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1. Introduction

Let (M̂, B̂, µ̂) be a probability space and f̂ : M̂ → M̂ be a measurable

transformation preserving the probability µ̂. Let P̂ : Ê → M̂ be a fiber
bundle with fibers Êx diffeomorphic to some Riemannian manifold N .
A non-linear cocycle over f̂ is a measurable transformation F̂ : Ê → Ê
such that P̂ ◦ F̂ = f̂ ◦ P̂ and every F̂x̂ : Êx → Êf̂(x) is a diffeomorphism.

We always assume that the norms of the derivative DF̂x̂(ξ) and its
inverse are uniformly bounded. Then the functions

(1) (x̂, ξ) 7→ log ‖DF̂x̂(ξ)‖ and (x̂, ξ) 7→ log ‖DF̂x̂(ξ)
−1‖

are integrable, relative to any probability measure on Ê . The extremal
Lyapunov exponents of F̂ at a point (x̂, ξ) ∈ Ê are

λ+(F̂ , x̂, ξ) = lim
n→∞

1

n
log ‖DF̂ n

x̂ (ξ)‖ .

λ−(F̂ , x̂, ξ) = lim
n→∞

1

n
log ‖DF̂ n

x̂ (ξ)−1‖−1 .

The limits exist m̂-almost everywhere, with respect to any F̂ -invariant
probability m̂ on Ê , by sub-additivity (Kingman [4]). Notice that

λ−(F̂ , x̂, ξ) ≤ λ+(F̂ , x̂, ξ),

because ‖DF̂ n
x̂ (ξ)‖‖DF̂ n

x̂ (ξ)−1‖ ≥ 1. Denote

λ± = λ±(F̂ , m̂) =

∫
λ±(F̂ , x̂, ξ) dm̂(x̂, ξ).

If (F̂ , m̂) is ergodic then λ±(F̂ , x̂, ξ) = λ± for m̂-almost every (x̂, ξ).
Throughout, we shall only be interested in measures m̂ that project
down to µ under P̂ .
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2. A non-linear invariance result

In this section we state and prove a non-linear extension of a theorem
of Ledrappier [5] about Lyapunov exponents of linear cocycles, which
is crucial for what follows. The proof is close to the arguments in [5].

Take (M̂, B̂, µ) to be a Lebesgue space, that is, a complete separable
probability space. See Rokhlin [6, §2–§3]. Then any probability m̂ on

Ê such that P̂∗m̂ = µ̂ admits a family {m̂x̂ : x̂ ∈ M̂} of probabilities

such that x̂ 7→ m̂x̂ is B̂-measurable, every m̂x̂ is supported inside the
fiber Êx̂ and

m̂(E) =

∫
m̂x̂(E) dµ̂(x̂)

for any measurable set E ⊂ Ê . Moreover, such a family is essentially
unique. We call it the disintegration of m̂ and refer to the m̂x̂ as its
conditional probabilities along the fibers.

Throughout this section we assume that f̂ is invertible. A σ-algebra
B0 ⊂ B̂ is generating if its iterates f̂n(B0), n ∈ Z generate the whole B̂
mod 0. The main result in this section is

Theorem 2.1. Suppose λ−(F̂ , x̂, ξ) ≥ 0 for m̂-almost every (x̂, ξ). Let

B0 ⊂ B̂ be a generating σ-algebra relative to which both f̂ and x̂ 7→ F̂x̂

are measurable mod 0. Then x̂ 7→ m̂x̂ is also B0-measurable mod 0.

The same holds true if we assume, instead, that λ+(F̂ , x̂, ξ) ≤ 0 for

m̂-almost every (x, ξ). To see this, notice that F̂ is invertible and,
clearly, has the same invariant probabilities as its inverse. Since

λ+(F̂ , x̂, ξ) + λ−(F̂−1, x̂, ξ) = 0,

the new assumption means that λ−(F̂−1, x̂, ξ) ≥ 0 for m̂-almost every
(x, ξ). Thus, we may apply Theorem 2.1 to the inverse cocycle, to
obtain the same conclusion as before under this new assumption.

