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Besides its philosophical implications on the ideas
of determinism and (un)predictability of phenomena
in Nature, E. Lorenz’ famous article Deterministic
nonperiodic flow [17], published nearly four decades
ago in the Journal of Atmospheric Sciences, raised
a number of mathematical questions that are among
the leitmotivs for the extraordinary development the
field of Dynamical Systems has been going through.
This work is about those and related questions, and
some remarkable recent results answering them. The
first part is a general overview, mostly in chronologi-
cal order. The four remaining sections contain more
detailed expositions of some key topics.

Modeling the weather. Lorenz, a meteorologist
at the MIT, was interested in the foundations of long-
range weather forecast. With the advent of com-
puters, it had become popular to try to predict the
weather by numerical analysis of equations governing
the atmosphere’s evolution. The results were, never-
theless, rather poor. A statistical approach looked
promising, but Lorenz was convinced that statistical
methods in use at the time, specially prediction by
linear regression, were essentially flawed because the
evolution equations are very far from being linear.
To test his ideas, he decided to compare different
methods applied to some simplified non-linear model
for the weather. The size of the model (number and
complexity of the equations) was a critical issue be-
cause of the limited computing power available in
those days 1. After experimenting with several ex-
amples, Lorenz learned from B. Saltzmann of recent
work of his [35] concerning thermal fluid convection,

Torenz’ computer, a Royal McBee LGP-30, had 16Kb in-
ternal memory and could do 60 multiplications per second.
Numerical integration of a system of a dozen differential equa-
tions required about a second per integration step.

itself a crucial element of the weather. A slight sim-
plification

& =—ox+oy o=10
y=rr—Yy—T2 r=28 (1)
z=xy — bz b=28/3

of a system of equations studied by Saltzmann proved
to be an ideal test model. I’ll outline later how Saltz-
mann arrived at these equations, and why he picked
these particular values of the parameters o, r, b.

The key episode is recalled by Lorenz in [18]. At
some stage during a computation he decided to take
a closer look at a particular solution. For this, he
restarted the integration using some intermediate
value printed out by the computer as a new initial
condition. To his surprise, the new calculation di-
verged gradually from the first one, to yield totally
different results in about four “weather days” !

Lorenz even considered the possibility of hardware
failure before he understood what was going on. To
speed things up, he had instructed the computer pro-
gram to print only three decimal digits, although the
computations were carried out to six digits. So, the
new initial condition entered into the program didn’t
quite match the value generated in the first integra-
tion. The small initial difference was augmented at
each integration step, causing the two solutions to
look completely different after a while. This phe-
nomenon, first discovered in a somewhat more com-
plicated system of equations, was reproduced in (1).

The consequences were far-reaching: assuming the
weather does behave like these models, then long-
range weather prediction is impossible: the unavoid-
able errors in determining the present state are am-
plified as time goes by, rendering the values obtained
by numerical integration meaningless within a fairly
short period of time.



Sensitivity and unpredictability. This observa-
tion was certainly not new. Almost a century before,
J. C. Maxwell [22], one of the founders of the kinetic
theory of gases, had warned that the basic postu-
late of Determinism the same causes always yield the
same effects should not be confused with a presump-
tion that similar causes yield similar effects, indeed
there are cases in Physics where small initial varia-
tions may lead to a big difference in the final state?.
A similar point was stressed early in the twentieth
century by H. Poincaré [30], including the very set-
ting of weather prediction:

Why have meteorologists such difficulty in predict-
ing the weather with any certainty ¢ Why is it that
showers and even storms seem to come by chance,
so that many people think it is quite natural to pray
for them, though they would consider it ridiculous to
ask for an eclipse by prayer ¢ [ ... | a tenth of a
degree more or less at any given point, and the cy-
clone will burst here and not there, and extend its
ravages over districts that it would otherwise have
spared. If they had been aware of this tenth of a de-
gree, they could have known it beforehand, but the
observations were neither sufficiently comprehensive
nor sufficiently precise, and that is the reason why it
all seems due to the intervention of chance.

On the other hand, gas environments and, partic-
ularly, the Earth’s atmosphere, are very complicated
systems, involving various types of interactions be-
tween a huge number of particles. Somehow, it is
not surprising that their evolution be hard to predict.
What was most striking about Lorenz’s observations
was the very simplicity of equations (1), combined
with their arising in a natural way from a specific
phenomenon like convection. That the solutions of
such a simple set of equations, originating from a
concrete important problem, could be sensitive with
respect to the initial conditions, strongly suggested
that sensitivity is the rule in Nature rather than a
particular feature of complicated systems.

