LYAPUNOV EXPONENTS OF NON-LINEAR
COCYCLES

ARTUR AVILA AND MARCELO VIANA

1. INTRODUCTION

Let (M B, [i) be a probability space and f: M — M be a measurable
transformation preserving the probability fi. Let P: & — M be a fiber
bundle with fibers &, dlffeomorphlc to some Riemannian manifold N.
A non-linear cocycle over f is a measurable transformation F : & — &
such that Po ' = f o P and every F; : €, — 8 ) is a diffeomorphism.

We always assume that the norms of the derlvative Dﬁx(f) and its
inverse are uniformly bounded. Then the functions

(1) (&8 —log||[DFs(§)|| and (&,&) — log | DF3()7"

are integrable, relative to any probability measure on . The extremal
Lyapunov exponents of F at a point (%,€) € € are

Ao (F,3,€) = lim ~log | DEZ(E)]].

n—oo N,

§
A(F,3,€) = lim ~log | DEZ(€) |~

n—oo M

The limits exist m-almost everywhere, with respect to any F-invariant
probability 7 on &, by sub-additivity (Kingman [4]). Notice that

)\,(ﬁ’,:&,f) S A+(ﬁ7£7€>7
because || DEM(E)||||[DEX(E)| > 1. Denote

A = Ao (F,m) = / M (F, &, €) dim(, ).

If (F,m) is ergodic then )\i(F,a?,S) = A+ for m-almost every (z,¢&).
Throughout, we shall only be interested in measures m that project
down to p under P.
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2. A NON-LINEAR INVARIANCE RESULT

In this section we state and prove a non-linear extension of a theorem
of Ledrappier [5] about Lyapunov exponents of linear cocycles, which
is crucial for what follows. The proof is close to the arguments in [5].

Take (M , 1’3', 1) to be a Lebesgue space, that is, a complete separable
probability space. See Rokhlin [6, §2-§3]. Then any probability m on
& such that P = i admits a family {r; : & € M} of probabilities
such that & — my is B—measurable, every mg is supported inside the
fiber & and

(E) = / s (E) dji(2)

for any measurable set E C £. Moreover, such a family is essentially
unique. We call it the disintegration of m and refer to the m; as its
conditional probabilities along the fibers.

Throughout this section we assume that f is invertible. A o-algebra
By C Bis generating if its iterates f”(Bo), n € 7 generate the whole B
mod 0. The main result in this section is

Theorem 2.1. Suppose )\,(F,it, €) > 0 for m-almost every (z,€). Let

By C B be a generating o-algebra relative to which both f and & — F;
are measurable mod 0. Then & +— my is also By-measurable mod 0.

The same holds true if we assume, instead, that )\+(F ,2,6) <0 for
m-almost every (x,£). To see this, notice that F' is invertible and,
clearly, has the same invariant probabilities as its inverse. Since

A (FL 2,6 + A (F71 3,8 =0,

the new assumption means that A\_ (F 1 2,£) > 0 for 7h-almost every
(,€). Thus, we may apply Theorem 2.1 to the inverse cocycle, to
obtain the same conclusion as before under this new assumption.

Ezample 2.2. Given any (non-invertible) measure-preserving transfor-
mation f : M — M in a probability space (M, B, 1), define M to be
the space of all sequences (z,,),<o in M such that f(z,) = x,.; for all
n < 0, and consider the natural extension of f,

FoM =M, f(. . 2p...20)= (.. %0, .. %0, f(x0))

Then f is invertible and 7 of = fom, where 7 : M — M is the
projection to the zeroth term. Denote By = 7~ 1(B) and let B be the
o-algebra on M generated by the iterates f”(Bg), n > 0. Then f is
measurable with respect to By and to B. Let io be the probability
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measure defined on By by m.pp = p. There is a unique f-invariant
probability i on (M, B) such that m, i = p: it is characterized by

(2) E(j] (B ) — fPuy  for every n > 0.
To any non-linear cocycle F': £ — &£ over f, defined on a fiber bundle
P : & — M, we may associate the non-linear cocycle F: & — € over

f defined by Sx = &rz) and Fx = Fr(). Their extremal Lyapunov
exponents are related by