Example 2.2. Given any (non-invertible) measure-preserving transfor-

mation f : M → M in a probability space (M,B, µ), define M̂ to be
the space of all sequences (xn)n≤0 in M such that f(xn) = xn+1 for all
n < 0, and consider the natural extension of f ,

f̂ : M̂ → M̂, f̂(. . . , xn, . . . , x0) = (. . . , xn, . . . , x0, f(x0)).

Then f̂ is invertible and π ◦ f̂ = f ◦ π, where π : M̂ → M is the
projection to the zeroth term. Denote B0 = π−1(B) and let B̂ be the

σ-algebra on M̂ generated by the iterates f̂n(B0), n ≥ 0. Then f̂ is

measurable with respect to B0 and to B̂. Let µ0 be the probability
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measure defined on B0 by π∗µ0 = µ. There is a unique f̂ -invariant
probability µ̂ on (M̂, B̂) such that π∗µ̂ = µ: it is characterized by

(2) E
(
µ̂ | f̂ n(B0)

)
= f̂ n

∗ µ0 for every n ≥ 0.

To any non-linear cocycle F : E → E over f , defined on a fiber bundle
P : E → M , we may associate the non-linear cocycle F̂ : Ê → Ê over
f̂ defined by Êx̂ = Eπ(x̂) and F̂x̂ = Fπ(x̂). Their extremal Lyapunov
exponents are related by

λ±(F̂ , x̂, ξ) = λ±(F, π(x̂), ξ).

Clearly, x̂ 7→ F̂x̂ is B0-measurable. We denote by π × id the natural
projection from Ê to E (this terminology is motivated by the case when

Ê = M̂ × N and E = M × N). Given any F -invariant probability m,

there is exactly one F̂ -invariant probability m̂ with (π × id)∗m̂ = m:
it is characterized by

(3) E
(
x̂ 7→ m̂x̂ | f̂n(B0)

)
= [x̂ 7→ (F̂ n

x̂ )∗mπ(x̂)] for every n ≥ 0

(see Lemma 2.5 below), where {m̂x̂ : x̂ ∈ M̂} and {mx : x ∈ M} are the

disintegrations of m̂ and m, respectively. If P∗m = µ then P̂∗m̂ = µ̂.

Let us begin the proof of Theorem 2.1. For the time being we consider
the special case of natural extensions described in Example 2.2: we shall
soon argue that the statement of the theorem can always be reduced
to that case. Let

(4) (F−1
x )∗mf(x) = J(x, ξ)mx + ηx

be the Lebesgue decomposition of (F−1
x )∗mf(x) relative to mx (the func-

tion J(x, ·) is integrable for mx and the measure ηx is singular with
respect to mx). We call J : E → [0,∞) the fibered Jacobian, and define
the fibered entropy to be

(5) h = h(F̂ , m̂) =

∫
− log J dm.

The definition (4) implies
∫
{J>0} J dm =

∫
J dm ≤ 1. Then, by Jensen’s

inequality,

(6)

∫

{J>0}
− log J dm ≥ 0.

The definition (5) means that h is the sume of this integral with the
term (+∞) · m({J = 0}) with the usual convention that the latter
vanishes if m({J = 0}) = 0. Thus, h is always well-defined and non-
negative. Besides, we shall see later that {J = 0} always has zero
measure in our context.
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Let κ be the dimension of N and λ0(F̂ , x̂, ξ) = min{0, λ−(F̂ , x̂, ξ)}.
Proposition 2.3. We have 0 ≤ h ≤ −κ

∫
λ0(F̂ , x̂, ξ) dm̂(x̂, ξ).

Proposition 2.4. If h = 0 then x̂ 7→ m̂x̂ is B0-measurable mod 0.

