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Abstract

We exhibit an explicit criterium for simplicity of the Lyapunov
spectrum of linear cocycles, either locally constant or dominated, over
hyperbolic (Axiom A) transformations. This criterium is expressed
by a geometric condition on the cocycle’s behaviour over periodic
points and associated homoclinic orbits. It allows us to prove that for
an open dense subset of dominated linear cocycles over a hyperbolic
transformation, and for any invariant probability with continuous local
product structure (including all equilibrium states of Hoélder continu-
ous potentials), all Oseledets subspaces are 1-dimensional. Moreover,
the complement of this subset has infinite codimension and, thus, is
avoided by any generic family of cocycles described by finitely many
parameters.

This improves previous results of Bonatti, Gomez-Mont, Viana
where it was shown that some Lyapunov exponent is non-zero, in a
similar setting and also for an open dense subset.

To Michael Herman, who preceded us on this path.

Introduction

Lyapunov exponents describe the asymptotic behaviour of products of matri-
ces, positive exponents corresponding to exponential growth, whereas nega-
tive exponents correspond to exponential decay of the norm. Numerous situ-
ations in Dynamics, and other branches of Mathematics, lead to the problem
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of deciding whether the exponents are different from zero. Important ex-
amples come from such areas as smooth dynamics (matrices correspond to
the derivative of the system), Schrédinger operators, stochastic processes
(products of random matrices), and mathematical models in Economics.

Our own original motivation to address this problem came from two
very different directions: the theory of partially hyperbolic diffeomorphisms,
where non-zero Lyapunov exponents often permit a very precise description
of the dynamics at the ergodic level (Sinai-Ruelle-Bowen measures) [1, 12];
and the study of certain transversely projective foliations, where non-zero
exponents imply uniqueness of the harmonic measure on the leaves [10, 11].

Several methods have been devised for proving existence of non-zero expo-
nents: let us mention Furstenberg, Kesten [16, 17], Herman [21], Kotani [25],
in various contexts of linear cocycles, and Jakobson [23] and Benedicks, Car-
leson [5], for smooth transformations. The list is, of course, very far from
complete.

The results of Furstenberg [17] about products of #d random matrices
suggest that non-zero exponents might be typical for linear cocycles, in great
generality. However, recent work of Bochi [6] shows that this can not be true
without additional assumptions: he proves that generic (Baire second cat-
egory subset) continuous SL(2, R)-cocycles have zero Lyapunov exponents,
or else they are uniformly hyperbolic. Actually, he gets the same conclusion
within cocycles given by the derivatives of area-preserving diffeomorphisms,
which is much more delicate. Moreover, these results have been extended to
arbitrary dimension by Bochi, Viana [7, 8].

Here we require stronger regularity, starting from Holder continuity, as
well as domination: the map induced by the cocycle on the projective bun-
dle is partially hyperbolic (this implies hyperbolicity of the base dynamics).
The latter condition is motivated by the applications mentioned above, to
partially hyperbolic systems and to transversely projective foliations. In this
setting, it was proved in [11] that an ezplicit condition about the cocycle over
some periodic point and some homoclinic orbit associated to it suffices to
ensure the existence of at least one non-zero Lyapunov exponent.

Our main result in the present paper says that a slightly stronger form
of this condition, also satisfied by the vast majority of these cocycles, implies
that all Lyapunov exponents are distinct. By vast majority we mean an open
dense subset which has full Lebesgue measure in parameter space within
any generic parametrized families of cocycles. In fact, the complement has
infinite codimenston: it is contained in finite unions of closed submanifolds



with arbitrary codimension.

Multiplicity 1 for the Lyapunov exponents of #d random matrices was
proved by Guivarc’h, Raugi [20], thus improving Furstenberg’s criterium [17].
See also Gold’sheid, Margulis [19] and LePage [27]. Our proof is an extension
of their methods and those of Bonatti, Gomez-Mont, Viana [11].

It is interesting to put our conclusions together with other recent results,
by Knill [24], Arnold, Cong [3, 4], and Arbieto, Bochi [2, 6], about Lyapunov
exponents of SL(d, R)-cocycles. These are organized in the following table,
according to the dimension of the underlying space and the regularity of the
cocycle. Simple stands for all Lyapunov exponents having multiplicity 1,
whereas zero means that all the exponents vanish. Generic always refers
to a Baire second category subset in the corresponding topology, and full
measure means full Lebesgue measure in parameter space, for an open dense
set of parametrized families of cocycles.

Regularity d=2 d>?2
LP; 1 <p< oo | dense: simple [3] dense: simple [3]
generic: zero [2] generic: zero [2]
Lee dense: simple [24] dense: simple [4]
generic: zero or hyperbolic [6] | (x)
Cc° dense: simple ? dense: simple ?
generic: zero or hyperbolic [6] | (x)
C",v>0 open dense & full measure: open dense & full measure:
& domination | simple [11] simple [this paper]

() Bochi, Viana [7, 8] prove that, generically, all Lyapunov exponents are zero or else the
Oseledets decomposition is dominated.

Recently, [29] extended the main conclusion of [11] to general C* cocycles,
i.e. without the domination assumption: for an open dense full measure
subset there exists some non-zero Lyapunov exponent. Furthermore, this
holds even if the base dynamics is just non-uniformly hyperbolic. At this
point it is not known whether the multiplicity 1 results in the present paper
extend to such generality, although we believe this to be the case.

1 Precise setting and statements

For d > 2 and T an irreducible d x d matrix with coefficients in {0, 1}, let
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° f : Sr — 3 be the two-sided subshift of finite type associated to T

o A:3% — SL(d,C) be continuous, and fA S x CP4t — S x CP4?
be the projective cocycle over f generated by A

e /i be an f—invariant ergodic probability on $r with supp i = S and
continuous local product structure.

The last condition means that the restriction of /i to every cylinder [0; ]
of Y7 satisfies

il 053] = ¥(pt x p7) (1)

where 1 is continuous and positive, and pu* and p~ are the projections of
i | [0;4] to the spaces of one-sided sequences indexed by positive integers
and negative integers, respectively. This property holds, in particular, for
every equilibrium state of f associated to a Holder continuous potential. See
Bowen [13] and Section 2.2 below.

1.1 Stable and unstable holonomies

The local stable manifold W, (%) of a point & = (2;)jez € S is the set of
y = (x;)jez such that y; = z; for all j > 0. The local unstable manifold
W () of & € S is the set of § = (z;);ez such that y; = z; for all j < 0.

We always assume that A is either constant on each cylinder [0;i] of X
or dominated, in the sense of [11]:

Definition 1.1. Ais dominated if there exists a distance d in 37 and constants
6 <1 and v € (0,1] such that, up to replacing A by some power AV,

(A( ), f(@) < ed(@,@) and d(f~(2), f71(2)) < 0d(s,2) for every
loc( ) ;éc(;fj), and 7 € ET;

2. @+ A(&) is v-Holder continuous and || A(2)| | A(2)![|¢” < 1 for every
TeXr

(the definition does not depend on the choice of the metric | - || on the vector
bundle 37 x C?, as long as the metric varies v-Holder continuously with the
base point ).



Let us explain the geometric meaning of this condition. Given any linear
isomorphism B : C¢ — C¢, the expression || B|||[B~!|| is a Lipschitz constant
for the actions of both B and B~! on the projective space CP? !. Thus,
|A(2)|| ||A(£)Y]| is an upper bound for the expansion, and its inverse is
a lower bound for the contraction exhibited by the action of A(:ﬁ) on the
projective fiber {#} x CP4'.

First, consider » = 1. The inequality in part 2 of the definition becomes

6 < (IA@)IA@) N or 67 > [A@)IA@) -

The first form means that the base map f contracts local stable manifolds
stronger than the projective cocycle contracts fibers; the second one means
that the base map expands local unstable manifolds stronger than the pro-
jective cocycle expands fibers. In other words, domination means that f 118
a “partially hyperbolic” transformation, with the fibers as central “leaves”
(quotation marks are there just because these notions are usually defined for
smooth maps on manifolds).

This interpretation extends immediately to the general case v € (0,1]. It
suffices to note that d(-,-)” is also a metric in X7, a function is v-Holder with
respect to the original metric d(-,-) if and only if it is 1-Holder with respect
to the new one d(-,-)", and 6” bounds the expansion and contraction rates
of the base map relative to this new metric. This reduces the general case to
the previous particular one.

Figure 1: Stable and unstable holonomies

In view of the theory of partially hyperbolic systems [15, 22], one expects
such a condition to imply the existence of invariant strong-stable and strong-
unstable “foliations” for f 4 1n ET x CP4! , transverse to the fibers. The next
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proposition means that this is indeed so, and the corresponding holonomies
(projections along the leaves) are projective maps. See also Figure 1.

Proposition 1.2. If A is either dominated or constant on each cylinder [0; 7]
of S, there exists a family ¢34 of projective transformations of CP4 !, de-

fined for every pair #,7 € Sr in the same local unstable manifold of f, and
there exists Cy > 0 such that

1. ¢%; =1d and ¢35 ; 0 ¢
2. A(fH9) 0 % gy joagy 0 A (@) = S
3. g, —id] < cld@,@)"
forall z,9,2 € St in the same local unstable manifold.

Proof. If A is constant on each cylinder [0;i], just define ¢35 = id for every

pair of points in the same local unstable manitold. If Ais dominated, define
4y = limp 0 A™"(§) "' A7"(2). It is shown in [11, Lemme 1.12] that the
limit exists and satisfies the properties in the proposition. O

We shall refer to {¢} ;} as the unstable holonomies of the cocycle. This is
easily extended to pairs (Z, §) of points in the same global unstable manifold:
just define

~

hg = ATF@)) 0 Bhoisy joryy © A () (2)

for large k£ and use part 2 of the proposition to see that the definition does not
depend on the choice of k. In a dual fashion we construct stable holonomies
{q&f&,i}, for any points £ and Z in the same global stable manifold.

1.2 Typical cocycles

Given a periodic point p € Sp of f, we say that 2 € Xr is a homoclinic
point associated to p if it is in the intersection of the stable manifold and the
unstable manifold of p. Then we define

Yo =025 ° Py

This is a projective map from the fiber {$} x CP%~* over p back to itself. Up
to replacing 2 by some backward iterate, we may suppose that z € W} (p)
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and fl(é) € W;.(p) for some | > 1, which may be taken a multiple of the
period of p. Then, by the analogue of (2) for stable holonomies,

wﬁ,é = A_l(p) © fl( )b © Al( ) p, (3)

Definition 1.3. Suppose A:Sr > SL(d, C) is either dominated or constant
on each cylinder of Sr. We say that Ais 1- typical if there exists a periodic
point p and a homoclinic point Z associated to p such that

1. The eigenvalues of A on the orbit of p have multiplicity 1 and distinct
norms; let w; € CP?%! represent the eigenspaces, for 1 < j < d.

