessary to suppose that A is an attractor,
nor that it is transitive: under condition (37), the conclusion holds for any
partially hyperbolic set consisting of entire strong-unstable leaves. Compare
Proposition 6.3.

On the other hand, even if A is a transitive attractor, there may be more
than one SRB measure supported on it. Indeed, [26] constructed diffeo-
morphisms of 7?2 x [0, 1] having two SRB measures (one supported on each
boundary component), whose basins are both dense, their union covering a
full Lebesgue measure subset. For these maps, A = T? x [0, 1] is transitive
and strongly partially hyperbolic, with £* = E° @& E°® mostly contracting.
Similar examples can be constructed in 72, gluing two maps on T2 x [0, 1] as
above along the boundary. Most interesting, in 72 x [0, 1], the construction
of [26] is robust: any nearby diffeomorphism is transitive and has two SRB
measures. This relies on the fact that diffeomorphisms of 72 x [0, 1] have to
preserve the boundary of the manifold.

For manifolds without boundary, it is a very interesting open problem
whether there are robust examples of coexistence of several SRB measures
on a same transitive attractor. For instance, let A = N,>of"(U) be a par-
tially hyperbolic attractor of a C? diffeomorphism f. Here U is an open
neighbourhood of A such that the closure of f(U) is contained in U. As-
sume that for every g in a neighbourhood of f, the maximal invariant set
Ay = Np>09™(U) is transitive and partially hyperbolic of type E* @ E°®, with
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E° mostly contracting. Is it true that for the generic diffeomorphism g close
to f the attractor A, supports a unique SRB measure ?

9 Comments on Global Dynamics

We include in this subsection a few comments on global aspects of Dynamical
Systems, in order to place the previous results into their broad context.

The notion of hyperbolicity was introduced in Dynamics by Smale in the
early sixties, see [58], with the aim of characterizing structural stability and,
hopefully, proving that most systems are structurally stable. This last expec-
tation turned out to be unfunded, as many important systems do not fall into
this class, including partially hyperbolic maps and flows. However, hyper-
bolicity did provide a powerful framework for analyzing robustly complicated
dynamics: hyperbolic systems usually exhibit an infinite number of periodic
orbits, as well as stochastic behaviour of typical trajectories, and this is now
rather well understood in the hyperbolic setting. Moreover, hyperbolicity
indeed proved to be the crucial ingredient for structural stability.

A central goal ever since has been to extend as much as possible of the
conclusions of the hyperbolic theory to “most” dynamical systems. In this
regard, crucial input came from the study of experimental systems, as well as
of models for their behaviour, often carried out numerically. In recent years a
new point of view emerged, with a distinctly more probabilistic flavour. One
focus on aspects of the dynamical behaviour that persist for many systems, in
terms of probability in parameter space. Also, important notions of stability
of the dynamics are also formulated in probabilistic terms.

In this spirit, a comprehensive program towards a global theory of Dy-
namics was proposed a few years ago by Palis, see [?] and also [45]. First of
all, he conjectured that

e every system can be approximated by another having only finitely many
attractors, whose basins cover a full Lebesgue measure subset of the
ambient manifold.

Here an attractor is a compact invariant set A whose stable set, or basin,
has positive Lebesgue measure (in the relevant known cases, the basin is a
neighbourhood of the attractor). Moreover,

e these attractors should have good statistical properties, including exis-
tence of physical measures whose basins cover a full measure subset of
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the attractor’s stable set;

e the dynamics on the basin of each attractor should be stable, in a sta-
tistical sense: time averages along pseudo-orbits, obtained by randomly
perturbing the system at each iterate, are close to the time averages
along the orbits of the original system, if the random perturbations are
small. See e.g. [?] for a precise definition.

We call an attractor robust if it can not be destroyed by any small per-
turbation of the dynamical system. More generally, we have to deal with
attractors which are only persistent: they exist with positive probability in
parameter space, for generic parametrized families through the original sys-
tem. Hénon-like attractors [6], [36], are an important model of persistent,
yet non-robust attractors. Hyperbolic and partially hyperbolic attractors, as
well as Lorenz-like attractors of flows, provide important examples of robust
attractors. In fact, some amount of hyperbolicity (including existence of a
dominated splitting) is a necessary condition for robustness, as we comment
upon below.

In the remainder of this section we detail some of these topics. To start
with, we recall some basic definitions and facts about Axiom A diffeomor-
phisms. See also [58], [41], [45].