Proof of Theorem 2.1. Propositions 2.3 and 2.4 immediately lead to
Theorem 2.1 in the natural extension case: λ−(F̂ , x̂, ξ) ≥ 0 means that

λ0(F̂ , x̂, ξ) vanishes identically; then Proposition 2.3 yields h = 0 and,
by Proposition 2.4, it follows that x̂ 7→ m̂x̂ is B0-measurable mod 0.

So, now we only have to show that the general case in the theorem
can always be viewed as a natural extension. By Rokhlin [6], one may

find a Lebesgue space (M,B, µ) and a projection π : M̂ → M such
that B = π∗B0 and µ = π∗µ̂. In other words, B ∈ B if and only if
π−1(B) ∈ B0 and then µ(B) = µ̂(π−1(B)). Since f̂ is B0-measurable
mod 0, there exists a B-measurable mod 0 transformation f : M → M
such that π ◦ f̂ = f ◦ π. This transformation is usually non-invertible,
but it preserves the measure µ:

f∗µ = f∗π∗µ̂ = π∗f̂∗µ = π∗µ̂ = µ.

Since F̂ is B0-measurable, it may be written as F̂ = F ◦ (π× id), where
F : E → E is a B-measurable non-linear cocycle over f . Notice that
DFπ(x̂) = DF̂x̂ for every x̂ ∈ M̂ . In particular,

λ(F, π(x̂), ξ) = λ(F̂ , x̂, ξ)

for almost every (x̂, ξ), where λ(F, x, ξ) is the Lyapunov exponent of
the cocycle F at a point (x, ξ). Then m = (π× id)∗m̂ is an F -invariant
probability and P∗m = µ. Applying the previous arguments to F we
get that the disintegration x̂ 7→ m̂x̃ if B-measurable mod 0. ¤

2.1. Entropy zero means deterministic. As a first step we prove
Proposition 2.4. Let {m̂x̂ : x̂ ∈ M̂} and {mx : x ∈ M} be the disinte-
grations of m̂ and m, respectively.

Lemma 2.5. For µ̂-almost every x̂ ∈ M̂ ,

m̂x̂ = lim
n→∞

(F n
x(n))∗mx(n) with x(n) = π(f̂−n(x̂)).

Proof. Let m0 be the probability defined on B0 by π∗m0 = m. The
disintegration of m0 is just x̂ 7→ mπ(x̂). The relation π∗m̂ = m implies
that m̂ | B0 = m0 or, in other words, E(x̂ 7→ m̂x̂ | B0) = [x̂ 7→ mπ(x̂)].

Next, the relation F̂∗m̂ = m̂ implies that

E(x̂ 7→ m̂x̂ | f̂ n(B0)) = E(x̂ 7→ (F̂ n
x̂(n))∗m̂x̂(n) | B0),
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with x̂(n) = f̂−n(x̂), and so

E(x̂ 7→ m̂x̂ | f̂ n(B0)) = [x̂ 7→ (F n
x(n))∗mx(n)].

Any of these expressions defines a martingale of probability measures,
relative to the sequence of σ-algebras f̂ n(B0). Since B0 is generating

and the sequence f̂n(B0) is increasing, the limit of the left hand side is

[x̂ 7→ m̂x̂] = E(x̂ 7→ m̂x̂ | B̂).

It follows that (F n
x(n))∗mx(n) converges and the limit coincides with m̂x̂

at µ̂-almost every point. ¤
Lemma 2.6. If h = 0 then (Fx)∗mx = mf(x) for µ-almost every x ∈ M .

Proof. The definition (4) implies that
∫

J(x, ξ) dmx(ξ) ≤ 1 for µ-every
x. So, by Jensen’s inequality,

∫ − log J(x, ξ) dmx(ξ) ≥ 0 for µ-every x.
Moreover, the equalities hold if and only if J(x, ξ) = 1 for mx-almost
every ξ. This implies that h ≥ 0, and h = 0 if and only if J(x, ξ) = 1
for mx-almost every ξ and µ-almost x. In particular, h = 0 implies
mf(x) = (Fx)∗mx for µ-almost x, as claimed. ¤

Lemma 2.6 implies (F n
x(n))∗mx(n) = mx(0) for every n ≥ 0 and µ̂-

almost every x̂. Then Lemma 2.5 yields m̂x̂ = mx(0) for µ̂-almost every
x̂. Since x(0) = π(x̂), this implies that x̂ 7→ m̂x̂ is B0-measurable, and
so the proof of Proposition 2.4 is complete.