)\:I:(Fv £7§) = )‘:I:(F77T(‘(i')7£)
Clearly, & — F} is By-measurable. We denote by 7 x id the natural
pl"O_]eCtIOIl from € to € (this terminology is motivated by the case when
E=MxNand E=Mx N ). Given any F-invariant probability m,
there is exactly one F-invariant probability 7 with (m x id).m = m:
it is characterized by

(3) E(&— my | f”(BO)) = [T+ (ﬁg‘)*mﬂ(j)] for every n > 0

(see Lemma 2.5 below), where {rh; : & € M} and {m, : & € M} are the
disintegrations of m and m, respectively. If P,m = u then P,m = ji.

Let us begin the proof of Theorem 2.1. For the time being we consider
the special case of natural extensions described in Example 2.2: we shall
soon argue that the statement of the theorem can always be reduced
to that case. Let

(4) (F, Y )omy@y = J(z,&)my + 1,

be the Lebesgue decomposition of (F), ), m ) relative to m, (the func-
tion J(z,-) is integrable for m, and the measure 7, is singular with
respect to m,). We call J : € — [0, 00) the fibered Jacobian, and define
the fibered entropy to be

(5) h = h(F,m) :/—longm.

The definition (4) implies [, ,_, Jdm = [ Jdm < 1. Then, by Jensen’s
inequality,

(6) / —log Jdm > 0.
{J>0}

The definition (5) means that h is the sume of this integral with the
term (400) - m({J = 0}) with the usual convention that the latter
vanishes if m({J = 0}) = 0. Thus, h is always well-defined and non-
negative. Besides, we shall see later that {J = 0} always has zero
measure in our context.
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Let x be the dimension of N and X°(F, &, &) = min{0, A\_(F, &,£)}.
Proposition 2.3. We have 0 < h < —ﬁf)\o(ﬁ,i',é) dm(z,€).
Proposition 2.4. If h = 0 then & — My is By-measurable mod 0.

Proof of Theorem 2.1. Propositions 2.3 and 2.4 immediately lead to
Theorem 2.1 in the natural extension case: A_ (F, z,€) > 0 means that
AO(F , &, &) vanishes identically; then Proposition 2.3 yields h = 0 and,
by Proposition 2.4, it follows that & — m; is By-measurable mod 0.

So, now we only have to show that the general case in the theorem
can always be viewed as a natural extension. By Rokhlin [6], one may
find a Lebesgue space (M, B, ;) and a projection 7 : M — M such
that B = m.By and p = m.fi. In other words, B € B if and only if
7Y (B) € By and then u(B) = ji(r~'(B)). Since f is By-measurable
mod 0, there exists a B-measurable mod 0 transformation f: M — M
such that 7o f = f om. This transformation is usually non-invertible,
but it preserves the measure u:

fopp = fumafy = T fupn = T = .
Since F' is By-measurable, it may be written as F' = F o (7 x id), where

F : & — £ is a B-measurable non-linear cocycle over f. Notice that
DF. ) = DF; for every & € M. In particular,

AF,7(2),€) = NP, 2,€)

for almost every (z,€), where A\(F,z,£) is the Lyapunov exponent of
the cocycle F' at a point (x,&). Then m = (7 x id),m is an F-invariant
probability and P,m = p. Applying the previous arguments to F' we
get that the disintegration  +— my if B-measurable mod 0. O

2.1. Entropy zero means deterministic. As a first step we prove
Proposition 2.4. Let {1z : £ € M} and {m, : x € M} be the disinte-
grations of m and m, respectively.

Lemma 2.5. For ji-almost every & € M,

mz = lim (Fg(n))*mx(n) with :c(n) = W(finci.))

Proof. Let mg be the probability defined on By by m,mg = m. The
disintegration of myg is just & + my ). The relation w7 = m implies
that 7 | By = my or, in other words, E(Z +— m; | By) = [T — Mm@
Next, the relation Fon=m implies that

B(i v s | [ (B0) = Bl v (B aisge | Bo),

xT
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with #(n) = f(#), and so
E(& i | f7(Bo)) = [& = (FJfu)vmam].