2Even before, the same idea appeared in E. A. Poe’s The
mystery of Marie Roget, in a context of crime investigations...
So much for priorities on this matter.

Strange attractors. A few years later, in another
audacious paper [33], D. Ruelle and F. Takens were
questioning the mathematical interpretation of tur-
bulent fluid motion. It had been suggested by L.
Landau and E. Lifshitz [16], and by E. Hopf before
them, that turbulence corresponds to quasi-periodic
motions inside tori with very large dimension (large
number of incommensurable frequencies) contained
in the phase-space. However, Ruelle and Takens
showed that such quasi-periodic tori are rare (non-
generic) in energy dissipative systems, like viscous
liquids. Instead, they sustained, turbulence should
be interpreted as the presence of some strange at-
tractor.

An attractor is a bounded region in phase-space,
invariant under time evolution, such that the forward
trajectories of most (positive probability) or, even,
all nearby points converge to it. Ruelle and Takens
did not really try to define what makes an attractor
strange. Eventually, the notion came to mean that
trajectories converging to the attractor are sensitive
with respect to the initial conditions.

Figure 1: Lorenz strange attractor

Lorenz’ system (1) provides a striking example of a
strange attractor, and several others have been found
in various models for experimental phenomena as well
as in theoretical studies. However, not many exam-
ples were available at the time [33] was written. Still
unaware of the work of Lorenz, which came slowly to



the attention of the mathematical community, Ruelle
and Takens could only mention S. Smale’s hyperbolic
solenoids [38] which, although very important from a
conceptual point of view, had no direct physical mo-
tivation.

Hyperbolic systems. Throughout the 60’s, Smale
was much interested in the concept of structurally
stable dynamical system, introduced by A. Andronov
and L. Pontryagin in [2]. The reader should be
warned that the word stability is used in Dynami-
cal Systems in two very different senses. One refers
to trajectories of a system: a trajectory is stable (or
attracting) if nearby ones get closer and closer to it
as time increases. Another applies to systems as a
whole: it means that the global dynamical behav-
ior is not much affected if the laws of evolution are
slightly modified 3. Structural stability belongs to the
second kind: basically, a system is structurally stable
if small modifications of it leave the whole orbit struc-
ture unchanged, up to a continuous global change of
coordinates.

Figure 2: Hyperbolicity near a regular trajectory

In an insightful attempt to identify what the known
stable systems had in common, Smale introduced the
geometric notion of hyperbolic dynamical system. 1
will give a precise definition of hyperbolicity later, for
now let me just refer to Figure 2, that describes its
basic flavor: existence, at relevant points = in phase-
space, of a pair of sub-manifolds that intersect trans-
versely along the trajectory of z, such that points

3For instance, by altering the values of parameters appear-
ing in the evolution equations.

in one of them (the horizontal “plane”) are forward
asymptotic to x, whereas points in the other sub-
manifold (the vertical “plane”) are backward asymp-
totic to x. Most remarkably, hyperbolicity proved to
be the crucial ingredient for stability: the hyperbolic
systems are, essentially, the structurally stable ones.
Moreover, a beautiful and rather complete theory of
these systems was developed in the sixties and the
seventies: hyperbolic systems and their attractors are
nowadays well-understood, both from the geometric
and the ergodic point of view. The reader may find
precise statements and references to a number of au-
thors, e.g., in the books [6, 28, 36]. Yet, not every
system can be approximated by a hyperbolic one...

The flow described by equations (1) is not hyper-
bolic, nor structurally stable, so it doesn’t fit into this
theory. On the other hand, its dynamical behavior
seems very robust. For instance: Figure 1, which rep-
resents a solution of (1) integrated over a long period
of time 4, would have looked pretty much the same if
one had taken slightly different values for the param-
eters o, r, b. How can this be, if these systems are
instable (and sensitive with respect to initial data!) ?

It was, probably, a fortunate thing that Smale and
his students and colleagues did not know about this
phenomenon at the time they were setting the foun-
dations of the theory of hyperbolic systems, it might
have convinced them that they were off in a wrong
direction. In fact, a satisfactory theory of robust
strange attractors of flows would come to existence
only recently, building on several important advances
obtained in the meantime. But I’'m moving ahead of
myself!