2.2. Entropy is smaller than exponents. Now we prove Proposi-
tion 2.3. Let {mα} be the ergodic decomposition of m, and dα denote
the corresponding quotient measure:

ϕdm =

∫ (∫
ϕdmα

)
dα

for any integrable function. If λ−(F, x, ξ) ≥ 0 at m-almost every point
then the same is true at mα-almost every point, for dα-almost every
ergodic component. Assuming the proposition holds for ergodic mea-
sures, it follows that

0 ≤
∫
− log J dmα ≤ κ

∫
λ0(F, x, ξ) dmα

for dα-almost every α. Integrating with respect to dα, we obtain that

0 ≤ h ≤ κ

∫
λ0(F, x, ξ) dm

as claimed. Hence, it is no restriction to assume that m is ergodic,
and we do so in all that follows. Then λ0(F, x, ξ) is constant m-almost
everywhere; let λ0 = λ0(F,m) denote this constant.



6 ARTUR AVILA AND MARCELO VIANA

The proof of the proposition will follow from upper and lower esti-
mates on the measures of balls that we are going to state next. Define

∆l(y, η) = min{1, ‖DF l
y(η)−1‖−1} and ∆l,n(x, ξ) =

n−1∏
j=0

∆l(F lj(x, ξ))

for any l ≥ 1 and n ≥ 1 and let L = sup | log ‖(DF )−1‖−1|. It is clear
from the definitions that

(7) −L ≤ 1

nl
log ∆l,n(x, ξ) ≤ 0

for every l ≥ 1, n ≥ 1, and (x, ξ).

Lemma 2.7. Given ε > 0 there exists k ≥ 1 and some F k-ergodic
component m0 of the measure m such that

lim
n→∞

1

nk
log ∆k,n(x, ξ) ≥ λ0 − 3ε for m0-almost every (x, ξ).

Proof. The limit is the Birkhoff time average of the (bounded) function
k−1 log ∆k, and so it exists at m-almost. Choose k ≥ 1 large enough
so that

(8)
1

k
log ‖DF k

x (ξ)−1‖−1 ∈ [λ− − ε, λ− + ε]

for a subset E of points (x, ξ) with m(E) > 1 − ε/L. It follows that
m0(E) > 1 − ε/L for some F k-ergodic component m0 of the measure
m. Fix m0 from now on. There are three cases to consider, depending
on the sign of the exponent. If λ− is negative then λ− = λ0. It is no
restriction to assume from the start that ε < |λ−|. Then (8) implies

1

k
log ∆k(x, ξ) =

1

k
log ‖DF k

x (ξ)−1‖−1 ≥ λ0 − ε,

for every (x, ξ) ∈ E. In general this expression is bounded by L, as
observed previously. By ergodicity, m0-typical orbits of F k spend a
fraction > 1 − ε/L of the time inside E. Thus, for m0-almost every
(x, ξ) and every large n,

1

nk
∆k,n(x, ξ) ≥ (1− ε/L)(λ0 − ε)− (ε/L)L ≥ λ0 − 3ε

(for the last step, notice that |λ0| ≤ |λ−| ≤ L). This settles the case
λ− < 0. If λ− is zero then λ− = λ0 = 0. Then (8) implies

1

k
log ∆k(x, ξ) = min{0, 1

k
log ‖DF k

x (ξ)−1‖−1} ≥ −ε

for every (x, ξ) ∈ E. Thus, arguing as before,

1

nk
∆k,n(x, ξ) ≥ −(1− ε/L)ε− (ε/L)L ≥ −3ε
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for m0-almost every (x, ξ) and every n sufficiently large. This settles
the lemma λ− = 0. If λ− is positive then λ0 = 0. It is no restriction to
assume from the beginning that ε < λ−. Then (8) implies