Any of these expressions defines a martingale of probability measures,
relative to the sequence of o-algebras f"(By). Since By is generating
and the sequence f"(By) is increasing, the limit of the left hand side is

[ 1mg] = E( — 1 | B).
It follows that (Fm?n))*mm(n) converges and the limit coincides with
at ji-almost every point. O

Lemma 2.6. Ifh = 0 then (F,).mgy = my(y) for p-almost every x € M.

Proof. The definition (4) implies that [ J(z,&)dm,(§) <1 for u-every
z. So, by Jensen’s inequality, [ —log J(xz, &) dm,(£) > 0 for p-every x.
Moreover, the equalities hold if and only if J(z,£) = 1 for m,-almost
every . This implies that A > 0, and h = 0 if and only if J(z,&) =1
for mg-almost every & and p-almost x. In particular, h = 0 implies

Mye) = (Fp)«my for p-almost x, as claimed. O
Lemma 2.6 implies (Fg(n))*mx(n) = My(o) for every n > 0 and ji-

almost every Z. Then Lemma 2.5 yields mz = my ) for fi-almost every
Z. Since z(0) = 7(2), this implies that & +— m; is By-measurable, and
so the proof of Proposition 2.4 is complete.

2.2. Entropy is smaller than exponents. Now we prove Proposi-
tion 2.3. Let {m,} be the ergodic decomposition of m, and da denote
the corresponding quotient measure:

gpdmz/(/gpdma) do

for any integrable function. If A_(F,z,£) > 0 at m-almost every point
then the same is true at mg,-almost every point, for da-almost every
ergodic component. Assuming the proposition holds for ergodic mea-
sures, it follows that

0< /—longma < R/AO(F,x,f)dma
for da-almost every «. Integrating with respect to da, we obtain that
0<h< /i/)\O(F,x,f)dm

as claimed. Hence, it is no restriction to assume that m is ergodic,
and we do so in all that follows. Then \°(F, z, &) is constant m-almost
everywhere; let A\’ = \°(F,m) denote this constant.
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The proof of the proposition will follow from upper and lower esti-
mates on the measures of balls that we are going to state next. Define

n—1
Al(y,n) = min{1, [DF, ()77} and  AY(x,€) = [ AY(FY(2,€))
j=0

for any [ > 1 and n > 1 and let L = sup |log |[(DF)~!||7!|. It is clear
from the definitions that

1
(7) —L < —log A (z,§) <0
n
for every [ > 1, n > 1, and (z,§).
Lemma 2.7. Given ¢ > 0 there exists k > 1 and some F*-ergodic
component mg of the measure m such that

1
lim s log AP (x,€) > \° — 3¢ for mg-almost every (z,&).

n—oo 1

Proof. The limit is the Birkhoff time average of the (bounded) function
k~1log A*  and so it exists at m-almost. Choose k > 1 large enough
so that

0 Llog [DERE ™ € [\~ A +¢]

for a subset E of points (x,¢) with m(E) > 1 —¢/L. It follows that
mo(E) > 1 — ¢/L for some F*-ergodic component mq of the measure
m. Fix mg from now on. There are three cases to consider, depending
on the sign of the exponent. If A_ is negative then A\_ = \°. It is no
restriction to assume from the start that ¢ < |A\_|. Then (8) implies

1 1
log A (@, &) = Tlog [ DFF() 771 = A" e,

for every (z,£) € E. In general this expression is bounded by L, as
observed previously. By ergodicity, mo-typical orbits of F* spend a
fraction > 1 — ¢/L of the time inside £. Thus, for my-almost every
(x,€) and every large n,

n—lkA’“"(:z:,g) > (1—e/L)(N° — &) — (/L)L > X’ — 3¢
(for the last step, notice that |[A°| < |A\_| < L). This settles the case
A_ < 0. If A is zero then A_ = \° = 0. Then (8) implies

- log A¥(z, §) = min{0, - log | DEX(©) '} = ¢
for every (z,&) € E. Thus, arguing as before,

%Ak’”(x,f) > —(1—¢/L)e — (¢/L)L > =3¢
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for mg-almost every (z,¢) and every n sufficiently large. This settles
the lemma A_ = 0. If A\_ is positive then \° = 0. It is no restriction to
assume from the beginning that e < A_. Then (8) implies

1 1
- log A% (2, €) = min{0, -log [ DF; ()™} =0
for every (z,€) € E. Thus, arguing as before,

L AR (3 8) > —(e/L)L > —3¢

nk
for mg-almost every (z, £) and every n sufficiently large. This completes
the proof of the lemma. O

Remark 2.8. There exists some divisor s > 1 of k£ such that
1
m=y (mo + Fu(mo) + -+ F ' (mg)) and  F2(mg) = mo.

