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Abstract. For generic families of diffeomorphisms in arbitrary dimension unfolding a
homoclinic tangency associated to a hyperbolic basic set, we prove that unifoprm hyper-
bolicity prevails in parameter space if and only if the Hausdorff dimension of the basic
set is less than 1.

Tangences homoclines et invariants fractaux en dimension arbitraire

Resumé. Pour des familles génériques de difféomorphismes en dimension quelconque
qui developent une tangence homocline associé a un ensemble basique hyperbolique, nous
montrons que les dynamiques uniformément hyperboliques sont prévalentes dans l’espace
des parametres si et seulement si la dimension de Hausdorff de l’ensemble basique est plus
petite que 1.

Version française abrégée:

Les résultats sur les tangences homoclines des difféomorphismes des surfaces, obtenus dans
le courant des trois dernières décennies par Newhouse, Palis, Takens, Yoccoz et Moreira
dévoilèrent une relation profonde entre des invariants fractaux d’ensembles hyperboliques
et les comportements dynamiques typiques, dans une famille paramétrée, après la bifur-
cation homocline. Voir [5, 6, 9, 3] et [7, chapitre 7] pour un panorama de la théorie.

Voici, en quelques mots, comment se manifeste cette relation : si la dimension de
Hausdorff de l’ensemble hyperbolique associé à la tangence est plus petite que 1, les
dynamiques hyperboliques sont prédominantes (densité de Lebesgue totale) dans l’espace
des paramètres près de la tangence; si la dimension de Hausdorff est plus grande que 1,
l’hyperbolicité n’est pas prédominante dans l’espace des paramètres, par contre l’union
de l’hyperbolicité et des tangences persistantes l’est.

L’extension de ces résultats aux dimensions supérieures présente des difficultés im-
portantes, liées au manque de régularité des feuilletages invariants des ensembles hyper-
boliques. Par example, on ne sait même pas si la dimension de Hausdorff locale est bien

∗Work partially supported by Pronex-Dynamical Systems, CNPq 001/2000, and Faperj.

1



définie pour les ensembles hyperboliques dans les variétés de dimension plus grande que
2. Une partie de ces difficultés fut résolue par Palis et Viana [8], à l’aide d’une notion de
différentiabilité à la Whitney, dans leur généralisation en dimension arbitraire du théorème
de Newhouse [4] sur la coexistence d’une infinité de puits.

Le but de ce travail est de démontrer que, pourtant, le paradigme

l’hyperbolicité est prédominante ⇔ la dimension de Hausdorff est plus petite que 1

peut être étendu aux bifurcations homoclines en dimension arbitraire.

Plus précisément, nous considérons des familles à un paramètre de difféomorphismes
ϕµ : Mn → Mn, µ ∈ (−1, 1) de classe C2 qui développent une tangence homocline associée
à un point périodique p0 inclus dans un fer-à-cheval Λ0 de ϕ0. Nous supposons que ϕµ
est hyperbolique (Axiome A) pour µ < 0, ce qui implique que les valeurs propres les plus
faibles, contractante et dilatante, de p0 sont réelles.

Soient ds et du les dimensions de Hausdorff de W s(p0) ∩ Λ0 et W u(p0) ∩ Λ0, respec-
tivement. Nous montrons que, pour un sous-ensemble résiduel de difféomorphismes ϕ0,
les dimensions ds et du dépendent continûment de ϕ0 et on a :

i) Si ds+du < 1 alors H = {µ > 0 | ϕµ est hyperbolique} a densité de Lebesgue totale
en µ = 0.

ii) Si ds+du > 1 alors Ts = {µ > 0 | ϕµ présente des tangences homoclines persistantes
associées à la continuation hyperbolique Λµ de Λ0} est un ensemble ouvert avec
densité de Lebesgue positive en µ = 0.

La demonstration est basée sur une extension des techniques introduites par Newhouse-
Palis [5], Palis-Takens [6] et Moreira-Yoccoz [2, 3] pour montrer les résultats correspon-
dants en dimension 2, et par Palis-Viana [8] pour étudier les bifurcations homoclines de
codimension 1 en dimension arbitraire.

Un des lemmes les plus importants dans ce travail est la construction (peut-être après
une perturbation de ϕ0) des feuilletages stable-fort et instable-fort de codimension 1 pour
des sous-ensembles hyperboliques de Λ0 avec presque les mêmes dimensions ds et du.
Ces feuilletages sont utilisées pour réduire l’étude des géometries des feuilletages stable et
instable près de la tangence homocline initiale a une situation proche du cas bidimensionel.