1

k
log ∆k(x, ξ) = min{0, 1

k
log ‖DF k

x (ξ)−1‖−1} = 0

for every (x, ξ) ∈ E. Thus, arguing as before,

1

nk
∆k,n(x, ξ) ≥ −(ε/L)L ≥ −3ε

for m0-almost every (x, ξ) and every n sufficiently large. This completes
the proof of the lemma. ¤
Remark 2.8. There exists some divisor s ≥ 1 of k such that

m =
1

s

(
m0 + F∗(m0) + · · ·+ F s−1

∗ (m0)
)

and F s
∗ (m0) = m0.

Indeed, by the F -ergodicity of m, if A is any F k-invariant set with
positive measure then m(A) ≥ 1/k. Fix A with minimal positive
measure. Then every A ∩ F−i(A) has either zero or full measure in
A. Let s ≥ 1 be the smallest integer such that A ∩ F−s(A) has full
measure in A. Note that s divides k. Using F -ergodicity once more,
A∪F−1(A)∪ · · · ∪F−s+1(A) has full measure in E and so m(A) = 1/s.
The normalized restrictions

mi = s(m | F i−k(A)), i = 0, . . . , s− 1

are the F k-ergodic components of m. Clearly, mi = F i
∗(m0) for every

0 ≤ i ≤ s − 1 and F s
∗ (m0) = m0. Up to replacing m0 by an iterate,

we may take it to coincide with the ergodic component in the previous
lemma.

Let ε > 0 be fixed and k and m0 be as in Lemma 2.7. The proofs of
the next two propositions will be given in Section 2.3 and Section 2.5,
respectively:

Proposition 2.9. For m0-almost every (x, ξ),

lim sup
n→∞

1

nk
log mfnk(x)(B(F nk

x (ξ), e−nkε∆k,n(x, ξ))) ≥ κ(λ0 − 5ε).

Proposition 2.10. For m0-almost every (x, ξ),

lim sup
n→∞

1

nk
log mfnk(x)(B(F nk

x (ξ), e−nkε∆k,n(x, ξ))) ≤ −h + 3ε.

It follows that κ(λ0 − 5ε) ≤ −h + 3ε and, since ε is arbitrary, this
implies h ≤ −κλ0. We have already seen in Lemma 2.6 that h ≥ 0.
So, we have reduced the proof of Proposition 2.3, and of Theorem 2.1,
to proving Propositions 2.9 and 2.10.
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2.3. Lower estimate. Here we prove Proposition 2.9. We begin with
the following consequence of the Besicovitch covering lemma (see [3,
Theorem 1.1]):

Lemma 2.11. Given any θ > 0 the set

Zθ = {(y, η) : my(B(η, ρ)) ≤ ρ(1+θ)κ for arbitrarily small ρ > 0}
has zero m-measure.

Proof. Write the manifold N as a union of increasing compact subsets
Nk. For each y consider a covering of Zθ intersected with {y} × Nk

(viewed as a subset of Ey) by balls B(ηj, ρj) as in the definition of Zθ,
with ρj ≤ ρ for some small ρ. Then

m(Zθ ∩ (Ek)) ≤
∫ ∑

j

my(B(ηj, ρj)) dµ(y)

≤ C(κ)ρθκ

∫ ∑
j

|B(ηj, ρj)| dµ(y)

where | · | denotes Riemannian volume relative to some fixed Riemann-
ian metric on N . By the Besicovitch covering lemma we may take the
covering such that every point belongs to at most C(κ) of these balls.
It follows that

m(Zθ ∩ (
⋃

y∈M

{y} ×Nk)) ≤ C(κ)ρθκ|Nk| .

