PERSISTENCE OF STRANGE ATTRACTORS
WHEN UNFOLDING HOMOCLINIC TANGENCIES

Marcelo Viana

Abstract. Extending recent results by Benedicks and Carleson on the quadratic family
on the plane, we showed in a joint wark with L. Mora that any (generic) family of diffeo-
morphisms on a surface, unfolding ¢ homoclinic langency, exhibits nonhyperbolic sirange
aiiraciora ar repellers with positive probobilily wn the parameter spuce. Later, we general-
ized this result to arbitrary dimension, when there iz only one stretching direction and the
product of sny two eingenvalues has norm less than one, Here we discuss several ideas,
questions and conjectures related to these theorems and to the general problem of homo-
clinic bifurcations. This includes a joint result with L. J. Diaz and J. Rocha ou pesitive

density of sirange attractors when unfolding certain saddle-node cycles.
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§1. Introduction

A central problem in Dynamical Systems concerns the understanding of the changes
in the dynamics of a diffeomorphism (or a flow) implied by a homoclinic bifurcation (mean-
ing creation — or destruction — of a transverse homoclinic orbit), namely when thig occurs
through a homodinic tangency. This problem has gained a renewed interest in recent times
duc, to o large extent, to the suggestion by Palis that homeoclinic bifurcations are & main
mechanism for the nonhyperbaolicity of & system, specially in low dimensions: he conjec-
tured that any diffeomorphism on a surface can be approximated either by a hyperbolic
diffeomorphism (meaning, with limit set hyperbolic) or by one exhibiting homoclinic tan-
gencies. In this way a global description of nonhyperbalicity, at least in low-dimensional,
systems would follow from & good comprehension of homoclinic bifurcations and, specially,
of the dynamic types occuring persisiently in their unfolding. Here the idea of persistence,
which Palis amphasizes, is essentially measure-theoretic md can be precised as follows. A
smooth (C*) family of diffcomorphisms yp,: Af — A, i € IR, is said to unfold a homoclinic
tangency go of a hyperbolic periodic point py of i2g if, as i changes, the stable and unstable
menifolds of pu (the analytic continuation of pg) move with respect to each other near the
tangency eo that gg has a continuation by a transverse homoclinic intersection gy, for p > 0
say. We generally assume the tangency to be quadratic and the unfolding to be generic
{nonzero relative velocity of the stable und the unstable manifolds al the tangency). By
(measure-theoretic) persistence of some phenomenon on the family (¢,)y we just mean
that it occurs for & pasitive Lebesgue measure set of y—values. We are concerned with
phenomena occurning persistently on almost svery {in some reasonable probabilistic sense,
see comments below) family unfolding a tangency.

A number of important resulis obtained in the last 2 decades and specially in recent

years, in good part motivate this setting of the problem. We summary below some of these
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results. For simplicity we reatrict here ta the 2- dimensional context; extensiona to higher
dimensicns are described Iatar.

Coexistence of infinitely many sinks or sources (Newhouse [Ne], [Ro]). There are
intervals I; in the y—space, converging to p = 0, such that for a residual {Baire socond
cathegory) subset of values of u € Ij, i, hos infinitely many periodic attractors or repellers
(contained in E,, see below). : '

Contrary to this topological persistence it is generally believed that this phenomenon
is not measure-theoretically pearsistent: conjecturedly ii oceurs only for a set of parameter

values with measure zero.

Relative measure of hyperbolicity. Let the periodic point p, involved in the tangency

be part of & hyperbolic basic set Ag of wa. Deflue T, = [‘] Ph(U U V,) where U is &'
nEZ

fixed small neighbourhood of Ag and V) is a (const |u])-neighbourhood of the orbit of
tangency (the statements below still hold for slightly larger V,,, see {PT2, Ch. V). Let H
be the set of p—values for which I, is hyperbalic (and 50 pp |, is topologically stable).
Then

o (PalivTokens [PT1), [PT2])

H_D(An}{lu—_g.ljﬂwr_l;

2

¢ (Palis-Yoccoz [PY])

HD(Ag) > 1= 1i¥l-iaufwgl-:t'—el)- <1

where HD(Ag) is the Hausdosfl dimension of Ag and m denotas Lebesgue mea-

aure.

Strange atiractors in the Hénon family (Banedicks—Cnrléaon [BC)). Let, for a >0
and b > 0, ha 4 RZ — R? be defined by hosl=.y) = (3 —az? +y,bz). For b > 0 sufficiently
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small there is a positive measure set of a—values for which h, 4 has strange {nolnperiod.ic,
nonhyperbolic) sttractors.