2. {¢ps(wi) i €I} U{wj:j € J} is linearly independent, for all subsets
Iand Jof {1,...,d} with #I +#J < d.

For d = 2 this second condition means that ¢ ;(w;) # w; for 1 < 4,5 < 2.
See Figure 2. For d = 3 it means that v ;(w;) is outside the plane w; @ wy,
and w; is outside the plane 1), ;(w;) ;2 (wk), for all choices of 1 < 4, 5,k < 3.

Figure 2: A 1-typical cocycle in dimension d = 2

Remark 1.4. In general, condition 2 in Definition 1.3 is equivalent to saying
that the algebraic minors of the matrix M of 1);; in a basis of eigenvectors
of A at p are all non-vanishing. We say that M is a 1-typical matriz. 1t is
also worth stressing that the property of being 1-typical depends only on the
map A, not on the measure .



Although [11] uses a weaker condition (in any dimension: v ;(w;) # w,
for every 1 <4, j < d), the same arguments as in [11, Section 2] prove that 1-
typical cocycles form an open dense subset of the space of dominated cocycles
endowed with a C" norm, for any real v > 0. Moreover, the complement has
infinite codimension. We just highlight the main ingredients that make those
arguments work.

On the one hand, one may modify v; ; by changing /ll(,%) without affecting
the local holonomies nor the value of A on the orbit of p. In fact, A — Vp ;s
a C'! submersion restricted to any joint level set of qﬁ‘}l )5 ¢35, and A (p),
all j € Z. On the other hand, the conditions in the definition are satisfied
by any matrices outside a finite union of closed submanifolds with positive
codimension. By varying the fixed point p and the homoclinic point Z, one
concludes that the exceptional set has infinite codimension.

1.3 Main results

Let f, A, i1 be as described at the beginning of this section. Firstly, we state

Theorem 1. [f A is 1-typical then the largest and the smallest Lyapunov
exponents of f; for i have multiplicity 1, meaning that the corresponding
Oseledets subspaces are 1-dimensional.

As a consequence of Theorem 1 we obtain a corresponding result for all
Lyapunov exponents. For the statement we need the following notion:
Definition 1.5. Given 1 < k < d, we say that Ais k-typical if points p and 2
as in Definition 1.3 may be chosen such that

1. all the products of k distinct eigenvalues of A at p have distinct norms;

2. the matrix M"* of the action of M on the k:th external product A*(C?)
is 1-typical, where M is the matrix of v, ; introduced in Remark 1.4
(we say that M is a k-typical matriz).

We say that A is typical if it is k-typical for all 1 < k < d/2. In the same
way as before, one checks that typical cocycles correspond to an open dense
subset of maps A, whose complement has infinite codimension in parameter
space.

Remark 1.6. Roughly speaking, A is k-typical if its action A" on the k:th

external product is 1-typical. But we need not ask A™ 0 be dominated:
existence of stable and unstable holonomies suffices for all our purposes.



Theorem 2. If/l is typical then the Lyapunov exponents of fA with respect
to i have multiplicity 1. In fact, if A is i-typical for 1 < i < k then the k
largest and the k smallest Lyapunov exponents have multiplicity 1.

Theorems 1 and 2 extend directly to cocycles over hyperbolic basic sets
of diffeomorphisms and, in particular, over Anosov diffeomorphisms. The
invariant probability should have continuous local product structure, e.g.,
any equilibrium state associated to a Hélder continuous potential. The proof
is by reducing to the shift case via a Markov partition. Such a reduction was
described in detail in [11, Section 2] and so we do not repeat it here.

1.4 Outline of the proofs

The first step in the proof of Theorem 1 is to use the existence of stable
holonomies to conjugate f 4 toacocycle f4 constant on local stable manifolds
or, in other words, defined over the corresponding one-sided shift.

Let f : X7 — Y7 be the one-sided subshift associated to T, that is, Xp
is the space of sequences (2,),>0 such that 7T} =1foralln > 0. Let
P : Sp — Y7 be the canonical projection and y = P,fi. Then y is an f-
invariant ergodic measure with supp p = 7. The family of stable holonomies
defines a continuous change of linear coordinates on the fibers {z} x CP¢"!
that makes A constant on each local stable manifold of f . Compare [11,
Corollaire 1.15]. Thus, it is no restriction to suppose that

nsTn+41

e A= Ao P for some continuous A : £y — SL(d, C).

Denote by fa : L7 x CP*! — N x CP4! the projective cocycle over f
generated by A.

Let 7 = {rz : & € L7} be an f j-invariant probability on £, x CP4~" that
projects down to fi on Sr. We consider the projection m = {m, : x € Xr}
of 1 to Xy x CP4!: this is an f4-invariant probability projecting down to u
on Yp. A very useful fact (Proposition 3.1 and Remark 3.5) is that 7 may
be recovered from m via iteration under A:

lim A™(2,).sms, = Mg for fi-almost every & € Sy, (4)
n—>r00

~

where Z,, = P(f ™(2)). The assumption that A has a simple largest eigen-
value on a periodic point p implies that the iterates A™(p),n converge to the



Dirac measure supported on the corresponding eigenspace, for any probabil-
ity measure 7 on the fiber of p that neglects the sum of the other eigenspaces.
A central part of our strategy is to try and propagate this behaviour to typ-
ical points, to conclude that (4) is a Dirac measure for almost every z. In
order to implement this idea, a couple of fundamental issues must be dealt
with.

Firstly, we must be able to relate the cocycle’s behaviour over the orbit
of p (a zero measure subset!) with its behaviour over the typical points of
Sr. For this purpose, we restrict ourselves to measures m = P, () such
that 7 is invariant also under unstable holonomies: we say that m is (4, ¢)-
invariant. Together with continuous local product structure, this implies
(Proposition 4.3) that m admits a disintegration into conditional measures
m, depending continuously on the point x € Yp. Continuity is crucial
for showing that the cocycle’s behaviour over the periodic orbit is indeed
reflected on the typical behaviour.

Secondly, we must make sure that the conditional measures m, of m on
the fibers do neglect the sum of the remaining Oseledets subspaces. In fact,
assuming the cocycle is 1-typical, we prove (Proposition 5.1) that p-almost
every conditional measure m, gives zero weight to any proper subspace of
the fiber.

This leads to the proof (Section 6) that the limit in (4) is indeed a Dirac
measure at almost every point:

Theorem 3. If A is 1-typical then for every (A, @)-invariant probability
measure m and fi-almost every & € Y the sequence A™(Zy,).mz, converges
to a Dirac measure ¢z in the fiber {40} x CP*" when n — occ.

This result alone is not yet sufficient to deduce that the cocycle has a
one-dimensional Oseledets subspace corresponding to the largest Lyapunov
exponent. For example, the matrix

11
A=
has a unique limit Dirac measure ¢, in projective space, and yet the eigenvalue
has multiplicity 2. To interpret this fact, consider the adjoint matrix A,
acting on the dual space. Then A, also has a unique limit Dirac measure d¢,,

and ker &, is a candidate to being another eigenspace of A. However, this can
not be, because the kernel contains &.
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So, we apply the previous theory to the adjoint cocycle A, of A and,
using once more that these cocycles are 1-typical, we check (Lemma 7.3)
that the corresponding limit point &,(Z) does not vanish at £(z), for almost
every point £. We deduce (Proposition 7.5) that £(Z) is indeed the unique
direction of strongest expansion for the cocycle at almost every point Z.
We conclude that this direction corresponds to a largest Lyapunov expo-
nent (Corollary 8.3), and the ker &, (Z) is the sum of all the other Oseledets
subspaces. This completes the proof of Theorem 1.

In Section 8 we also deduce Theorem 2, simply by applying the previous
ideas to the cocycle’s external powers A, Finally, all these arguments
extend to the case of real-valued cocycles, as explained in Section 9. The
main point is to show that, despite the difficulty posed by pairs of complex
conjugate eigenvalues, typical cocycles still constitute a dense subset. We
prove that, after perturbation, one can always find some periodic point near
p such that the eigenvalues over the new periodic orbit are all real.

2 Preliminaries

2.1 Continuous local product structure

First we deduce some simple consequences from the assumption (1) that f
has continuous local product structure.

By a slight abuse of language, we call local stable manifold of a point
z € X the set P~} (z) C ¥y Thus,

Wi (x) = P~ (x) = Wi (&) forany & € P~'(z) and © € Xy

Given n > 1 and 7 € fJT, we represent by &, the f"-pre-image z,, of P(Z)
defined by &, = P(f~"(&)). Observe that f(Z,) = &,_; for every n > 1, and

For x and y in the same cylinder of X1, define the unstable holonomy map
hyy : Wi (z) = W (y) by the condition that £ € W}, (x) and § = hy ()

are in the same local unstable manifold.

Lemma 2.1. The measure ji has a disintegration into conditional measures
(fiz)zeny that vary continuously with x in the weak topology. In fact, every

hw,y : (I/Vlf)c(‘r)7ﬂz) - (‘/Vlic(y)a ﬂy)

is absolutely continuous, with Jacobian J,, depending continuously on (x,y).
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Proof. By assumption, restricted to every [0;i] we may write i = ¥ (pu X p )

with ¢ continuous and positive. Since u = P, i, we have fws (@) Y(@)dp =1
loc

over every local stable manifold. Then

fio = (@)~ and  Jpy(2) = P(hay(2))/¥(2)
define a disintegration of {1 and a Jacobian for h;, as in the statement. [

The lift of an f-invariant probability v is the probability © such that

/(1/;0Pof_”)d1?:/1/1du (5)

for every n > 1 and any measurable function ¢ : 7 — R. This defines
7 uniquely because the ¢ o P o f=" generate the space of all measurable
functions on X7 . Moreover, ¥ is f-invariant (the right hand side does not
depend on n).

Lemma 2.2. The measure p = P,ji admits a continuous positive Jacobian
Juf. Moreover, [i is the lift of p.

Proof. Let y € Xy and F C Y1 be any measurable set containing y and
contained in a cylinder [0;4, j]. By definition,

W(f(E) = (P f(E)) = /{ oy V) ) o)

and, using also invariance,

~

W(E) = f(P~(E)) = (f P~ () = /{ o P ) ().