Making ρ → 0 and then k →∞ we get m(Zθ) = 0, as claimed. ¤
Denote rn = e−nkε∆k,n(x, ξ). We are going to prove Proposition 2.9

by contradiction. Suppose there exists a constant θ > 0 and a positive
m-measure set E such that for every (x, ξ) ∈ E there exists n̄(x, ξ) ≥ 1
such that

(9) log mfnk(x)(B(F nk
x (ξ), rn)) ≤ κ(λ0 − 5ε)(1 + θ)nk

for all n ≥ n̄(x, ξ). By Lemma 2.7, we may choose n̄(x, ξ) so that

(10) log rn ≥ nk(λ0 − 5ε)

for all n ≥ n̄(x, ξ). Define

Zθ,r = {(y, η) : my(B(η, ρ)) ≤ ρ(1+θ)κ for some 0 < ρ ≤ r}.
These sets are monotone decreasing when r → 0, and their intersection
is the set Zθ. The upper bound in (7) implies that rn → 0 and the
inequalities (9) and (10) imply F nk(x, ξ) ∈ Zθ(rn) for every n ≥ n̄(x, ξ).
This shows that almost every (x, ξ) eventually enters Zθ,r for every
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fixed r > 0. In particular, we may find nr ≥ 1 and Er ⊂ E such that
m(Er) ≥ m(E)/2 and F nk(x, ξ) ∈ Zθ,r for every n ≥ nr. Then

m(Zθ,r) = m(F−nk(Zθ,r) ≥ m(Er) ≥ m(E)/2.

Since this applies for arbitrary r, we conclude that m(Zθ) > 0, which
contradicts Lemma 2.11. This proves Proposition 2.9.

Remark 2.12. For arbitrary l ≥ 1, instead of (10) we may use

log e−nlε∆l,n(x, ξ) ≥ −nl(L + ε) ≥ −nl(L + ε).

Then the same arguments as before yield, for m-almost every point,

(11) lim sup
n→∞

1

nl
log mfnl(x)(B(F nl

x (ξ), e−nlε∆l,n(x, ξ))) ≥ −κ(L + ε).

2.4. Auxiliary statements. Here we recall some general facts from
measure theory. Let X be a compact metric space locally Lipeomorphic
to Rκ, κ ≥ 1 and let µ and ν be Borel probability measures on X.

Lemma 2.13. There exists a function g ∈ L1(ν) and a Borel measure
η totally singular with respect to ν such that µ = fν + η. Moreover,

g(x) = lim
δ→0

µ(B(x, δ))

ν(B(x, δ))
for ν-almost every x ∈ X.

See Rudin [7, Theorem 7.14] for a related statement involving the
Lebesgue measure. The proof in the general case is analogous, just
using the Besicovich covering lemma ([3, Theorem 1.1]) in the place of
the Vitali covering lemma ([7, Theorem 7.3]).

Lemma 2.14. There exists c(X) > 0 such that
∫

g∗ dν ≤ c(X), where

g∗(x) = sup
{µ(B(x, δ))

ν(B(x, δ))
: δ > 0

}
.

We consider X = Ex ' N and µ = (F−l
x )∗mf l(x) and ν = mx for

every x ∈ M and l ≥ 1. Lemma 2.13 gives that

(F−l
x )∗mf l(x) = J l(x, ξ)mx + ηl

x

for some measure ηl
x totally singular with respect to mx, and

(12) J l(x, ξ) = lim
δ→0

mf l(x)(F
l
x(B(ξ, δ)))

mx(B(ξ, δ))
for mx-almost every ξ.

By Lemma 2.14 there exists c(N) > 0 such that

(13)

∫
log J l

∗(x, ξ) dmx(ξ) ≤ c(N) < ∞,
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for every x ∈ M and l ≥ 1, where

J l
∗(x, ξ) = sup

{
mf l(x)(F

l
x(B(ξ, δ)))

mx(B(ξ, δ))
: δ > 0

}
.