Indeed, by the F-ergodicity of m, if A is any F*-invariant set with
positive measure then m(A) > 1/k. Fix A with minimal positive
measure. Then every A N F~*(A) has either zero or full measure in
A. Let s > 1 be the smallest integer such that A N F~°(A) has full
measure in A. Note that s divides k. Using F-ergodicity once more,
AUF Y (A)U---UF~*"(A) has full measure in £ and so m(A) = 1/s.
The normalized restrictions

m; = s(m | F"7F(A)), i=0,...,s—1

are the F*-ergodic components of m. Clearly, m; = Fi(mg) for every
0 <i<s—1and F?(my) = mg. Up to replacing mg by an iterate,
we may take it to coincide with the ergodic component in the previous
lemma.

Let € > 0 be fixed and k£ and mq be as in Lemma 2.7. The proofs of
the next two propositions will be given in Section 2.3 and Section 2.5,
respectively:

Proposition 2.9. For mg-almost every (x,§),

1
lim sup s 1og M k() (B(FL*(€), €™ AR (2, €))) > k(X — 5e).

n—oo

Proposition 2.10. For mg-almost every (z,§),

1
lim sup —-1log M iy (B(ETF(€), e ™ AP (2,€))) < —h + 3e.
n—oo T

It follows that k(A — 5¢) < —h + 3¢ and, since ¢ is arbitrary, this
implies h < —kA”. We have already seen in Lemma 2.6 that A > 0.
So, we have reduced the proof of Proposition 2.3, and of Theorem 2.1,
to proving Propositions 2.9 and 2.10.
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2.3. Lower estimate. Here we prove Proposition 2.9. We begin with

the following consequence of the Besicovitch covering lemma (see [3,
Theorem 1.1)):

Lemma 2.11. Given any 6 > 0 the set
Zy = {(y,n) : my(B(n, p)) < pMO% for arbitrarily small p > 0}
has zero m-measure.

Proof. Write the manifold /V as a union of increasing compact subsets
Ny. For each y consider a covering of Zy intersected with {y} x N},
(viewed as a subset of &) by balls B(n;, p;) as in the definition of Zy,
with p; < p for some small p. Then

m(Zo N (Ek)) /Zmy 77J>PJ ) dp(y)
< C(x) /Z|B n3.03)| du(y)

where | - | denotes Riemannian volume relative to some fixed Riemann-
ian metric on N. By the Besicovitch covering lemma we may take the
covering such that every point belongs to at most C(k) of these balls.
It follows that

m(Zs 0 (| J{y} x Ni)) < C()p" | Ni|
yeM
Making p — 0 and then £ — oo we get m(Zy) = 0, as claimed. O
Denote r, = e Ak (1, £). We are going to prove Proposition 2.9
by contradiction. Suppose there exists a constant # > 0 and a positive

m-measure set £ such that for every (x,&) € E there exists n(z,§) > 1
such that

O logmpug (BN, ) < KX — 5e)(1 + O)nk
for all n > n(x,§). By Lemma 2.7, we may choose n(x,¢) so that
(10) log r, > nk(\° — 5¢)

for all n > n(x, ). Define
Zoy = {(9,1) - my(B(1,p)) < P+ for some 0 < p < 1},

These sets are monotone decreasing when r — 0, and their intersection
is the set Zy. The upper bound in (7) implies that r, — 0 and the
inequalities (9) and (10) imply F"*(z, &) € Zy(r,) for every n > ii(z, £).
This shows that almost every (x,&) eventually enters Zy, for every
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fixed » > 0. In particular, we may find n, > 1 and F, C E such that
m(E,) > m(E)/2 and F"™*(z,£) € Zy, for every n > n,. Then

m(Zy,) = m(F""(Zy,) > m(E,) > m(E)/2.