Making E — {y} we get that

wS(E) 1 _
WE) o=y (), n) dp(n)

Define J,f(y) to be the right hand side. Thus J,f : ¥r — (0,00) is a
Jacobian for pu, and it is clear that it is continuous. This proves the first part
of the lemma. The second part is immediate: the definition y = P, gives
the relation (5) for n = 0, and the fact that /i is f-invariant extends it to
every n > 0. U
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Remark 2.53. Let n > 1 and A,, be any measurable subset of an n+1-cylinder.
Write i | P (A4n) = (i | Au) x &y, and 4| fH(P 1 (AL) = (u | A) x fig
(skew-products) where A = f"(A,). By invariance, we also have

N on plA

FrP YA = fr(i | An) x [Ty = x 1y
ol fH(P(An)) = f2 (1 | An) X fl iy R0 y
Note that f"(P~'(A4,)) = U{f"(W; (y)) : y € An}. Since A, is arbitrary,
uniqueness of the conditional measures gives

1 .

= il
Jufrly) ="
for p-almost every y € Xr and any n > 1. Considering the disintegration

in Lemma 2.1 and the Jacobian in Lemma 2.2, continuity implies that (6) is
true for every y.

fipney | P (Wie(y)) (6)

Notice also that the fact that u is f-invariant corresponds to the relation

J (X 57500)du@ = [ o auw) ™

y:f(y)=

for every continuous function ¢ : ¥y — R. Moreover, a probability m in
Yr x CP4! is invariant for f4 if and only if

> e Aw)m, = ms ®

y:f(y)=z "V

for p-almost every z € ¥r, and any disintegration (mg)zes, -

2.2 Measures with Holder continuous Jacobians

In this section we check a partial converse to results in Section 2.1: given any
f-invariant probability p on Y7 with Holder continuous Jacobian J,f > 0,
the lift i of p to S has continuous local product structure. The assumption
also implies that f is ergodic and supported on the whole Sr.

Equilibrium states of f are lifts of equilibrium states of the one-sided
shift f, which do have Holder continuous Jacobian if the potential is Holder
continuous. See Bowen [13]. So, this shows that our hypotheses apply to

13



every equilibrium state of f associated to a Holder continuous potential.
The proofs of our results are, otherwise, independent of the present section.

Let u be any f-invariant probability admitting a Jacobian J, f > 0 which
is y-Holder for some vy > 0. Recall that &, = P(f~"(x)) for n > 0.

Lemma 2.4. Let z and y be in the same cylinder of Xr, & € WS (z), and
U = hgyy(z) € W (y). Then the limit

o oo Juf" (@)
Jw Z) = lim Mi[\

exists, uniformly in x, y, T, and it is positive. Moreover, there exists Cy > 0
such that | Jy,(2) — 1| < Cod(z,y)7, for all z, y, and .

Proof. The arguments are quite standard. Begin by noting that

log ufv" - ZlogJ £(&) — log J.f (4)- 9)
u _

As log J,,f is y-Holder continuous, and d(%;,y,) decreases exponentially fast
with j, there exist Cj > 0 and 7 < 1 such that |log J,,f(Z;) — log J,.f(9;)| <
CyTld(x,y)? for all j > 1. Recall that z = P(%) = %y, and analogously
for y. It follows that the series in (9) converges uniformly and absolutely,
and the sum is bounded by Cjd(z,y)?, with Cj = C3>°,77. Denoting
log J;,(Z) the limit, we get that |logJ,,(2)| < Cyd(z,y)?, which implies
| Jzy(Z) — 1| < Cad(z,y)" for some Cy > 0 depending only on CY. O

Given a subset A of a cylinder [0;i] C ©7 and an (n+1)-cylinder &, C S
of the form &, = [-n;a_p,...,a_1,i], we shall denote by A x &, the set of
points (2;)jez of X such that z; = a; for —n < j < 0 and P(z;) € A.
Remark 2.5. Each function & — Jp, ;5 ,(2) = J,f™(Zn)/Juf"(Gn), n > 1, is
constant on every subset {z} x &, C W _(z).

Lemma 2.6. There exists a disintegration (fi); of i relative to the partition
{Wi(x) + x € Er} such that, for any x and y in the same cylinder of
Y1, the unstable holonomy hyy @ (Wi (), fiz) = (Wi.(y), fby) is absolutely
continuous, with Jacobian Jy,:
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Proof. For n > 1 and any i € {1,...,d}, let A C [0;i] and &, C $r be an
(n + 1)-cylinder of the form &, = [—nja_p,...,a_1,i]. Then f ™(4 x &,)
may be written as P~!(A4,) for some subset A, of X1 such that f™ maps 4,
bijectively onto A. Consequently,

UAX &) = p(f (A X&) = P (AL) = p(An)
and so, by definition of the Jacobian,

MAXE) _ plA)
Y A

Let (fiz), be any disintegration of i relative to {W;.(z) : z € ¥r}. For
p-almost any point = (z;);>0 in [0;¢] C Xr and any cylinder &, as before,

(A&
Mw(fn)—il_)niw,

(10)

where the limit is over some basis of neighbourhoods A of z. As A — =z,
the sets A,, constructed in the previous paragraph converge to the f™-pre-
image %, of = given by %, = (¢ pn,...,6 1,%,%1,...,Zp,,...). Note that

Z, = P(f ™)) for any choice of € {z} x &,. In view of (10) and the fact
that J, f" is continuous, this gives that

1
7 = 11
for any (n+ 1)-cylinder &, and any z in some full g-measure subset S, of ¥r.
We denote by S the intersection of S, over all n > 1, which is also a
full p-measure subset. Given any points x and y of S contained in the same
cylinder of ¥r,

_ Juf"(En) _
é-n = ui,\ T §n = Jn,x, é-n T gn
) = P ) = o€
for every &, and n > 1. Recall Remark 2.5. Let k£ > 1 and a (k 4 1)-cylinder
& = [—k;a_g,...,a_1,i] be fixed. By definition of the unstable holonomy,

hey({x} x &) = {y} x &. For every n >k,

én &n

3
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where the sum is over the (n + 1)-cylinders &, C &. Passing to the limit
as n — 0o, and using Lemma 2.4, we find that 7, (&) = ffk Jpy dfig. Since
the sets {x} X &, with varying & and k > 1, generate the o-algebra of each
W (), this proves that h,, is absolutely continuous with respect to fiz, fiy,
for every x,y in S.

Since disintegrations are well-defined up to zero measure sets only, it is
easy to enforce the absolute continuity relation also outside S. It suffices to
fix some z € S in each cylinder [0;4] and to replace fi, by (hw,z)*(Jw,zﬂw) for
every z € [0;4] \ S. O

Given any cylinder [0; 4], fix a point z in it. Consider the natural product
coordinates on the cylinder obtained identifying (y,n) with hg,(n). In these
coordinates, fi, = Jy [, for every y € [0;4]. So fr | [0;¢] = ¥(p x p7)
with = = fi, and ¥(y,n) = J;,(n). This shows that i has local product
structure.

3 Convergence of conditional measures

Here we are going to prove

Proposition 3.1. Let m be any fA—invam’ant probability with 7,m = i, and
let m = (P x id),m. For ji-almost every & € Xr

(a) A™(Z,,)«mgz, converges in the weak topology as n — oo and
(b) for any k > 1 and any choices of points Yy with f*(yn ) = &y

. ~ : k
Tim A™(2).mg, = Tim A" (y, k).my,

Let B be the Borel o-algebra of 7. Consider the sequence (B,), of o-
algebras of 37 defined by By = P~1(B) and B, = f(B, 1) forn > 1. That is,
each B, is the o-algebra generated by the variables x_,, ,... , 21, 20,21, ...
Equivalently, the elements of B,, are the measurable sets consisting of entire
fr-images of local stable manifolds.

Fix a continuous function ¢ : CP% ! 5 R. Forie fJT and n > 0, define

() :/god(A”(i“n)*mjn) :/(WA"(%))dmm.
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Then I, is B,-measurable: it can be written as I,, = Ig oPo f*", where Ig
is the B-measurable function

1) = [ (g0 4"(a)) dm.

Lemma 3.2. For p-almost every x € Xp and any k > 1,

Bey= Y — L)

k n+k
y:f*(y)== Tuf*(@)

Proof. The case k =1 is a direct consequence of the invariance relation (8):

Ig(:c):/(@oA”(a:)>dmz:/((poA"(x)>d( 3 ﬁfx(y)*my)

fy)=z

n+1 _ 1 0
(<P oA (y))dmy = f%;w mln-}-l(y)

The general case follows analogously, by induction. O

The next result says that I, is the conditional expectation of I, with
respect to the o-algebra B, and so (I, B,), is a martingale.

Lemma 3.3. For every n > 0 and B,-measurable function 1) : Sr— R,
[ B@0@) i) = [ 1(@)0(@) dte).

Proof. Let us write ¢ = 9, o P o f‘", for some B-measurable function ),.
Since /1 is the lift of x4, by Lemma 2.2,

[ 1@w@) di@) = [ By duto)

By Lemma 3.2, this is equal to

| ¥ G le%(>(>

Hy)==
n+1( J¥a(f(y)) ) du()
/fgz L) )
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Using the invariance relation (7) and the fact that i is the lift of u (clearly,
Y = (¢ 0 f) o Po f~("*1)) this is equal to

/ 19, ()6 (F ) daly) = / Lo (§)6(5) dia(s),

as claimed in the lemma. O

For a point z € X7 and k > 0 we represent by dv,, the probability
measure on the f*-pre-image of z given by

1
dvy . = Z thk(y)éy

y:fr(y)=x

For n > 0 and k£ > 1, define
Sk —// Ig+k j)) vz, (y) df(Z).-
Lemma 3.4. For everyn >0 and k > 1,
Sur = [ Le@Pdi(a) — [ 1(@)di(a).
Proof. Using that i is the lift of u and the invariance property (7),
[ [ Bwdvs, ) i@ = [ [ 1240 d0ae) duo
- [
— [ [ Tt dito).

[ 1@ [ 12,40) s ) i) = [ L@ dia) = [ 1,6 dita).

Similarly, by the invariance of p

The conclusion of the lemma follows. O
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Proof of Proposition 3.1. Lemma 3.3 says that the sequence (I,,B,), is a
martingale. By the martingale convergence theorem (see [14, Chapter 5.4]),
I, converges ji-almost everywhere to some Z,. Considering a countable dense
subset of the space of continuous functions, we find a full ji-measure set of
points Z such that

/ o d (AM(&0)oms, ) — T,

for every continuous function ¢. This means that A"(%,).mz, converges
weakly to the probability measure ¢ — Z,. This proves statement (a) in the
proposition.