Corollary 2.15. For mx-almost every ξ there exists δ1(x, ξ, ε, l) > 0
such that

mf l(x)

(
B(F l

x(ξ), e
−lε∆l(x, ξ)δ)

)

mx(B(ξ, δ))
≤

{
elεJ l(x, ξ) if J l(x, ξ) > 0
e−τl if J l(x, ξ) = 0.

for every 0 < δ ≤ δ1(x, ξ, ε, l), where τl = 4κL/m({J l = 0}).
Proof. The relation (12) implies that

mf l(x)

(
F l

x(B(ξ, δ))
)

mx(B(ξ, δ))
≤

{
elεJ l(x, ξ) if J l(x, ξ) > 0
e−τl if J l(x, ξ) = 0

if δ is small enough. Secondly, since every Fx is a diffeomorphism,

F l
x(B(ξ, δ)) ⊃ B(F l

x(ξ), e
−lε‖DF l

x(ξ)
−1‖−1δ)

⊃ B(F l
x(ξ), e

−lε∆l(x, ξ)δ)

if δ is small enough. The claim follows from these two observations. ¤

Corollary 2.16. Suppose J > 0 at m-almost every point. Then
∫

log Jk dm0 = −kh.

Proof. We begin by proving that, for l ≥ 1 and m-almost every (x, ξ),

(14) J l(x, ξ) =
l−1∏
j=0

J(F j(x, ξ)).

Indeed, the relation (12) may be rewritten as

J l(x, ξ) = lim
δ→0

l−1∏
j=0

mfj+1(x)(F
j+1
x (B(ξ, δ)))

mfj(x)(F
j
x(B(ξ, δ)))

where the jth factor converges to J(F j(x, ξ)) for (F−j
x )∗mfj(x)-almost

every ξ. Now, the assumption means that J(x, ξ) > 0 for µ-almost
every x and mx-almost every ξ. Then mx is absolutely continuous with
respect to (F−1

x )∗mf(x).
Let us consider x in the full µ-measure set points such that mx is

absolutely continuous with respect to (F−j
x )∗mfj(x) for every j ≥ 1.

Then each factor in the previous formula converges to J(F j(x, ξ)) for
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mx-almost every ξ. This proves that (14) is true for any l ≥ 1 and
mx-almost every ξ. Next, from (14) we get

∫
log Jk dm0 =

k−1∑
m=0

∫
log J ◦ Fm dm0 =

k/s∑
i=1

s−1∑
j=0

log J dF i
∗(m0).

Using Remark 2.8, we find that the right hand side is equal to

k/s∑
i=1

s

∫
log J dm = k

∫
log J dm = −kh.

This proves the statement. ¤
The same arguments apply for arbitrary l ≥ 1: the corollary remains

true if one replaces m0 by any F l-ergodic component of m (we shall
not use this fact). On the other hand, (14) is usually false if one omits
the assumption J > 0.

2.5. Upper estimate. Now we prove Proposition 2.10. Let l ≥ 1 be
arbitrary, for the time being. For each p ≥ 1 define Wl,p to be the set
of points (x, ξ) such that

e−jlε∆l,j(x, ξ) ≤ δ1(x, ξ, ε, l) for every j ≥ p.

The upper bound in (7) implies that m(Wl,p) goes to 1 as p →∞. Let
p be fixed, for the time being. Write

(15)
mfnl(x)

(
B(F nl

x (ξ), e−nlε∆l,n(x, ξ))
)

mfpl(x)

(
B(F pl

x (ξ), e−plε∆l,p(x, ξ))
) =

n−1∏
j=p

ql,j(x, ξ),

for every n ≥ p and (x, ξ) ∈ E , where

ql,j(x, ξ) =
mf l(j+1)(x)

(
B(F

l(j+1)
x (ξ), e−l(j+1)ε∆l,j+1(x, ξ))

)

mf lj(x)

(
B(F lj

x (ξ), e−ljε∆l,j(x, ξ))
) .