Il est intéressant de remarquer que la dimension critique 1 est independante de la
dimension n de l’espace ambiant. Donc, dans un certain sens, le deuxième cas devient
relativement plus fréquent quand n crôıt.

1 Introduction

Over the last three decades, a number of results have been proved by Newhouse, Palis,
Takens, Yoccoz and Moreira, unveiling a deep connection between fractal invariants of hy-
perbolic sets and the typical dynamics observed in the unfolding of a homoclinic tangency
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by a parametrized family of surface diffeomorphisms. See [5, 6, 9, 3] and [7, chapter 7]
for an overview.

In brief terms, if the Hausdorff dimension of the hyperbolic set involved in the tangency
is less than 1, then hyperbolicity prevails in parameter space (full Lebesgue density at
the tangency parameter); if the Hausdorff dimension is larger than 1 then hyperbolicity
alone is not prevalent, but the union of hyperbolicity and persistent tangencies is.

The extension of these results to higher dimension involves considerable difficulties,
related to the lack of smoothness of invariant foliations of hyperbolic sets of codimension
larger than 1. For instance, it is not even known whether the local Hausdorff dimension
is well-defined for hyperbolic sets in high dimension manifolds. Part of these difficulties
could be handled by Palis and Viana [8], by means of a notion of differentiability à la
Whitney, in their generalization to arbitrary dimension of Newhouse’s theorem [4] on
coexistence of infinitely many sinks.

Our goal in this work is to prove that, nevertheless, the paradigm

hyperbolicity prevails ⇔ the Hausdoff dimension is smaller than 1

does extend to homoclinic bifurcations in any dimension.

More precisely we consider 1-parameter families of diffeomorphisms ϕµ : Mn → Mn,
µ ∈ (−1, 1) of class C2, unfolding a generic homoclinic tangency associated to a periodic
point p0 contained in a horseshoe Λ0 of ϕ0. We suppose that ϕµ is hyperbolic (Axiom A)
for µ < 0, which implies that the weakest contracting and weakest expanding eigenvalues
of p0 are real numbers.

Let ds and du be the Hausdorff dimension of W s(p0)∩Λ0 and W u(p0)∩Λ0, respectively.
We show that, for a residual subset of diffeomorphisms, ds and du are continuous with
respect to ϕ0, and we have:

i) If ds + du < 1 then H = {µ > 0 | ϕµ is hyperbolic} has full Lebesgue density at
µ = 0.

ii) If ds + du > 1 then Ts = {µ > 0 | ϕµ presents persistent homoclinic tangencies
associated to the hyperbolic continuation Λµ of Λ0} is an open set with positive
lower density at µ = 0.

The proof is based on an extension of the techniques introduced by Newhouse-Palis
[5], Palis-Takens [6], and Moreira-Yoccoz [2, 3] to prove the corresponding results in
dimension 2, and by Palis-Viana [8] to investigate homoclinic bifurcations of codimension
one in arbitrary dimension.

One of our main lemmas is the construction (perhaps after perturbation of ϕ0) of
strong-stable and strong-unstable foliations of codimension 1 for hyperbolic subsets of Λ0

with almost the same dimensions ds and du. These foliations are used to (essentially)
reduce the study of the geometries of the stable and unstable foliations near the initial
homoclinic tangency to the bidimensional case.

It is interesting to note that the separating dimension 1 is independent of the dimension
n of the ambient space. Thus, in some sense, the second case above becomes more frequent
when n increases.

3



2 Geometry of horseshoes : the upper dimension

Let Λ be a horseshoe for a diffeomorphism ϕ : M →M , and P be some Markov partition
of Λ. We call vertical n-cylinder any subset of Λ defined by prescribing the first n symbols
in the backward itinerary with respect to P . Let Vn be the set of vertical n-cylinders.
There is a dual notion of horizontal n-cylinder , where one considers forward itinerary.

Fix ε > 0 small. For each V ∈ Vn let Ds(V ) = sup{diam(W s
ε (x) ∩ V ) | x ∈ Λ ∩ V }.

We define λ̃n by the relation ∑

V ∈Vn

Ds(V )
eλn = 1.

and we let the upper stable dimension be given by ds(Λ) = limn→∞ λ̃n. There is a dual
notion of upper unstable dimension du(Λ), dealing with W u

ε instead of W s
ε .

It is not difficult to show that the limit always exists, and ds is an upper-semicontinuous
function of ϕ. Moreover,

HD(W s
ε (x) ∩ Λ) ≤ ds(Λ) for each x ∈ Λ.