The family A, , may be thought of as a model for the creation of a horseshoe: it is,
from the analytical point of view, the simplest family of diffeomorp}ﬁsms in the plane going
through homoclinic tangencies,

§2. Stra.nge Attractors on Surfaces

The announcement of the remarkable result of Benedicks-Carleson led Palis to con- I

jecture that, much more generally, the presence of strange atiractors or repellers is a
persistent phenomenan on every generic unfolding of a homoclinic tangency of s surface
diffeomorphism. This is indeed true:

Thearem A (Mora-V. [MV]). For any generic one-parameter family (pu), of diffeo-
morphisms an a surface unfolding a homoclinic tangency, there is § C IR such that for all
€ » 0 m(SN[—¢,e]) > 0 and for every p € § ¢, has nonhyperbolic strange attraciors or

repellers contained in L,
By an sitractor of a transformation ¢ we Iiean a compact, ¢ —invariant set such that
e |A is transitive, i.e. @ has orbits which are dense in A;.
¢ the basin {z:u_]iglmdist(p“(z}, A) = 0} of A has nonempty interior.
In many cases the basin of the strange attractors in Theorem A is & full neighbourhood

of ihe attractor and it would be useful to know if the same holds in general. We cali an
attractor atrenge if a dense orbit {p"(z1): n 2 0} can be found such that

) IDe™= )l 2 8" Yn20 withd> 1.

It is a well known fact ([CE], [Ne]) thet in the 1-dimensional setting an exponential
growth of the derivative implies & chaotic behaviour: existence of absolutely continmous
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invariant messure with positive Linpounov exponent, For higher dimensions this theary
is still rather incomplete and an impartant task in our setting is the construction of SRB
- measures for the strange atiractors in the theorem. For the casa of the 2-dimensional
Hénon family thie has been recently announced by Benedicks- Young and it seems likely
that the general case of surface diffeomarphisms unfolding homoclinic tangency can be
trented slong similar lines. '
The generic properties of the family (i,), assumed for Theorem A are:

+ nondegenerate (quadratic) tangency; .

» generic unfolding of the tnngency;

. ]det(Dgoﬁ(pn})l # 1, where L ia the period of pe.

(The assumptian of local linearizability used in [MV] should be removed in a work in prepe-
ration.) Clearly, these are C* open and dense conditions on the space of one-parameter
families passing through o homoclinic tangeucy, any 2 < k < oc. Moreover these condi-
tions are satisfied by almast cvery such family, in the sense that the aet they exclide iz
described by a zero Lebesgue measure subset of a (finite dimensional) euclidean space.

Theorem A has a one-dimensional version for families of endomorphisms on the circle
or the interval ((MV]). A (nondegencraic) homeoclinic tangency in ! ‘dimension just means
that for some (nondegenerate) critical point co and some hyperbolic (repelling) periodic
point py of the endomarphism 4 we have

» pl(co) = po for some €2 1;

+ there is & sequence (cg)p — po With 2olen) = 0 ¥n>l
Then, for any family {¢,), generically unfolding this tangeney (ie. with Bulihlc) —
Pu)umo # 0, denoting by ¢, and p,, the analytic continuation of ¢g and po, respectively),
there is a positive measure set of p—values for which the closure of the critical orbit is a
strange attracter for ..
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§3. Higher Dimensions

In the opposite (end, naturally, more difficult) direction, Theorem A also admits an
extension to families (@, ), of diffeomorphisms on higher- dimensional manifolds, unfolding
a homoclinic tangency. Observe that in general the ,, |p] small, can be expected to have
attractors (periodic or not) near the tangency only if the periodic point pe igvolved in the

tangency satisfies
(a) W*(pg) has dimension 1;

(b) loAi <1 forevery 1S i <m—1,m=dimM;
where 0, Apy Ags< - » Am— are the eigenvalues of Dot (po)s k =period of py, with |a} > 1>
|A;] for 1 £ ¢ £ m — 1. Under these hypotheses it was proved in {PV] that Newhouse's
pha,;ncmenon bolds in any dimension: for generic families as above p, has infinitcly many
periodic attractors in X, (vecall definition above) for residual subsets of intervals of values
of p near p = 0. Also, extending further the methods in the proof of Theorem A we
obtained the following generalization:

Theorem B ([V]). For any generic family (p,), of diffecinorphisms on an m—manifold,
m 2 2, unfolding a homoclinic tangency satisfving (a) and (b) above, there is 5 C R with
m(§N[~¢,¢]) > 0 for all ¢ > 0 and such that forevery 4 € S pu | Ty has nonhyperbolic

strange attractors.

The strange attractors we encounter in the proof of Theorem B are always topologically
1-dimensional: in fact they coincide with the closure ol a 1- Jdimensional unstable manifold
of some periodic saddle in E,. Now, diffeomorphisins on an m—mamfold may exhibit
strange attractors of any topological dimension 1 £ d < m—1 and it would be interesting
to describe “natural” bifurcalions yielding such higher-dimensional attractors.