Denote (xj, ξj) = F lj(x, ξ) for each j ≥ 1. If (x, ξ) ∈ Wl,p then, by
Corollary 2.15,

log ql,j(x, ξ) ≤
{

lε + log J l(xj, ξj) if J l(xj, ξj) > 0
−τl if J l(xj, ξj) = 0.

If (x, ξ) /∈ Wl,p we use the trivial bound log ql,j(x, ξ) ≤ log J l
∗(xj, ξj)

instead. In any event,

(16) log ql,j(x, ξ) ≤ lφl,p(xj, ξj)

where

(17) φl,p = ε +
1

l
log J lX{J l>0}∩Wl,p

− τlX{J l=0}∩Wl,p
+

1

l
log J l

∗XW c
l,p

.
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In the proof of the next couple of lemmas we consider the case l = 1.
Afterwards, we use these relations in the case l = k to complete the
proof of Proposition 2.10.

Lemma 2.17. We have J(x, ξ) > 0 for m-almost every (x, ξ).

Proof. Suppose m({J = 0}) > 0. Then, right from the start, we may
choose p large enough so that

m({J = 0} ∩W1,p) ≥ m({J = 0})/2 > 0.

In view of (6) and (13), we may also suppose that∫

{J>0}∩W1,p

log J dm ≤ ε and

∫

W c
1,p

log J∗ dm ≤ ε,

up to increasing p. Recall τ1 = 4κL/m({J = 0}). Then, from (17),

(18)

∫
φ1,p dm ≤ 3ε− 2κL < −κ(L + ε)

(for the last inequality, let ε be small enough with respect to L). Since
m is F -ergodic, the relation (16) implies that

lim sup
n→∞

1

n

n−1∑
j=p

log q1,j(x, ξ) ≤ lim
n→∞

1

n

n−1∑
j=p

φ1,p(xj, ξj) =

∫
φ1,p dm.

In view of (15), this just means that

lim sup
n→∞

1

n
log mfn(x)(B(F n

x (ξ), e−nε∆1,n(x, ξ))) ≤
∫

φ1,p dm.

According to (18), this inequality contradicts (11). This contradiction
proves that {J = 0} has zero measure, as claimed. ¤
Lemma 2.18. The fibered entropy h is finite.

Proof. Suppose h > 2κL. Then, by (6) and (13), we may choose p right
from the start so that∫

{J>0}∩W1,p

log J dm ≤ −2L and

∫

W c
l,p

log J∗ dm ≤ ε.

Then, using also the previous lemma, (17) yields

(19)

∫
φ1,p dm ≤ 2ε− 2κL < −κ(L + ε).

Now, arguing precisely as in Lemma 2.17, we conclude that

lim sup
n→∞

1

n
log mfn(x)(B(F n

x (ξ), e−nε∆1,n(x, ξ))) < −κ(L + ε),

which contradicts (11). This proves that h ≤ 2κL < ∞, as claimed. ¤
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We are ready to conclude the proof of Proposition 2.10. Lemma 2.17
ensures we are in a position to apply Corollary 2.16. The relation (14)
implies that J l > 0 at m-almost every point, for every l ≥ 1. We are
going to use this fact, and the relations (16) and (17), in the case l = k.
Fix p ≥ 1 large enough so that∫

{Jk>0}∩Wk,p

log Jk dm ≤ k(−h + ε) and

∫

W c
l,p

log Jk
∗ dm ≤ kε.

Then, from the definition (17),

(20)

∫
φk,p dm0 ≤ 3ε− h.

Since m0 is ergodic for F k,

lim sup
n→∞

1

nk

n−1∑
j=p

log qk,j(x, ξ) ≤ lim
n→∞

1

n

n−1∑
j=p

φk,p(xj, ξj) =

∫
φk,p dm0

m0-almost everywhere. In view of (15), this means that

lim sup
n→∞

1

nk
log mfnk(x)(B(F nk

x (ξ), e−nkε∆k,n(x, ξ))) ≤
∫

φk,p dm0

for m0-almost every (x, ξ). Combined with (20), this implies the con-
clusion of Proposition 2.10.
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