Since this applies for arbitrary r, we conclude that m(Zy) > 0, which
contradicts Lemma 2.11. This proves Proposition 2.9.

Remark 2.12. For arbitrary [ > 1, instead of (10) we may use
log e ™ A (2,€) > —nl(L +¢) > —nl(L +¢).
Then the same arguments as before yield, for m-almost every point,
1
(11) limsup — log m pni oy (B(FLN(E), e A (2,€))) > —k(L + €).
n—oo n

2.4. Auxiliary statements. Here we recall some general facts from
measure theory. Let X be a compact metric space locally Lipeomorphic
to R" k> 1 and let © and v be Borel probability measures on X.

Lemma 2.13. There exists a function g € L*(v) and a Borel measure
n totally singular with respect to v such that u = fv +mn. Moreover,

o AB(.0)
520 v(B(z,9))

g(x) = for v-almost every x € X.

See Rudin [7, Theorem 7.14] for a related statement involving the
Lebesgue measure. The proof in the general case is analogous, just
using the Besicovich covering lemma ([3, Theorem 1.1]) in the place of
the Vitali covering lemma ([7, Theorem 7.3]).

Lemma 2.14. There ezists ¢(X) > 0 such that [ g* dv < ¢(X), where

o u(Bd)
g«(z) = p{y(B(x,(S))'5>0}'

We consider X = &, ~ N and p = (F;l)*mfz(m) and v = m, for
every x € M and [ > 1. Lemma 2.13 gives that
(Fy;l)*mfl(z) = Jl(‘xa €>m:p + 77;
for some measure 7}, totally singular with respect to m,, and

m i !
L Ll

By Lemma 2.14 there exists ¢(N) > 0 such that

(13) /log J(z, &) dm,(€) < ¢(N) < oo,

for m,-almost every €.
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for every x € M and [ > 1, where

i (FL(B(E, )
ma(B(E.0)) '5>0}‘

Corollary 2.15. For mg-almost every £ there exists 61(x, &, e,1) > 0
such that

M) (B(FL(E), e Al (2, £)0)) <{ e Tz, &) if Tz, &) >0
mg(B(&,0)) | e if J'(z, &) = 0.

for every 0 < § < §y(z,&,¢,1), where 7y = 4k L/m({J" = 0}).
Proof. The relation (12) implies that
myi) (Fz(B(€,9))) _ { e (w,€) if J'(x,€) >0
m.(B(£,0)) e it Ji(z,€) =0
if 0 is small enough. Secondly, since every F) is a diffeomorphism,
Fy(B(£,6)) D B(E,(€),e | DF(§)7"(|79)
D B(E,(€),e Az, £)d)

if ¢ is small enough. The claim follows from these two observations. [J

Ji(z,€) = Sup{

Corollary 2.16. Suppose J > 0 at m-almost every point. Then
/ log J* dmg = —kh.

Proof. We begin by proving that, for [ > 1 and m-almost every (z, &),
-1

(14) J(@.&) = [[ 7 ()
=

Indeed, the relation (12) may be rewritten as

-1
) — i TT " r @ (2T (B(E,6)))
7O =l o My (FL(B(E,9)))

where the jth factor converges to J(F7(x,€)) for (F,7).m i (,)-almost
every . Now, the assumption means that J(x,&) > 0 for p-almost
every x and mx -almost every £&. Then m, is absolutely continuous with
respect to (F, )*mf(x)

Let us consider x in the full y-measure set points such that m, is
absolutely continuous with respect to (F,7).myj(, for every j > 1.
Then each factor in the previous formula converges to J(F/(z,&)) for
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mg-almost every &. This proves that (14) is true for any [ > 1 and
mg-almost every £. Next, from (14) we get

k/S s—1

k—1
/longdmo = Z /logJoFmdmo = ZZlongFj(mo).
m=0

i=1 j=0
Using Remark 2.8, we find that the right hand side is equal to
k/s

Z /longm—k:/longm— —kh.