The following result shows that the equality holds in most cases where ds < 1:

Theorem 1. Suppose ds(Λ) < 1. Then there is a residual set of diffeomorphisms R in a
neghbourhood of ϕ such that, for all ψ ∈ R and all x ∈ Λψ,

HD(Λψ ∩W s
ε (x)) = ds(Λψ).

In addition, R may be taken so that its elements are points of continuity of ds.

The idea of the proof is to consider k-parameter families of diffeomorphisms ψ, for
some large k, and to show that for each V ∈ Vn we have diam(W s

ε (x) ∩ V ) ≥ Ds(V )1−δ

for every x ∈ Λψ, with large probability in parameter space. This gives that, for most
parameters, most of the vertical cylinders have subexponential variation of their horizontal
diameters. Using this fact, we obtain lower estimates for HD(W s

ε (x)∩Λψ) that imply the
conclusion of the theorem.

Now we can state our

Main Result. There are open sets U and V of families of diffeomorphisms unfolding a
homoclinic tangency as in the Introduction, such that U ∪ V is dense and

i) For families in U we have ds(Λ) + du(Λ) < 1 and limδ→0m(H ∩ [0, δ])/δ = 1, where
H = {µ | ϕµ is hyperbolic }.

ii) For families in V we have ds(Λ) + dv(Λ) > 1 and lim infδ→0m (Ts ∩ [0, δ])/δ > 0,
where Ts = {µ | ϕµ presents a persistent homoclinic tangency associated to Λµ}.

In the next sections we indicate main ideas of the proof of this theorem.
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3 Prevalence of hyperbolicity

In this section we outline the proof of the first part of the main theorem: hyperbolicity
prevails in parameter space when the sum of the stable and unstable upper dimensions is
less than 1. The first main step is a reduction to the case when the horseshoe Λ does not
intersect the strong-stable manifold, nor the strong-unstable manifold of the point p.

Theorem 2. Assume ds(Λ) < 1 (respectively, du(Λ) < 1). For an open and dense subset
of maps in some neighborhood of ϕ we have

Λ ∩W ss(p) = {p} (respectively, Λ ∩W uu(p) = {p}).

By continuity, ds(Λψ) < 1 for any ψ in a whole neigborhood of ϕ. The density
statement in the theorem is proved by deformation. We embed ψ in a one-parameter
family of diffeomorphisms ψν such that Λν ∩ W s(pψν

) moves with respect to W ss(pψν
)

when ν varies. The fact that the upper Hausdorff dimension is less than 1 ensures that
Λψν

∩W s(pψν
) intersects W ss(pψν

) only for a zero Lebesgue measure set of parameters ν.
This implies density, and openness is clear from compactness of Λψν

and of a fundamental
domain of W ss(pψν

).
Theorem 2 has the important geometric consequence that Λ ∩W s(p) is contained in

a cuspidal region around the weak-stable direction of p. Let Ks be the projection of
Λ ∩W s(p) to this weak-stable direction along the strong-stable foliation of p. Then, for
any δ > 0 there exists ε > 0 such that each x ∈ Λ ∩W s(p) in the ε-neighborhood of p is
within distance εδ from some y ∈ Ks. We say that Λ ∩W s(p) is well-represented by Ks

near p.

Σ

W ss(p)

W u(p)

p

Then a similar fact is true replacing W s(p) by any other cross-section Σ to the unstable
direction at any q ∈ W u(p): the intersection W u(p) ∩ Σ is well-represented by Ks near
q. Using also smoothness of the unstable leaves, together with Hölder continuity of their
tangent bundle, we conclude that the intersection of W u(Λ) with a neighborhood of q is
well-represented by the product of Ks by TqW

u(p) near q.
We consider q to be the point of homoclinic tangency. The previous paragraph, to-

gether with a dual statement for W s(Λ), mean that the stable and unstable foliations of
Λ are well-represented by affine models

Ks × TqW
u(p) and Ku × TqW

s(p)
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near q. By continuity of the invariant foliations this remains true when the tangency is
unfolded along a one-parameter family ϕµ: if µ is close to zero the W s(Λµ) and W u(Λµ)
are well-represented by translates

[Ks × TqW
u(p)] + µv1 and [Ku × TqW

s(p)] + µv2

for some vectors v1, v2. So, along the lines of [6] and [10], to ensure that the two foliations
are transverse and, in fact, the angles at their intersection are bounded away from zero
for most parameters, it suffices to prove a corresponding fact for these affine models:

Lemma 3. Let K1, K2 be subsets of R
+ with sum of limit capacities c(K1) + c(K2) < 1.