To prove statement (b), let & > 1 be fixed. Lemma 3.4, together with
sup,, 5 [In(Z)| < sup |¢|, implies that

S [ (1(6) = 12460)) s, (0) @) = 3 Sue < 2h(sup )

for every | > 1. Consequently,

. 0 2 — L L 0 2
[ (1) = 120kw) s, () = P (1(@) ~ 12, )

converges to zero when n — oo, for fi-almost every = € $r. Since the
Jacobian J, f* is bounded from zero, it follows that

S (06 - 2w)
fHy)=in

converges to zero when n — oo, for fi-almost every & € Sr. In other words,
there exists a full measure subset of points Z such that

max
fk (y):i'n

[ @ms,) - [oa(atw.m,)

converges to zero as n — 0o. The claim (b) in the proposition is an easy
consequence, considering a countable dense subset of the space of continuous
functions ¢ : Y7 — R. O
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Remark 3.5. For fi-almost every &, the limit of A™(x,).ms, coincides with
the conditional measure m; of the original measure m. Indeed, let m; denote
this limit and let 7 = fix {7, }. That is, 77 is the measure on 37 x CP* * that
projects down to ji under 7, and whose conditional measures along the fibers
are the 7m,. It is easy to see that 77 is f;-invariant, that is, My = = A(%), s
at f-almost every point. Moreover, m projects down to m under P X id.
That is because m is the limit of the fA—lterates of i x {mp) : & € S}
on ¥ X CP% !, and all these iterates project down to m. By uniqueness of
f i-invariant measures projecting to m, we conclude that m = m, that is,
msz = My for fi-almost every .

4 (A, ¢)-invariant measures

We represent by ¢; 5 the expression of the unstable holonomies ¢F ; in the

new coordinates, introduced in Section 1.4, that render A constant on local
stable manifolds. Of course, every local stable holonomy is the identity in
these coordinates. We write p = P(p) and z = P(Z) and, for simplicity,
Y. =YPpz and ¢p , = ¢p ;. Then (3) becomes

Yy, = A7 (p) o A'(2) 0 By, . (12)

Let 7 : ©p x CP4 ! — Y4 and 7 : i?T x CP¢ ! — 2T be the canonical
projections onto the first factor.

Definition 4.1. A probability measure m in S x CP% ! is ¢-invariant if
7. = i and there exists a disintegration (7z); of m along the projective
fibers 7' (z) = {#} x CP%! satisfying

(P2,9)« Tha = 1y (13)

for every # and § in the same local unstable manifold. We say that 7 is
(A, ¢)-invariant if, in addition, it is invariant under fj .

We say that a probability measure m in Y x CP?"! is ¢-invariant if
there exists a ¢-invariant probability measure m in S x CP4"! such that

= (P x id),m. Note that this implies m,m = p. We say that m is (A, ¢)-
invariant if, in addition, 7 may be taken (A, ¢)-invariant. In that case m is
fa-invariant. Note also that if m is a (A, ¢)-invariant probability then (13)
holds for every & and ¢ in the same (global) unstable manifold. We are going
to prove the following two propositions:
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Proposition 4.2. There ezists some (A, ¢)-invariant measure.

Proposition 4.3. Any (A, ¢)-invariant measure m in Y x CP* admits a
disintegration into conditional measures along the projective fibers (my)zes,
that vary continuously with x in the weak topology: for every continuous
function g : CP4™t — R the function x — [ gdmy is continuous on Er.

4.1 Existence of (A, ¢)-invariant measures

The key step in the proof of Proposition 4.2 is the following compactness
property:

Proposition 4.4. The space My of ¢-invariant probabilities measures m in
Y x CPL 4s non-empty, convez, and compact relative to the weak topology.

The idea of the proof is quite simple. Fix a point z; in each cylinder
[0;7], 1 < i < d of ¥r and let M; be the space of probability measures on
W . (z;) x CP4! which are sent down to fi,, by the restriction of #. Each M,
is non-empty, convex, and compact relative to the weak topology. To any
(Al .. A% € My x -+ - x My we may associate an element 1 of Mg simply
by lifting each 7i; to the cylinder [0;4] along local unstable holonomies. We
prove in Lemma 4.6 that this correspondence is a homeomorphism onto My .
Proposition 4.4 is an immediate consequence.

Let us now give the detailed arguments. For each x and y in the same
cylinder [0;4] let @, : W (z) x CP* ' — W} (y) x CP* ' be the unstable
holonomy map defined by @, ,(,&) = (9,n) with § = hy ,(2) and n = ¢5,4(8).
Let m be any ¢-invariant measure and (173);c5,. be a disintegration of m
along the projective fibers as in Definition 4.1. For each x € Y1 define the
skew-product m, = fi, X Mz, that is, 7, is the measure on W _(x) X cpe!
whose projection under the # | W2, _(z) x CP* * coincides with fi, and which
admits (1z)zew: (z) as a disintegration along the fibers.

Lemma 4.5. The family (1y)zes, 15 a disintegration of m along the sets
W (z) x CP* ! and it satisfies

my = Jz,y(q)m,y)*mm

for every x and y in the same cylinder of Xr .
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Proof. The first claim in the lemma is a simple consequence of the definitions.
Let g : X X CP% ' — R be any continuous function. Write the generic point
of ¥y x CP* ! as (z,%,&) with 2 € £y, & € W2, (), and € € {&} x CP* .
Then

[odinte.a.6) = [ [ gdpte ) e
— [ [ [ sduta)dinta) ains(e) = [ [ gduta) aina(a. o

as claimed. To prove the second claim, let g : W} _(y) X CP¢ ! — R be any
continuous function. Then, making the change of variables § = h;,(Z) and

n = ¢z4(£),

[ adin, = [ dita) [ ot dinglo)

= [ 1008 el8) [ 9(0en(),025(6)) i@
— [ 1ea(@)(0 0 00y)(0,8) din 3,),

using Jy  (Rgy)«fls = by (Lemma 2.1) and the assumption (@z4).Ms = My .
This completes the proof. O

Given (A',..., )% as before, let (\;)zews (»;) be a disintegration of X’
along the fibers. Then define 7 = ¥(\', .. )\d) to be the probability mea-
sure in Y7 x CP?"! whose projection under 7 coincides with i and which
admits as conditional measures along the fibers {} x CP%"! the probabilities
given by '

’ﬁ’Lz = (Qﬁj“j)*xﬁ for z € [O’L]
where Z; represents the point in W} (z;) N W (2).
Lemma 4.6. The map ¥ : Mq X -+ X My — My is a homeomorphism.

Proof. We begin by checking that W is well defined: it is clear that the
measure 7 = ¥(AL, ..., \?) is in M, but we should explain why it does not
depend on the choice of the disintegrations. For this, let (/\ )wEWS (z;) be any
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other disintegration of A’ along the fibers. By essential uniqueness, we have
As, = A, for fiy-almost every &; € Wi (z;). Then, using Lemma 2.1,

(B35,8) s Ns, = (Das.0)s N,

for fi,-almost every £ € Wy (z) and every x in the cylinder [0;7]. This
implies that the equality is true for ji-almost every & € [0;], and so the two
expressions do define same measure.

Next we check that ¥ is continuous, relative to the weak topologies in the
two spaces. Let \'(k) be sequences of measures converging to some \* € M;
and let (k) = (A(k),...,A%k)). By Lemma 4.5, we have

m(k)w = Jzi,w(q)wi,w)*m(k)zi = Jwi,w(q)mi,z)*)‘i(k)

for every z € [0;i], 1 < i < d, and k£ > 1, and analogously for m =
U(AL, ..., ). Since the Jacobian J and the holonomy ® depend contin-
uously on all the variables, this implies that m(k), converges to 1, in the
weak topology, uniformly on = € 1. Consequently, (k) converges to 7.

Finally, we check ¥ is bijective. Let U(\!,... A\ =m = ¥(n!,... 9.
Then, by Lemma 4.5,

for all z in every cylinder [0;4]. Fixing any such z we obtain that
N o= (1/ Jzs0) (P, ) 1g = 77i ;

which proves injectivity. To prove surjectivity, let m € M, and (1;)zex, be
the disintegration given by Lemma 4.5. Take \* = 1, for each 1 < i < d.
Recall that m,m, = [i, for every z, by the definition of these measures. In
particular, 7,A* = fi;, and so A\* € M;. Let m = ¥(\,... ,\%) € M,. By
Lemma 4.5, the conditional measures m, and 7, at any point x € [0; ] are
determined by the corresponding value at x;, which is A\’ in both cases. It
follows that m, = m, for every x, and so m = m. O

Proof of Proposition 4.4. The claim that M, is non-empty and compact is
an immediate consequence of Lemma 4.6. Moreover, given any «, 8 > 0 with
atf=1,

UlaX' + 80, ... a)+ B0Y) = ¥ (N, ... )X + pU(B',...,0%

and convexity also follows immediately. O
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Proof of Proposztzon 4.2. Let m be any ¢-invariant probability measure in
Sr x CP¢? . By compactness, the sequence

1 n—1 )
tin = — > (Fh).m.

=0

has weak accumulation points m € M. Since f; is continuous, any such
accumulation point is f;-invariant and, hence, (A, ¢)-invariant. O

4.2 Continuity of conditional measures
In order to prove Proposition 4.3 we need the following simple fact:

Lemma 4.7. Letm be an f—invam’ant measure on Sy x CP! with 7,0 = i,
and let m = (P x id).n. If (hs)z is a disintegration of M relative to the
partition {7#7(2) : £ € B¢} and (jip), is a disintegration of i relative to

{Wg (z) : x € T} then
- / s dfia()

defines a disintegration of m relative to {7 '(z) : x € X7}.

Proof. For any ¢ : ¥p x CP4! - R and ¢ = po (P x id),

[ [edmeanta) = [ [ ([ ote.0)dins)die(@))duta)
— [ [ (] o) dins(v)) do(@) d(o)
- / ( / @(x,v)dmj(v)> di(s) = / Bdi = / odm

and this proves that (m;), is a disintegration of m. O

Proof of Proposition 4.3. Let (1hz); be a disintegration of m as in Defini-
tion 4.1, (/1) be a disintegration of f as in Lemma 2.1, and (m,), be the
disintegration of m given by Lemma 4.7: [gdm, = [ [ gdingdj,(g) for
every continuous g : CP4* — R and every y € ¥;. Let 2 be in the same
cylinder as y. Changing variables § = hy 4 (%),

[odm, = [ [ (50 625)dis 12, (3) din(@),
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by Lemma 2.1 and the definition of (A, ¢)-invariant measure. Therefore,

| [odm,~ [gamal < [ [ V(g0 629)2s(a) = ol dins ().