Nonhyperbolicity of the strange attractors in the 2-dimensional setting of Theorem A

is g direct consequence of the work of Plykin [P} on hyperbolic attractors. In the genersl
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m—dimensions] case, we argue as follows. As we said before, the strange attractors A, we
find can be written as A, =closure {W*(F,)) where P, is some hyperbolic saddle in I,.
As part of proving the strangeness of A, we construct in the proof of Theorem B a point
2y = 5y(p) € W(P,), u € S, satisfying (1) gbove and slso

(2) “D‘p:(zl) . !ll —+ 0 (exponentially) as n —+ +00,

where. t is any vector tangent to W*(P,) at ;. This last property immediately implies
the nonhyperbalicity of A,.

§4. | Sa&dle-node Cycles

Theorems A, B lead naturally to the question of when does the set § of values of
g such that ¢, exhibits strange attractors (or repellers), have positive density at p = a,
meaning
(3) liﬂ}l W > 0.
The fact that a = 2 is a point of deasity 1 of {a:(x ~— 1 — az?) has chaotic hehaviour}
suggests that this may be the case for homoclinic bifurcations occuring in the Hénon family
(Aas)ar b # 0 fixed and small (more geuerally in Hénon-like families, see [MV]), at values
of a clase to 2. Observe that (3} can not be expected to be true in general, as shown by the
theorem of Palis-Takens stated above. On the other kand a conjecture of Palis asserts that
(3) should indeed hold in the setting of his result with Yoccoz: unfolding of homeclinic
tangencies on surfaces, associated to a basic set with Hausdorff dimension greater than 1.

A related situation, wherc positive density of strange attractors has been proved, is the
unfolding of certain saddle-node cyeles. & diffeomorphism g has a seddic-node k—cyle,
k3 1, i ((NPT]) there are periodic points py.... 1P of o such that

e p; iz o saddlenode; pa,... ,pi vee hyperbolic saddles;



» W"{(p;) intersects W*(p;4;) transversely for every 1 i < k3
W(p,) intersects W*({p, ) transversely.
We cali the cycle contractive if dim W"(p,)} == 1 and eritical if W*(p; ) has nontransverse
intersactions with leaves of the strong stable foliation of py {which exists and is unique).
The generw unfolding of a critical contractive saddle-node cycle always involves homoclinic
tangencies ((NPT]). By combining Theorem B with the distribution in the g—space of the
parameter values corresponding to these tangencies, we get

Theorem C (Ding-Rocha-V, [DRV]). For generic families of diffeomorphisms (p,),
an an m—manifold, m > 2, unfalding a critical coniractive saddle-node cycle, the set § of
valyes of u for which p, has noaliyperbalic strange attractors satisfies

lim ia’f m{S ﬂl[-c.el) > 0.
— T

This means that, in & measuve-theoretic sense, we get strange sttractors for a sizable
portion of the parameter interval, when we unfold this kind of saddle- node cycle. Ws
observe that such cycles exist alveady for diffeomorphisms o on the houndary of the set
of Morse-Smale diffeomorphisms.

§5. Vector Fields

We close with some brief comments on recent resulls concerning the unfolding of
homoclinic bifurcations of flows, For simplicity we restrict to the 3~ dimensional casc.
As usually, homoclinic tangencies associnted to (regular) periodic orbits may be analyased
thraugh the Poincaré return map, which permits to transport to this setiing the resilts
stated sbove for diffsomorphisms. On the other hand, bomoclinic phencmana invelving
singularities of the vector field exhibit new and important features. Striking exemples are
the so-caled Lorenz-type attractors {|GW)]) which are persisient in a very strong sense:
under a whole open set of perturbations.
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Let the singulasity involved in the tangency have cigenvalues Ay > 0 > Az > Ay We
call the singulsrity ezpanding, resp. contracting, if (A1 + Ag) > 0, resp. {d; 422} < 0. The
geometric Lorenz flows in cw] correspand to the expanding case. Lorenz-type flows with
a contracting singularity were studied by Rovella [Rv) who constructed & positive measure
set of parameter values corresponding to strange attractors, using & Benedicks-Carleson
kind of argument. He could also prove that in his situﬁtion Axiol;a A flows occupy an open
and dense set of parameter values.

The unfolding of certain singuler eycles, i.e. cycles involvinga singularity, was studied
by Bamén, Labarca, Maiié, Pacifico. Again the type of the gingulasity determines, in a
qualitative way, the behaviour of the unfolding. In the expanding case they obtain an open
and dense, full meansure set of parameters corresponding to hyperbolicity {Axiom A).
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