Let V1 and V2 be subspaces of R
n with dim V1 = u − 1, dim V2 = s − 1, and u + s = n,

and w1 6∈ V1 and w2 6∈ V2 be vectors such that the closed half-subspaces R
+w1 ⊕ V1 and

R
+w2 ⊕ V2 intersect at the origin. Then most translates of K1w1 ⊕ V1 and K2w2 ⊕ V2 do

not intersect: for any vectors v1, and v2 of R
n in general position, and for any δ > 0

d(K1w1 ⊕ V1 + µv1, K2w2 ⊕ V2 + µv2) > 3εδ

for a fraction of parameters in [−ε, ε] that goes to 1 when ε→ 0.

4 Global strong-stable and strong-unstable foliations

In order to prove the second part of our main result, we consider compact subsets of
our basic set that are invariant by some iterate of the dynamics at the first bifurcation
parameter and have good geometric properties (perhaps after a small perturbation of
the family). More precisely, in case ii) of the theorem we prove that, generically, there
are disjoint subsets Λ1 and Λ2 of Λ, invariant by some iterate ϕn0

0 , with the following
properties:

a) Λ1 has a globally defined strong-stable foliation, invariant under ϕn0

0 .

b) Λ2 has a globally defined strong-unstable foliation, invariant under ϕn0

0 .

c) ds(Λ1) < 1, du(Λ2) < 1, and ds(Λ1) + du(Λ2) > 1

d) For each p1 ∈ Λ1 and p2 ∈ Λ2, the projections πss | (Λ1∩W
s(p1)) along strong-stable

leaves and πuu | (Λ2 ∩W
u(p2)) are injective and have intrinsically C1+ε inverses, in

the sense of [8].

e) Either Λ1 contracts area in the weak (bidimensional) direction or Λ2 expands area
in that weak direction.

The main and most delicate points of the above statement are items a) and b). Let
us give some ideas of their proof.

First, we show that, perhaps after a small perturbation, Λ has a periodic point whose
weakest, contracting and expanding, eigenvalues are real. Next, we use the existence of
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this periodic point to show that a sizable proportion of the vertical (and of the horizontal)
n-cylinders in an advanced stage n≫ 1 of the construction of Λ are exponentially squeezed
along the corresponding direction.

Finally, we consider families of perturbations with a large number of parameters, whose
effect is to rotate the rectangles of a Markov partition of Λ with enough independence, in
order to show that, with large probability, there are invariant subsets of Λ with almost the
same stable and unstable upper dimensions as Λ, and admitting invariant strong-stable
(respectively, strong-unstable) cone fields.

5 Positive density of persistent tangencies

Conditions a) to d) of the previous section imply that the projection of Λ1∩W
s(p1) onto a

weak-stable (1-dimensional) manifold, along the strong-stable foliation, is a regular C1+ε

Cantor set Ks, whose conjugation class does not depend on p1 ∈ Λ1 nor on the choice of
the weak-stable leaf. The same holds for πuu(Λ2 ∩W

u(p2)) = Ku.
We adapt arguments of [1] to show the next lemma. It is assumed that the eigenvalues

of ϕ at the point p satisfy a generic non-resonance condition.

Lemma 4. If there are λ > 0 and t ∈ R such that Ks intersects λKu + t stably, then
(ϕµ)µ persistently exhibits positive density of stable tangencies at µ = 0.

In order to get the stable intersection between Ks and λKu + t, we first prove that
condition e) implies that either Ks or Ku is a C2-regular Cantor set on the central leaf.
This is important to show that, generically, Ks and Ku satisfy the Scale Recurrence
Lemma, the main technical tool of [2, 3]. Afterwards, we consider again a family with
a large number of parameters of local perturbations of the diffeomorphism ϕ0 and show
that for most parameters there are λ and t such that Ks stably intersects λKu + t. This
final step is adapted from the perturbation arguments of [2, 3]. This allows us to to use
the previous lemma and conclude the proof of part ii) of the main theorem.
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[2] Moreira C. G., Yoccoz J.-C., Stable intersections of regular Cantor sets with
large Hausdorff dimensions, Annals of Math (to appear).

[3] Moreira C. G., Yoccoz J.-C., Tangences homoclines stables pour des ensembles
hyperboliques de grande dimension fractale, in preparation.

[4] Newhouse S., 1979,, The abundance of wild hyperbolic sets and nonsmooth stable
sets for diffeomorphisms, Publ. Math. I.H.E.S., 50, pp. 101–151.

7



[5] Newhouse S., Palis J., 1976, Cycles and bifurcation theory, Astérisque, 31, pp.
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