Lemma 2.1 and Proposition 1.2 imply that ||J,, — 1||o and ||¢s,4 — id||o are
close to zero if d(z,y) is close to zero. Thus, given any ¢ > 0 there exists
§ > 0 such that d(z,y) < 60 implies ||(g 0 ¢24)Jzy(Z) — gllo < &, and so
| [gdmy — [ gdm,| <e. O

Remark 4.8. When m is (A, ¢)-invariant, we may choose a continuous disin-
tegration and then (8) is valid for every x € Xr.

5 Invariant measures of 1-typical cocycles

Proposition 5.1. Suppose A is 1-typical. Let m be any (A, ¢)-invariant
measure and (m;), be a continuous disintegration of m, as in Proposition 4.3.
Then m4 (V) = 0 for every x € S and any projective subspace V of 771 (x).

Proof. The proof is by contradiction. Suppose there were £, some x € Y,
and some /-dimensional projective subspace of 7 !(z) with positive m,-
measure. Fix such an £ minimum. Let 7, be the supremum of all v € (0, 1]
such that m;(V) > 7 for some z € ¥; and some ¢-dimensional projective
subspace V. The supremum is attained, because the conditional measures
mg vary continuously with z, and the space of /-dimensional projective sub-
spaces is compact. More than that,

Lemma 5.2. For every x € Yp there exists some £-dimensional projective
subspace V' such that m,(V) = ~y. Besides, m(V) = 7o if and only if
my(A(y)~'V) = 7 for every y € f~!(x).

Proof. Let Ty be the set of points z € X1 such that m,(V) = ~ for some
{-dimensional projective subspace V. Using continuity of the conditional
measures (Proposition 4.3) and compactness of the set of /-dimensional sub-
spaces, we conclude that I'j is closed in X7. Moreover, by Remark 4.8,

ma(V)= 32 omy(Ay)7V)
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for all z € Er. Since D24, 1/Juf(y) = 1 at every point, and 7 is the
maximum measure of any /-dimensional subspace, we get that m,(V) = v,
if and only if m, (A(y)~'V) = v, for every y € f~'(z), as stated. It follows
that Ty is f-invariant: x € Ty if and only if f~'(z) C T'y. Since the subshift
f X7y — Yr is transitive, full backward orbits are dense in Xr. Thus, any
non-empty closed invariant subset coincides with 7. Hence, ['y = X7. O

Let (i), be a disintegration of i as in Lemma 2.1, and (/;); be a
disintegration of 7 as in Definition 4.1. Since 7 is fs-invariant,

Mnggy = A" (Y)a10g (14)

for all n > 1 and g-almost all § € Xp. Actually, (14) is true for ji,-almost
every g € W; (y) and every y € Xp. Indeed, given any y € ¥, we may
approximate it by some z € ¥ such that (14) holds fi,-almost everywhere in
W;.(z). Using that the holonomy h, , is absolutely continuous (Lemma 2.1),
the conditional measures of 1 are preserved by the family of maps {¢;:}
(Definition 4.1), and the latter commute with the cocycle (Proposition 1.2),

we conclude that (14) holds for fi,-almost every point in W} (y).

Lemma 5.3. Given x € Xr and any ¢-dimensional projective subspace V,
we have Mz (V) < 7y for fiz-almost every & € W (z). Thence, m,(V) = v
if and only if mz(V') = v for fiy-almost every & € W, ().

Proof. Suppose there was V, x € Yr, 71 > 7, and a positive fi-measure
subset X of W} (x) such that m;(V) > v, for every & € X. For each n > 1,
let us consider the partition

{F"Wiw) :y € f (@)}

of the local stable manifold of z into f”—images of local stable manifolds.
The diameters of these partitions go to zero as n — co. Thus, by regularity
of the measure [i;, given any £ > 0 we may find n > 1 and y € f~"(x) such
that

e (X 0 f" W) > (1= )i (F(Wise(w)))-

Fix ¢ > 0 small enough that (1 —&)y; > 70. Using (14), and excluding a zero
f1z-measure subset of X if necessary,

g (A"(Y)™'V) = jug (V) > m
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for every § € f(X) N W, (y). From (6) we obtain

iy (f (X)) MWL) = Juf™ () e (X 0 [ (W ()
> (1—e) Juf™(y) i (F (W) = (1 — &)
It follows that

iy (A (y)"1V) = / g (A™(5)"1V) djiy () > (1= )71 > 70,

which contradicts the definition of 7y. This contradiction proves the first
part of the lemma.

The second one is a consequence of the first, and the fact that m, (V) is
the fi,-average of all Mg (V). O

Fix p, z, and [ > 1 as in the Definition 1.3 of typical cocycle. Recall that
bp. = b5z and ¢, , = A(2)P, ,, where p is the periodic point of f projecting
to p, and Z = Z(p) is the point of the local unstable manifold of p projecting
to z. Let ¢ > 1 be the period of p.

By Lemma 5.2, we may find an /-dimensional projective subspace V' such
that m, (V') = 7. Define V" = A=™(p)V for each n > 0. Using Lemma 5.2
once more we obtain m, (V") = ~, for all n > 0. Moreover, since the eigenval-
ues of A%(p) have distinct norms, V™ converges to an invariant subspace (sum
of eigenspaces) V of A%(p), with dimension ¢. It follows that mp(V) = -
This means that we may suppose right from the start that V' is an invariant

subspace of A%(p). We do so in all that follows.

Define W = Al(z)"'V. From Lemmas 5.2 and 5.3 we get m, (W) = ~, and
(W) = v for fi,-almost every 2z € W}, (z). For each w € W} _(p), denote
zZ = hy,(0) and Vi = @3 »W. It is clear that each Vj is an ¢-dimensional
projective subspace and depends continuously on the point w. Moreover,
by Definition 4.1, 1 (Vy) = ms(W) = v for fi,-almost every . For each
j>0,let VI = A‘jq(p)Vf,-q(w). Using (14) we deduce that 7, (V) = 7, for
every 7 > 0 and fi,-almost every w.

In the next lemma we denote U, = f™(W;,.(p)). The lemma says that,
for a sizable fraction of points @ close to p in W _(p), two spaces ng and V¥

either coincide or their intersection has small measure.

Lemma 5.4. Given 0 < j <k, e >0, > 0, there exists ny > 1 such that
for all n > ng

fip ({10 € Uy, - dim(VI N VE) < € and q(VINVE) > e}) < 6i,(Uy).
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Proof. Suppose there were 0 < j < k, € > 0, 6 > 0 such that
fip ({0 € Uy, : dim(VI N VE) < £ and 1y (VINVE) > e}) > 6, (Uy)

for values of n arbitrarily large. Let j,k,e,0 be fixed. Taking pre-images
under the ng:th iterate, and keeping (6) in mind, we get

fip ({0 € Wi (p) : im VZ*™ < ¢ and 1hg(VIH") > €}) > 6

for arbitrarily large n, where V*™ = A="4(p)(VINVE). Recall that we took
V' an invariant subspace of A9(p). Then, by part 2 of the Definition 1.3,

() V3 = 9,1V does not contain any eigenspace of A/(p).

By continuity, the same is true for any Vy with @ close enough to p. It follows
that, as n goes to infinity, Vu]}k" converges (uniformly on a neighbourhood of
) to an invariant space V of A%(p), corresponding to the smallest eigenvalues.
By construction, dim V < £ and 7 (V) > € for a subset of & € W, (p) with
fi,-measure larger than 0. Restricting to a positive ji,-measure subset of w
for which the dimension of V is constant, we have that V itself is independent
of @ on that subset. It follows that mp(V) > 0, which contradicts the choice
of /. This contradiction proves Lemma 5.4. 0

Now we may conclude the proof of Proposition 5.1. Let N be an integer
satisfying N > 2/~,. Fixe = v9/N and § > 0 arbitrary. Let ng be the largest
of all integers provided by Lemma 5.4, over all 0 < j < k < N. Then, for
any n > ng there exists a subset E,, of U, with

fip(En) 2 (1= 06)fip(Un) >0

such that, for any @ € E, and 0 < j < k < N, either (a) dim(VI nVE) =2
or (b) my (V] NVF) < e. Moreover, given any 0, alternative (b) can not be
true for all choices of 7, k. Indeed, that would imply

e (7)) 2 s (U Vi) 2 3 ma(Vi) = YD ma(VAN V)
0<i<N 0<j<k<N
> Ny — (N?/2)e > Nvyy/2 > 1,

which is a contradiction. Thus, for every w € E,, there exist 0 < j <k < N
such that dim(V] N VX) = ¢, that is, V] = V/¥. Since we are dealing with a
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finite number of pairs (4, k), we may fix 0 < j < k such that V“?; = VF for
a positive fi,-measure (hence non-empty) subset of every U,,. By continuity,
making w — p, we obtain
Vﬁj = V;;k that is, A(k_j)q(p)V;3 =V;.

This implies that V; is an invariant subset (sum of eigenspaces) of AY(p),
which contradicts (%) above. This contradiction proves that there is no pro-
jective subspace with positive m, -measure, for any point z € ¥, as claimed
in Proposition 5.1. U

6 Convergence to a Dirac measure

In this section we prove Theorem 3. We begin by recalling the following
useful notion, that was introduced by Furstenberg [18].

6.1 Quasi-projective transformations

Let v — [v] be the natural projection from C% \ {0} to CP**. A map
P : CP4 ! — CP ! is projective if there is P € GL(d,C) that induces P
through P([v]) = [P(v)]. We are going to embed the space of projective maps
of CP%~! into a larger space of quasi-projective transformations. The quasi-
projective transformation () induced by a non-zero, possibly non-invertible,
linear map @ : C? — C is given by Q([v]) = [@Q(v1)] where v; is any vector
such that v — vy is in ker ). Observe that Q is defined and continuous on the
complement of the projective subspace ker @ = {[v] : v € ker Q}.

The space of quasi-projective transformations inherits a topology from the
space of linear maps, through the natural projection Q- Q. Clearly, ev-
ery quasi-projective transformation () is induced by some linear map Q such
that ||Q|| = 1. It follows that the space of quasi-projective transformations
is compact for this topology. In particular, every sequence (P,), of projec-
tive transformations has a subsequence converging to some quasi-projective
transformation ().