Definition 9.1. A point p is non-wandering for f if for any neighbourhood
V of p there exists n > 1 such that f*(V)NV # (. The set of non-wandering
points, or non-wandering set, is denoted Q(f).

In other words, p € M is non-wandering if and only if there are points
arbitrarily close to it that return arbitrarily close to p in future times (p itself
may never return).

It follows directly from the definition that Q(f) is a closed set. It is also
easy to check that any point that is in the accumulation set

L(f,z) ={w € M : there exists n; — £oo so that f"(z) —» w}

of some z € M is a non-wandering point. Therefore, Q(f) always contains the
limit set L(f) of f, which is the closure of the union of all the accumulation
sets for all the points z € M. Note also that if z is a periodic point then
L(f,z) is just the orbit of z. Therefore, the closure of the set Per(f) of
periodic points of f is always contained in L(f). Summarizing,

clos (Per(f)) C L(f) € Q(f)
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for any diffeomorphism (or even homeomorphism) f. The inclusions may be
strict, in general.

Definition 9.2. A diffeomorphism f : M — M is hyperbolic (or Aziom A) if
its non-wandering set Q(f) is hyperbolic for f and coincides with the closure
clos (Per(f)) of the set of periodic points of f.

A fundamental property of hyperbolic systems is that the dynamics on
the non-wandering set can be decomposed into finitely many hyperbolic basic
pieces, cf. the next theorem [58]. Recall that transitivity means that the
forward orbit of some point is dense.

Theorem 9.1. If f is hyperbolic then its non-wandering set can be written

as a disjoint union
Q(f):AlLJUAN,

of isolated hyperbolic sets A1, ..., An, such that the restriction of f to A; is
transitive for every 1 <i < N.

More generally, there is a similar decomposition for the closure of the set
of periodic points whenever it is a hyperbolic set for f. It should be noted
that, cf. [40], if the limit set L(f) is hyperbolic then clos (Per(f)) = L(f).
This is not always true for the non-wandering set.

Remark 9.3. An Anosov diffeomorphism f : M — M is transitive if and
only its periodic points are dense in M. Indeed, transitivity implies L(f) is
the whole manifold M, and then Per(f) is dense in M by the result of [40]
mentioned above. In the converse direction, if Per(f) is dense in M then f
is hyperbolic and Q(f) coincides with M. So, by Theorem 9.1, M can be
split into a finite number of compact transitive sets. By connectedness, there
must be exactly one such set. This means that f is transitive.

Actually, any Anosov diffeomorphism is hyperbolic [4]. Let us also men-
tion that all known Anosov diffeomorphisms are transitive.

If A;U---UAy is the decomposition of Q(f), or even of L(f), then every
point in M is in the stable set, respectively unstable set, of some basic piece:

UWS(Ai) =M= UW“(Ai).
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If f is C? then the stable set of A; has positive Lebesgue measure if and only
if A; is a attractor, see [9]. Recall, from Theorem 5.8, that the stable set (or
basin) of a hyperbolic attractor contains a neighbourhood of it. Thus, for
hyperbolic C? diffeomorphisms Lebesgque almost every point in M is in the
basin of some attractor. On the contrary, C'! diffeomorphisms may exhibit
transitive hyperbolic sets that are not attractors and have positive Lebesgue
measure [10].

Definition 9.4. Suppose f is a hyperbolic diffeomorphism. A cycle in Q(f)
is a sequence of basic pieces A A A;, = A, of the non-wandering
set such that

209 "t fe—19

(Wu(Aij—l) \Aij—l) N (Ws(Aij) \Aij) 7é (Z)
for 1 < j < k. We say that f has no cycles if there are no cycles in Q(f).

If f has no cycles then there exists a filtration [58] for it, that is, a sequence
)= MyC M, C---C My = M of compact submanifolds with boundary
such that f maps each M; into its interior, and the set of points whose orbits
never leave M; \ M;_; coincides with A; for every 1 <i < N:

Ai =) £\ Miy). (38)

neZ

If the limit set of f is hyperbolic, one defines cycles in it in the same way
as in Definition 9.4. As before, if there are no cycles in L(f) then there is
a filtration My,..., My such that the basic pieces of the limit set coincide
with the maximal invariant sets in each M; \ M; ;. Now, existence of such
a filtration forces the non-wandering set to coincide with L(f). Therefore, if
the limit set is hyperbolic and there are no cycles in it, then Q(f) = L(f),
and so f is a hyperbolic diffeomorphism with no cycles [40]. Clearly, the
converse is also true.