This proves the statement. U

The same arguments apply for arbitrary [ > 1: the corollary remains
true if one replaces mg by any F'-ergodic component of m (we shall
not use this fact). On the other hand, (14) is usually false if one omits
the assumption J > 0.

2.5. Upper estimate. Now we prove Proposition 2.10. Let [ > 1 be
arbitrary, for the time being. For each p > 1 define W, to be the set
of points (z, &) such that

e AL (1, €) < §y(x,&,6,1)  for every j > p.

The upper bound in (7) implies that m(W,,) goes to 1 as p — oo. Let
p be fixed, for the time being. Write

Mot (BFF(E), _”ZEN"( qu v 6).
J
M oty (B(FE (€), e P ALp (2

(15)

for every n > p and (z,&) € £, where
m ) (BFY T (€), e U DA (2, £))
e )( (Flj efleAl’j(l‘,f))) ‘

(€),
Denote (z;,&;) = FY(x,€) for each j > 1. If (x,€) € W, then, by
Corollary 2.15,

QZ,j(aja 5) =

| le +log J'(z;,&;) if J'(x;,&;) >
log qj(2,€) < { 7 if J'(z;,&5) =
If (x,€) ¢ W,, we use the trivial bound log g ;(x,&) < log Ji (5,&)

instead. In any event,

(16) log qij(, &) < loup(z;, &)

where

Ll
— log JL X .

(17) Grp =€+~ / logJ X{Jl>0}mwlp - TlX{Jl =0}NW; , l
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In the proof of the next couple of lemmas we consider the case [ = 1.
Afterwards, we use these relations in the case [ = k to complete the
proof of Proposition 2.10.

Lemma 2.17. We have J(x,£) > 0 for m-almost every (x,§).

Proof. Suppose m({J = 0}) > 0. Then, right from the start, we may
choose p large enough so that

m({J =0} N Wy,) > m({J = 0})/2 > 0.

In view of (6) and (13), we may also suppose that

/ logJdm < e and / log J, dm < ¢,
{J>0}NW1 T

up to increasing p. Recall 7 = 4kL/m({J = 0}). Then, from (17),
(18) /¢1,p dm < 3¢ —2kL < —k(L +¢)

(for the last inequality, let & be small enough with respect to L). Since
m is F-ergodic, the relation (16) implies that

lim sup — Zlogqu z,§) < hm Z¢1p z5,&5) /¢17pdm.

n—oo

In view of (1 5) thls just means that

lim sup — logmfn(x)(B(F"(f) e ALY (1, €))) /qblpdm

According to (18), this inequality contradicts (11). This contradiction
proves that {J = 0} has zero measure, as claimed. O

Lemma 2.18. The fibered entropy h is finite.

Proof. Suppose h > 2xL. Then, by (6) and (13), we may choose p right
from the start so that

/ log Jdm < —2L and / log J,dm < e.
{J>01NW1 we

L,p

Then, using also the previous lemma, (17) yields
(19) /(bl’p dm < 2¢ —2kL < —k(L + ¢).
Now, arguing precisely as in Lemma 2.17, we conclude that
lim sup -~ ! log M pn (o) (B(FH(E), e " AV (2,€))) < —k(L +¢),

n—oo

which contradicts (11). This proves that h < 2k < 00, as claimed. [
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We are ready to conclude the proof of Proposition 2.10. Lemma 2.17

ensures we are in a position to apply Corollary 2.16. The relation (14)
implies that J' > 0 at m-almost every point, for every [ > 1. We are
going to use this fact, and the relations (16) and (17), in the case [ = k.
Fix p > 1 large enough so that

/ log J* dm < k(—h+¢) and / log J* dm < ke.
{TF>01NW we,

Then, from the definition (17),

(20) / bopdmo < 3 — .

Since my is ergodic for F*¥,

n—1 n—1

. 1 1

lim sup e E log gy ;(z,§) < T}LH;O - § Grp(5,85) = /Cbk;,p dmy
Jj=p Jj=p

n—oo

mo-almost everywhere. In view of (15), this means that

1
i sup = Log m ok (BUZH(E). "84 (2,)) < [ i dmo
n

n—oo

for mg-almost every (z,¢). Combined with (20), this implies the con-
clusion of Proposition 2.10.
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