We also point out the following consequence of the definitions, whose
proof we leave for the reader: If (P,), is a sequence of projective transforma-
tions converging to a quasi-projective transformation ) then (P,), converges
uniformly to () outside every neighbourhood of ker Q).
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Lemma 6.1. If (P,), is a sequence of projective transformations converging
to a quasi-projective transformation Q, and (v,), is a sequence of probability
measures in CP?! weakly converging to some probability vy with vo(ker Q) =
0, then (P,).v, converges weakly to Q.vp.

Proof. Let (K,;,), denote a basis of neighbourhoods of ker () such that we
have vy(0K,,) = 0 for all m. Given any continuous function ¢ : CP* ! — R,
and given ¢ > 0, fix m > 1 large enough so that 14(K,,) < ¢. Then fix
ng > m so that v,(K,,) < vo(K,) + ¢ < 2¢,

[ o[

for all n > ny. Then, | [(poP,)dv, — [(poQ) dyo‘ is bounded by

w| [ o[

+‘/ (gooQ)dyo‘ < 2¢ + 3esup ||
Km

(gaoQ)dVo‘ <e and sup (poPn—cpoQ‘ <e
K

C
m

[ ori—poqiin, (0 Q) duo +

+‘/ (¢ o Py) dun
Km

for all n > ny. This proves the lemma. O

6.2 Proof of Theorem 3

Having proved Proposition 3.1, at this point we only have to show that
for fi-almost every Z € Xr there exists a subsequence (n;); and a point
£(2) € {o} x CP*! such that

Am (inj)*m;cnj — 0¢(z) when j — oo. (15)

We begin by settling a special case, contained in the next lemma.

Let p be a periodic point of f, of period ¢ > 1, and z be a point in the
same cylinder [0; 7] of ¥ that contains p. Let p be the unique periodic point
in W, (p) and Z be the point of intersection between W} (p) and W} (z).
As before, denote 2, = P(f (%)) for n > 0. Note that % is in the cylinder
[0;7] for all & > 0. We assume that A9(p) has a simple eigenvalue with
largest norm; recall Definition 1.3. Take w; € 7 '(p) to be the eigenspace

corresponding to that largest eigenvalue, and let £(2) = ¢, ,(w1)-

Lemma 6.2. The sequence A% (Z4).ms,, converges to dgzy when k — co.
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A

Proof. Recall that ¢, = @55 = lim,_,, A9(2)"PA~9"(p). Using the rela-
tions A% (p)~! = A% (p) and A% ()t = A"9%(2), we find that

A (z)ms,, = (A (2)TATHG)) AT (D).

On the one hand, A~%(2) 'A% () converges to ¢,, when k — co. On the
other hand, A%(p).m;, converges to d,, when k& — oo. That is because
the eigenvalue corresponding to the eigenspace w; is strictly larger in norm
than all the others. Note also that m; , converges to m,, by Proposition 4.3,
and m,, gives zero weight to the sum @~ w; of all the other eigenspaces, by
Proposition 5.1. Tt follows that A% (Z4).ms,, converges to (¢p.)«0u, = ¢z
when k£ — oo, as stated in the lemma. O

e e e e
Tnj+qk Tn;

Figure 3: Proof of Theorem 3: case £(Z) not in ker Q)

Now we are going to propagate this behaviour to almost every point. For
fi-almost every # there exists a sequence (n;); such that f~"(z) converges
to zZ. That is because [ is ergodic, and so almost every orbit is dense in
supp i = Sr. See Figure 3. Since the space of quasi-projective transforma-
tions is compact, up to replacing (n;); by a subsequence we may suppose
that A™ (Z,,) converges to a quasi-projective map @ from 7~'(z) to 7~ (Zo).
Let k > 1 be fixed. By Proposition 3.1(a),

jli)rrolo A (Zn;) M, = jlggo A" (B3, ) AT (T4 qhe) M g (16)

By construction, 2, 4 converges to Zg when j — oo. Thus, Aqk(a?anqu)
k ~ . o, .
converges to A% (Zg) and, using Proposition 4.3, ms, ., converges to ms,,
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when 7 — oo. So,
k(A k(A .
AT (& 4qk) s My 4o — AT (Zqk)emz,,  when j — oo.

Now, A" (%,;) converges to Q. By Proposition 5.1, the subspace ker @ has

zero measure for A%(Zg),m;,, . Therefore, we may apply Lemma 6.1 to
conclude that

. PN kA k(A

]lggo A™ (l'nj)*Aq (xnj+qk)*mﬁnj+qk = Q. A (qu)*méqka (17)

for every k > 1. This shows that A" (&, ).ms,, converges to QA% (Z4).ms,,

when j — oo, for every k£ > 1 (in particular, the latter expression does not
depend on k).

Suppose, for the time being, that £(2) is in the domain CP% !\ ker @

)
of the quasi-projective map ). Denote £(2) = Q(£(2)). Lemma 6.2 implies
that

QA" (24k) sz, — Qug(z) = O¢z) When k — oo. (18)

Putting (16), (17), (18) together, we find that A" (xnj)*mwnj converges to
the Dirac measure d¢z) when j — oo. This proves (15) and Theorem 3 in
this case.

P Unjtqktitgm  Z Unjtqktl
—— 00— 00—
Tnj+qk L

Figure 4: Proof of Theorem 3: avoiding ker )

Next, we show that one can always reduce the proof to the previous
case. It is no restriction to assume that Z has been taken a homoclinic point
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associated to p, and they satisfy the conditions in Definition 1.3. Fix [ > 1
such that p = f!(2), as before. For each j > k, let § = §(j, k) be defined by

Frmm(g) € Wi (f 7™ (@) N Wik (f'(2)).

See Figure 4. The fact that ¢ depends on j and k£ will not be important in
the sequel, because the projections to the one-sided shift do not:

~

F7 @) e Wi (f4(2)) andso §; =i;, forall0<i<n;+qk. (19)

Denote o = w(k) the point such that f'(@) € Wg, (f%(2)) N Wx.(f4(2)).
As j — oo we have f " %(3) — f{() and so

frramakml=am gy M) for each fixed m (and k). (20)

Let £ and m be fixed. By construction, fl+qm(gjnj+qk+l+qm) = T, 4q for
every j. Hence, using (16) and Proposition 3.1(b),

n n;+qk
Jin AT e, = Jp AT (gt o
— n;+qk+l+gm
- -llm A ! (ynj+qk)*myn +qk+l+gm °

J—r0

We are going to prove that the third limit is indeed a Dirac measure. Recall
that §n; gkt — w as j — oo, by (20). Thus,

A

A"J+qk+l(ynj takt1) = A" (xnj)AQkH(gnﬂ"lk"‘l)

converges to Q=Qo A%+ (1) in the space of quasi-projective transforma-
tions, as 7 — oo. The key observation is

Lemma 6.3. Assuming k is large enough, () is not contained in ker Q.

Assuming this fact for a while, we can complete the proof of the theorem,
using the same argument as in the previous particular case, with n; and z
replaced by m; = n; + gk + 1 and w = P(®), respectively and ¢gm in the
role of gk. Indeed, using that Aqm(gnj gkt +qm)*mgnj takisqm COTVETEES t0
AT (Werm )« Mgy, a8 § — 00, we find that

Ami +qk+l+qm(

lim yn] +qk) yn jtak+i+qm = Q*Aqm (wqm)*qum

J—00
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for every m, which is the analogue of (17). By Lemma 6.2, the sequence
AT (Wam )« Migy,,, cONverges to dgpy when m — co. Hence, using Lemmas 6.1
and 6.3 and arguing as in (18),

: nj+qk+l+qm ( » R _ R
jlir{.loA ! (ynj+qk)*mynj+qk+l+qm - 66(:5)

where £(#) = Q.0¢(s) . This means that we are left to give the

Proof of Lemma 6.3. Recall that w = (k) converges to Z as k — oo and
f() is in the local stable manifold of £ 9%(2). On the one hand,

ker Q = AR (w) (ker Q) = A'(w) TA%(3,) ! (ker Q).
Notice that
A () (ker Q) = 61, p A (p) . p(ker Q).

Since the eigenvalues of A9(p) have distinct norms, A% (p) ¢, ,(ker Q) con-
verges when k£ — oo, and the limit coincides with some sum of eigenspaces
of A(p):

lim A% (p)~'¢, ,(ker Q) = @jcw;

k—o00

for some subset J C {1,...,d} with #J < d (the cardinal of J coincides with
the dimension of ker Q as a vector subspace). Moreover, A'(w) converges to
Al(z) and ¢;,, , converges to the identity as k — co, since Zg converges to
p. This proves that

ker @ — A'(2) " (@jesw;) as k — oo. (21)
On the other hand, using (12),
E() = Al (w) A (p)pwwr — AN(2) TA p) Y, as k — oo, (22)
Now we claim that
A(2) A (p)pewn ¢ A'(2)TH( ®jes wj)- (23)
Indeed, otherwise we would have
Al(p)qﬁp,zwl € Bjesw; €  Yp,w1 € Bjesw;

and this would contradict the second condition iI~1 Definition 1.3. Relations
(21), (22), (23) imply that £(w) is not in ker @ if k is large enough, as
claimed. ]
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Now the proof of Theorem 3 is complete.

Remark 6.4. Comparing Remark 3.5 and Theorem 3 we get 72 = i X {J¢(z) }-
In Section 8 we shall see that & is the direction of the Oseledets subspace
corresponding to the largest Lyapunov exponent of i and, consequently, is
uniquely defined almost everywhere. This proves that the (A, ¢)-invariant
measure is unique, if the cocycle is 1-typical.

Remark 6.5. From the expression () = Q(¢p,w1) we easily deduce that
the direction &(-) is invariant under the family of unstable holonomies ¢; ;.
Indeed, for every point Z’ in the local unstable manifold of &, we may choose
the same sequence (n;); as for £. Then @' = lim A" (%, ) coincides with

¢34 © Q, because both (Zy,); and (%7, ); converge to the point z.

7 Direction of strongest expansion

We shall see that & — £(Z) defines the direction of the Oseledets subspace
of the cocycle corresponding to the largest Lyapunov exponent. To prove
Theorem 1, we need to exhibit the hyperplane corresponding to the other
Lyapunov exponents. It is useful to introduce the adjoint cocycle of /Al, which
describes the action of A on linear forms and, thus, hyperplanes of C?.

7.1 The adjoint cocycle

For & € S let A, (&) : (C%)* — (C%)* be the adjoint operator of A(f~'(z)),
defined by

A S

(A (&)u)v = u(A(f_l(i))v) for each u € (C*)* and v € C*. (24)

For notational simplicity we fix some Riemannian metric - on C¢ and identify
the dual space (C?)* with C* through that metric. Then we may consider
A, : 3Xp — SL(d,C), and (24) becomes

~

A(@)u-v=u-A(f"(2))v for each u e C* and v € C%.