Another important conclusion is that hyperbolic diffeomorphisms with
no cycles are C™ Q2-stable for any r > 1: any g in a small C" neighbourhood
of f is topologically conjugate to f, restricted to their non-wandering sets.
That is, there exists a homeomorphism A : Q(f) — Q(g) such that

(f 1f)) o h=ho(g]8g))

Cf. [58], this follows from the existence of a filtration as in (38), combined
with the local stability Theorem 5.2. On the other hand, a C” 2-stable
hyperbolic diffeomorphism can not have cycles [42].
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Inspired on these facts, as well as on the stability results for Anosov sys-
tems [4] and for Morse-Smale systems [44], Palis and Smale conjectured that
hyperbolicity together with the no cycle condition completely characterize
the (2-stable systems. In view of the results mentioned before, this €2-stability
conjecture reduced to proving that C" (2-stable systems are hyperbolic, for
every r > 1.

They also proposed a similar characterization for a more global notion
of stability, due to [3]. One says that a diffecomorphism f is C" structurally
stable, r > 1, if any ¢g in a small C" neighbourhood of f is topologically
conjugate to f: there exists a homeomorphism h : M — M that

foh=hog.

The stability conjecture in [44] claims that a system is C” structurally stable
in and only if it is hyperbolic and satisfies the strong transversality condition:
the stable manifold and the unstable manifold of any two points in Q(f) are
transverse.

That hyperbolic systems satisfying the transversality condition are struc-
turally stable was proved in the seventies by [49], [14], [51], [52], [53]. More-
over, [50] implied that the strong-transversality condition is indeed necessary
for structural stability. In this way, the stability conjecture was also reduced
to proving that hyperbolicity is necessary for structural stability.

The proof came only after another decade. By the mid-eighties, Mané
[34] proved the remarkable fact that C* structurally stable diffeomorphisms
must be hyperbolic, thus settling the C' stability conjecture. Based on his
methods, [43] extended this conclusion to the C'' Q-stable case. Other funda-
mental contributions to these problems had been given, specially by [47], [?],
[31], [32], [64]. The extension of both conjectures for C' flows was achieved
very recently by [23].

Some of the key key tools in the proofs, such as the closing lemma of
[?] and the connecting lemma of [23] are available only in the C' topology.
Their C" versions, as well as of the results in the previous paragraph, remain
outstanding open problems for any r > 2.

We close with a brief discussion on robust attractors.

Definition 9.5. We say that A is a C" robust attractor for f if there exists
a neighbourhood U of A such that

clos(f(U)) CU and A= ﬁ (), (39)

n=0

95



and Ay = N%,¢"(U) is a transitive set for any diffeomorphism ¢ in a C”
neighbourhood of f. When r =1 we just call A a robust attractor.

Hyperbolic attractors are robust attractors, as we have seen in the previ-
ous section. The converse is true in two dimensions, according to [31]: robust
attractors of surface diffeomorphisms are always hyperbolic. On the other
hand, non-hyperbolic robust attractors were exhibited by [55], in dimension
at least 4, and by [31], in dimension 3 or larger. Several other constructions
were proposed in recent years, see for instance [8] and [?], and references
therein.

Remarkably, robustness does imply some weak form of hyperbolicity: [?]
proved recently that robust attractors in any dimension always admit an
invariant dominated splitting. Before that [15] had shown that robust at-
tractors of diffeomorphisms in 3-dimensional manifolds are always partially
hyperbolic.

Definition 9.5 extends to flows X, t € R, with (39) replaced by

clos(X*(U)) c U fort >0, and A= ﬂXt(U).

>0

The result of [31] mentioned above admits a counterpart for flows in 3-
dimensions: robust attractors have to be hyperbolic, if they contain only
regular orbits of the flow. See [?], [23]. On the other hand, the geometric
Lorenz attractors are striking examples that robust attractors of flows may
contain singularities, together with regular orbits. A theory of such singular
attractors has been under development in recent years, see [37], [38]. In par-
ticular, cf. this last paper, robust singular attractors of 3-dimensional flows
are singular hyperbolic: partially hyperbolic with volume expansion along
one of the subbundles and volume contraction along the other.
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