The adjoint cocycle of Ais the projective cocycle generated by A, over the
transformation f=! : Xy — Yp:

fg = (f_l)/i* : 2'[‘ X CPdil — iT X CIPdil
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Remark 7.1. The choice of the Riemannian metric is unimportant: different
metrics yield adjoint operators that are conjugate.

Lemma 7.2. 1. A, is dominated if and only iffi 1s dominated.

2. The stable/unstable holonomies of f;’; are adjoint to the unstable/stable
holonomies of f: 0y = (45:), and ¢35 = (d%;), -

3. A is 1-typical if and only if A, is 1-typical.

Proof. Fix a basis of C? orthogonal for the Riemannian metric chosen above.
Relative to this basis, the matrix of A, is the transposed of the matrix of
A. Hence, A is v-Hélder if and only if A, is. Moreover, the definition of
the adjoint implies ||A|| = ||A.|| and the same for their inverses. This gives
the second property in Definition 1.1, and so it proves the first claim in the
lemma.

The second claim is a consequence of the expression of the holonomies in
the proof of Proposition 1.2:

U 1 —ns\—1 f-nis\ _ 12 An(s\—1 An(z (S
oyt = lim A7(2)7 A7) = lim (A"(@)7A"(2)) = (6h),

Since the eigenvalues of A and A, are the same, the first condition in
Definition 1.3 coincides for A and for fl* As for the second condition, it
is easy to see that it is not affected if we replace the cocycle by another
conjugate to it. Indeed, one gets the same transformation 1) ;. So, in view
of Remark 7.1, we may suppose that the Riemannian metric is such that
eigenvectors of A at p form an orthogonal basis of C¢. By the previous
statement, the matrices M and M, of

*,8 *,U
Vps = 035005, and ;=350 85

in this basis are transposed. In particular, M and M, have the same algebraic
minors, and so the third claim in the lemma follows from Remark 1.4. 0

This lemma means that the previous theory applies equally to the adjoint
cocycle f: In this way we find a map &, : & — CP? ! invariant under f;
and, by Remark 6.5 under the corresponding unstable holonomies.

The next important result means that £(Z) is outside the kernel of the
linear form represented by &, (%):
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Lemma 7.3. &,(2) is not orthogonal to £(Z), for fi-almost every Z.

Proof. As in Section 4, let us consider projective coordinates on the fibers
such that A is constant on local stable manifolds of f . Since our Riemannian
metric is constant, in these coordinates fl;l is also constant on local stable
manifolds of f , which are the local unstable manifolds of f ~1. Consequently,
the unstable holonomies ¢3’; = id for any points & and Z in the same local

stable manifold of f . Remark 6.5 gives that &, is invariant under unstable
holonomies of A,. In view of what we just said, this means that its expression
in these coordinates is constant on every local stable manifold of f . In other
words, &,(%) depends only on P(%).

Now fix any x € ¥Xp. By the preceding comments, the hyperplane H,
orthogonal to £,(z) is the same for all £ € W (x). Using Remark 6.4,

ma(Hy) = [ Gee) (Ha) (@) = fa({& € Wi (o) :€(2) € L)

From Proposition 5.1, we have that m,(H,) = 0. It follows that

A({d € S £() € Hy)) = / dyu(x)jia ({2 € Wi (2) - £(2) € H,}) =0,

as claimed. O

Given (&,7) € S x CPY, let £(2) and &,(%) be as constructed before.
Observe that & and &, are invariant under the corresponding cocycles:

A#)E(2) = £(f(2)) and  A.(2)&.(2) = &(F71(2))

ji-almost everywhere. The first relation also gives that the orthogonal com-
plement ¢+ is invariant under the adjoint A,. Let

(@)y-=Vie- oV}

be the Oseledets decomposition, corresponding to the measure fi, of the re-
striction of A, to the subbundle &+ in decreasing order of the Lyapunov
exponents: Ay > -+ > A\, We also let A\; be the Lyapunov exponent of A,
along the direction of &,. Since [ is ergodic, the dimensions of the subspaces
are constant almost everywhere, and so are the Lyapunov exponents.
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Definition 7.4. Given a linear map L : C? — C¢ and a subspace V of C¢,
we denote by det(L, V) the determinant of L along V, defined as the quo-
tient of the volumes of the parallelograms determined by {Luv, ..., Lvs} and
{v1,...,vs}, respectively for any basis vy, ...,vs of V.

Denote V; = C&,(2) ® V2 and let s = 1+ dim V2 be the dimension of V.
For n > 1, define

det (A7 (), V)

A1) = — )
D= o @) 25)
Denoting A(-) = Al(-), we get that
AM(3) = A@) AF@) - - AF(E)) (26)

for all n > 1, because both &, and V' are A,-invariant.

Proposition 7.5. For ji-almost every & € Y and every n € CP*!,

lim A™(z) = 0.

n—oo

For the proof we need a few elementary facts from linear algebra:

7.2 Eccentricity of linear maps

Let L : C¢ — C? be a linear map. If there is a unique direction that is most
expanding for L, we define the eccentricity of L to be
[[Z(&)l
B(L) = 1251
1L ] &l
where &, is a norm 1 maximally expanding vector, and &, is the hyperplane
orthogonal to it. If the most expanding subspace has dimension larger than
1, we just set E(L) = 1.
Let C,(n) denote the cone of width « around a vector 7. We have
L(Cy(&)) C Cp(L(&,)) with tan 8 = tana/E(L). Moreover, these are the
most contracted cones: given any «, 3, and any vectors &, 7,

L(Caln)) C C5(6) = tanf > tana/E(L). (27)
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Lemma 7.6. Let N be any weakly compact family of probability measures on
CP% ! such that every v € N gives zero weight to all projective hyperplanes.
Let L, : C¢ — C¢ be a sequence of linear maps such that (Ly).v, converges
to a Dirac measure o, for some sequence v, in N.

Then E(L,) — oo asn — oo, and the image Ln&, n of the most expanding
direction &, of Ly, converges to &.

Proof. By the compactness of M and the space of projective hyperplanes,

there exists 0 > 0 such that .
V(H(s) < 5

for every v € N and any cone Hs of width § around a hyperplane H. Let
¢ € CP? ! and v, be as in the statement. For every € > 0
Vn (L, H(Ce(6))) = (Lp)svn(Ce(€)) = 1 asn — oo.

n

Hence, in particular, the v,-measure of the cone L '(C.(£)) is bigger than
1/2 if n > n(e). It follows that L *(C.(£)) is not contained in Hy, for any
hyperplane H. Another useful remark is that, given § > 0, there exists a > 0
such that any convex cone that is not contained in Hjs for any hyperplane H,
contains the cone C,(n) of width a around some vector 7.

As an application, we get that every cone L '(C.(£)), n > n(¢), contains
some Cy(Nne). Then L,(Cy(€)) C C:(§) and, in view of (27), this implies
E(L,) > tana/tane. When n — oo, we may take ¢ — 0, and then E(L,)
goes to co. The second statement in the lemma is a consequence. Given any
fixed width € > 0 we can find «,, — oo such that

Ln(Cay (&am)) C Ce(Ln(Ean))-

This implies that the (Ly,).v,-mass of the e-neighbourhood of L,&,, con-
verges to 1 as n — oo. Since the (L,).v, converge to d¢, by assumption, this
implies that L,&,  converges to &. O

7.3 Proof of Proposition 7.5

Recall that we identify (C?)* with C? through some fixed Riemannian metric.
Expansion and contraction are with respect to that metric.

Proof. For each n > 1 let §,(2) be the most expanding direction for the
map A”(z) or, equivalently, the image of the direction most expanded by
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Ar(f (7)) = A"™(#,). Observe that this is well-defined: using Lemma 7.6
with v, =mg, , L, = A™(f ™()), £ = &(Z) we find that the eccentricity

E, = BE(A}(2)) = B(A"(f ™" (%))
)
(4

nds to £(z) as n — oo.

goes to infinity as n — oo. Moreover, &,(Z) te
) is uniformly far from the

So, according to Lemma 7.3, the direction &,

orthogonal hyperplane &,(Z )L for all large n.
Let us consider any norm 1 vector n € V;. We split n = n, + (,, with

Nn € &u(2)+ and ¢, collinear to &,(2). The remark we just made ensures that

~ 1. -
7]l < € and - [JAL(@)E()] 2 FI147(@)Ea (2)]

for some constant C' > 0 independent of n. It follows that

i 147 (2)60(2)] C2 g (s
ldz @l < DDy < Can@e @),
Now we consider any basis {£.(2),7?%,...,n°} of V;, and decompose each

n* = n, + ¢ in the same way as before. Observe that the parallelogram
determined by the A”( )-i -images of the basis vectors does not change if we
replace A™(&)n' by A™(2)ni. Moreover, the volume of a parallelogram is
always bounded by the product of the norms of the corresponding edges. So,
the previous inequality gives

det(Af(i),Vi) < ol ||An(f) LD

and so A(£) < C**~YE!=s. The proposition follows, using Lemma 7.6. [

8 Proof of the main results

Now we are ready for the proof of Theorem 1. To turn Proposition 7.5 into
an exponential estimate, we use the following general statement from ergodic
theory; see for instance [26, Corollary 6.10].

Lemma 8.1. Let T : X — X be a measurable transformation preserving a
probability measure vin X, and ¢ : X = R be a v-integrable function such
that limy, 00 Y 3775 (@oT9) = —o00 at v-almost every point. Then [ edv <0.
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If v is ergodic for T, it follows that lim,,_,, Z?;Ol(go oT) = [pdv <0
at v-almost every point.

Proposition 8.2. For ji-almost every point

1
lim —log A™(%) < 0.

n—oo N
Proof. By (26),
1 1 n—1 N
—log A"(2) = — D “log A(fi(2)).
§=0
So, the claim follows from Proposition 7.5 and Lemma 8.1. O

As a direct consequence we get that A, is the largest Lyapunov exponent
of A,, and it has multiplicity 1:

Corollary 8.3. We have A1 > As.

Proof. On the one hand, lim, . 2 log||A7(2)&.(2)|| = Ai. On the other
hand, by Oseledets theorem [28],

1 A
lim —logdet(AZ (%), Vz) = A1 + (s — 1) Aq.

n—oo N,
It follows that ]
lim —log A™(%) < 0,

s—1n—ooon

)\Q_Alz

where we used (25) and Proposition 8.2. O

Replacing A by its inverse (121_1 is 1-typical if and only if A is), we get

that the smallest Lyapunov exponent of f; also has multiplicity 1. The proof
of Theorem 1 is complete.

Now the deduction of Theorem 2 is quite standard; see [20] or [19] where
this kind of argument was used before. The Lyapunov exponents of the
action A™* of A on the k:th external product A¥(C%) are just the sums

/\i1+"'+/\ik

of k£ distinct exponents of A. The assumption ensures that the previous
theory can be applied to Al for every 1 <14 < k. A simple induction argument
gives that the k£ largest exponents have multiplicity 1. A similar argument
follows for the k£ smallest ones, dealing with the inverse instead. The case
d = [k/2] implies that all the exponents have multiplicity 1, completing the
proof of the theorem.
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9 Extension to real-valued cocycles

The conclusions of Theorems 1 and 2 remain valid for SL(d, R)-cocycles. The
only point that needs an extra comment is the proof that typical cocycles
form an open and dense subset of all cocycles: a priori we can not ask
that all eigenvalues have distinct norms, due to the possibility of pairs of
complex conjugate eigenvalues. The way to bypass this is to show that, after
perturbation, we can always find a periodic point ¢ such that the eigenvalues
of the cocycle at ¢ are all real.

As before, f : 7 — Sy is the two-sided subshift of finite type associated
to an irreducible d x d matrix 7" with coefficients in {0,1}. We always consider
the C¥-norm in the space of C* maps A : 37 — SL(d,R). Here 0 <v <1,
the case v = 1 corresponding to Lipschitz cocycles. However, the arguments
that follow apply just the same if one replaces 3 by a hyperbolic basic set of
a diffeomorphism g (endowed with a Markov partition), and in that setting
we may consider any v € [0, +00].

Proposition 9.1. For every C¥-neighbourhood V of A there em'sts BeVy
and a periodic orbit q € S such that all the eigenvalues of Brerla (q) are real
and have distinct norms.

The proof of the proposition occupies the remainder of this section. For
simplicity of the presentation, we suppose that f has some fixed point p. The
general case follows along the same lines.

Up to an initial perturbation of the cocycle, we may assume from the start
that all the eigenvalues of A(p) have multiplicity 1 and distinct norms, except
for the existence of ¢ > 0 pairs of complex conjugate eigenvalues. This is our
formulation of the first condition in Definition 1.3 in the present setting. In
the sequel we suppose ¢ > 1, since for ¢ = 0 there is nothing to prove. Let

1 k
Eﬁ@...@Eﬁ

be the splitting of R? into eigenspaces of 1[1(15), ordered according to increas-
ing norm of the eigenvalues. The dimension of each Ezé is either 1 or 2,
corresponding to real and complex eigenvalues, respectively.

Let [0; 7] be the cylinder of ET that contains p. Fix some homoclinic point
Z= (-, 0y 001, 01,0, ,1,---) € [0;4] associated to p. As before,
let

VYpz = @550
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Corresponding to the second condition in Definition 1.3 we also assume that

5.:(ET) is linearly independent of E? for any sums ET = @ieIE; and B =
EBJ-EJEI% of eigenspaces such that dim ET4+dim E7 < d. This may be obtained
by an additional perturbation of the cocycle.

For every n let x,, be the periodic point of period [ + n defined by the
itinerary (i,4y,---,%-1,4,--- ,1), where the symbol i appears n + 1 times.
Then let K,, be the closure of the union of the orbits of z,, over all n > m.
Moreover, let K, the closure of the orbit of Z, that is, the union of the orbit
itself with the point p. Note that each K, is just the union of the orbits of
the z,,, m > n, with K.

Given an f—invariant set K C Y, an A-invariant decomposition

KxRi=Vl®---qpVF

is called dominated if the dimensions of each subspace V;' are independent of
the point £ € K, and there exist constants C > 0 and A < 1 such that

4@l _ oyl
@l =~ vl

foreveryn > 1,4 € K, 1 < i < k, and any non-zero vectors u € V!@---@V*
andv e Vitlg ... VE,

A dominated decomposition is necessarily continuous, that is, each V7 de-
pends continuously on the point & € K (assuming the cocycle is continuous).
Existence of dominated decomposition is equivalent to existence of invariant
cone fields over K. In particular, this is a robust property: if A admits a
dominated decomposition over an invariant set K then so does any cocycle B
in a C° neighbourhood of A, the subspaces in the decomposition of B having
the same dimensions and being uniformly close to the corresponding ones
in the decomposition of A. More information on the notion of dominated
decomposition may be found e.g. in [9].

Lemma 9.2. For every large enough n, the cocycle A admits a dominated
decomposition E* @ --- @ E* over the invariant set K,, coinciding with the
decomposition into eigenspaces at the point p.

Proof. First we construct a dominated decomposition over K,,. Then we
explain why this implies the conclusion for every large n.
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For each 1 <i < k let Fg = EI%@---@E}, and G% = EI’;@---@EE. Then
take i = F! N G, where
F}=¢5,F, and G}=¢.,G,.
Our second assumption above implies that Fi @ Git! = R? = F} '@ G, and
so dim B} = dim E}. Then extend E’ to the whole orbit of Z by iteration
under A. To prove that these E' define a dominated decomposition over K,

we are going to show that every E is continuous at p.
For this, it suffices to show that

an — F;  and an(é) — G, when n — +o0.

(2)
We do this for n — +00, the arguments for n — —oo being analogous. Con-
sider continuous coordinates as in Section 4, given by the stable holonomies
¢°, rendering the cocycle A constant along local stable manifolds. In these
coordinates ¢° = id and so
F}'n(é) = Fg for every n > [ and every j.

Taking j = ¢ we, immediately, get the claim for F’ Z Moreover, the fact
that Gi;r(li) is transverse to F} = F;v @ implies that Gj{:(lé) converges to G7.
Choosing j =7 — 1 we get the claim for G".

Clearly, every point of K, spends all but a finite number of iterates near
p. This, together with continuity of the E* and the assumption that the norms
of the eigenvalues of fl(ﬁ) are all distinct, implies that the decomposition we
have exhibited is dominated. This finishes the construction over K.

It follows that a dominated decomposition exists over every K, with large
enough n. That is because K, is contained in a small neighbourhood of K,
and dominated decompositions always extend to any invariant set in some
neighbourhood. This last fact is easily checked as follows. One considers
forward and backward invariant cone fields around the subspaces G* and F*,
respectively and extends these cone fields continuously to some neighbour-
hood V of K. Up to reducing V', these extensions are still invariant under
the dynamics, just by continuity, and they yield a dominated decomposition
over any invariant set contained in V. O

By robustness, every cocycle BinaC® neighbourhood U of A has a dom-
inated decomposition Eg D---P Eg over K,, for every large n (independent
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of B), depending continuously on B, and with dim E’. = dim E' for all i.
Let ¢ be smallest such the dimension of E* is equal to 2.

The case when A""(z,) reverses the orientation of Ef s easy, as we
shall see right after the statement of the next lemma. For the time being, we
suppose that fl”"(xn) preserves the orientation of Eﬁn Thence, the same
is true for every nearby cocycle B. Then we denote p(n, 3) the rotation
number associated to B"(z,,). Moreover, given a continuous arc B = {B,}
of cocycles close to A, we denote &(n, B) the oscillation of p(n, B;) over the
whole parametrization interval.

The main step in the proof of Proposition 9.1 is the following

Lemma 9.3. There exists a continuous arc A = {4, : t € [0,1]} of C”
cocycles in U with Ag = A and such that for every t > 0 there exists ny > 1
so that 5(n, {4 :s € [O,t]}) > 1, for every n > ny.

Let us explain how Proposition 9.1 follows from Lemma 9.3, after which
we shall prove the lemma.

Firstly, for every ¢ and every large n, the matrix A¥™"(z,,) has at most ¢
pairs of complex eigenvalues. Secondly, in the orientation preserving case we
may use Lemma 9.3 to conclude that there exists ¢ arbitrarily close to zero
and n > 1 for which the rotation number p(n, A;) is integer. This means that
Ak+"(acn) has some real eigenvector along the subspace Ef1 Observe that in
the orientation reversing case this conclusion comes for free. So, in general,
by an arbitrarily small perturbation close to =, and preserving Ef‘t, we can

obtain a cocycle A’ for which there are two real and distinct eigenvalues
along that subspace. Thus, (A’)"*"(z,) has at most ¢ — 1 pairs of complex
eigenvalues.

Repeating this procedure, with p’ = z, and A’ in the place of p and
fl, respectively in not more than ¢ steps we find a perlodlc point ¢ and a
continuous cocycle B, arbitrarily close to the initial p and A, such that all
the eigenvalues of B over the orbit of ¢ are real. This concludes the proof of
Proposition 9.1.

Finally, we prove Lemma 9.3: The arguments are quite simple, and so we
focus on presenting the main ideas in a transparent way, rather than giving
complete details.

Proof. We begin by fixing, once and for all, a basis of R? coherent with the
decomposition E} @ --@ E¥: every vector in the basis is in some Ef, and the
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matrix of A(p) restricted to each 2-dimensional eigenspace E}, is a rotation
(of angle p;), relative to this basis. We always consider the (constant) system
of coordinates on the fibers {#} x R? defined by this basis. Given any 6, we
define Ry to be the linear map given by the rotation of angle 6 along Eﬁ, and
by the identity along all the other Ej. We choose

~

Ai(#) = Ry - A(2), fort € [0,1],

where ¢ > 0 is fixed small enough so that all these cocycles be in U. Reducing
¢ > 0 if necessary, we may find » > 0 small enough so that every Efat is a

graph over EIZ; restricted to the r-neighbourhood of p. We identify Efit with

Ef; on that neighbourhood, via projection parallel to the other Efo Moreover,
we write

Aé—kn (xn) ‘ Ef;lt =C¢pn - OQgnl - Bt,n

where the a;, ; correspond to iterates inside the r-neighbourhood of p, and
Bn encompasses the iterates outside that neighbourhood Since there are
finitely many of the latter, 3;, converges uniformly to some f;, as n — oo.
Thus, in order to obtain the conclusion of the lemma, it suffices to show that
the variation of the rotation number of the matrix oy, - - - @5 5,1 OVer every
interval [0,t] goes to infinity when n — oo. For this we observe that, by
the definition of /Alt, the ay,,; are uniformly close to the rotation of angle
te + pe, if the radius r is chosen small enough. Since the a,; preserve the
orientation, all their contributions to the rotation number roughly add up,
yielding the claim. O

Acknowledgments: We are most grateful to Philippe Thieullen for his
careful reading of the paper and useful comments, as well as for pointing out
a gap in the original proof of Proposition 4.2.
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