Lorenz-like flows. For now, let us go back to the
mid-seventies, when the work of Lorenz was finally
becoming widely known to dynamicists and, in fact,
attracting a lot of attention. So much so, that by the
end of that decade C. Sparrow could write a whole
book [39] about the dynamics of equations (1) over
different parameter ranges. Understanding and prov-
ing the observations of Lorenz in a rigorous fashion
turned out to be no easy task, though.

4An initial stretch of the solution is discarded, so that the
part that is plotted is already close to the strange attractor.



A very fruitful approach was undertaken, indepen-
dently, by V. Afraimovich, V. Bykov, L. Shil'nikov
[1], and by J. Guckenheimer, R. Williams [8, 44].
Based on the behavior observed in (1), they exhib-
ited a list of geometric properties such that any flow
satisfying these properties must contain o strange at-
tractor, with orbits converging to it being sensitive
with respect to initial conditions. Most important for
the general theory, they proved that such flows do
exist in any manifold with dimension 3. These exam-
ples came to be known as geometric Lorenz models.

The strange attractor has a complicated geometric
structure like the “butterfly” in Figure 1 5. Sensitiv-
ity corresponds to the fact that trajectories starting
at two nearby states, typically end up going around
different “wings” of the butterfly. There are orbits
inside the strange attractor that are dense in it. This
means that the attractor is dynamically indecompos-
able (or transitive): it can not be split into smaller
pieces closed and invariant under the flow. Another
very important feature of these models is that the
attractor contains an equilibrium point.

Now, one might expect that small modifications
of the flow could cause such a complicated behavior
to collapse. For instance, the attractor might break
down into pieces displaying various kinds of behav-
ior, or the different types of trajectories (regular ones
and equilibria) might be set apart, if one changes the
system only slightly. Surprisingly, this is not so: any
flow close enough to one of these also has an attrac-
tor containing an equilibrium point and exhibiting all
the properties I described before, including sensitiv-
ity and dynamical indecomposability.

A theory of robust strange attractors. AsI'll
explain later, the presence of equilibria accumulated
by regular orbits of the flow implies that these sys-
tems can not be hyperbolic. On the other hand,
they can not be disregarded as a pathology since,
as we have just seen, this kind of behavior is ro-
bust. Indeed, these and other situations, often mo-
tivated by problems in the Natural Sciences, empha-
sized the need to enlarge the scope of hyperbolicity

5The figure was produced by numerical integration of the
original equations (1).

into a global theory of Dynamical Systems.

Profiting from the success in the study of specific
classes of systems like the geometric Lorenz flows or
the Hénon maps (M. Benedicks and L. Carleson [3],
after pioneer work of M. Jakobson [14]), as well as
from fundamental advances like the theory of bifur-
cations and Pesin’s non-uniform hyperbolicity [29], a
new point of view has been emerging on how such a
global theory could be developed. In this direction,
a comprehensive program was proposed a few years
ago by J. Palis, built on the following core conjecture:
every smooth dynamical system (diffeornorphism or
flow) on a compact manifold can be approzimated by
another that has only finitely many attractors, either
periodic or strange. 1 refer the reader to [27] for a
detailed exposition.

In the context of flows, decisive progress has been
obtained recently by C. Morales, M. J. Pacifico, E.
Pujals, [25, 26], whose results provide a unified frame-
work for robust strange attractors in dimension 3.
While robust attractors without equilibria must be
hyperbolic [11], they prove that any robust attractor
that contains some equilibrium point is Lorenz-like: it
shares all the fundamental properties of the geomet-
ric Lorenz models. A key ingredient is a weaker form
of hyperbolicity, that Morales, Pacifico, Pujals call
singular hyperbolicity. They prove that any robust
attractor containing an equilibrium point is singu-
lar hyperbolic [26] ¢. This is a key step leading to
a rather complete geometric and ergodic theory, ap-
plying to arbitrary robust attractors of 3-dimensional
flows. More on this will come later.

Back to the original equations. While they were
catalysing such fundamental developments in Dy-
namical Systems, equations (1) themselves kept re-
sisting all attempts at proving that they do exhibit a
sensitive attractor.

On the one hand, no mathematical tools could be
devised to solve such a global problem for specific
equations like (1). For instance, M. Rychlik [34]
and C. Robinson [32] considered systems exhibiting

6See [4, 7] for related results about discrete-time systems,
in any dimension. These and other important recent develop-
ments are surveyed in my article [43].



certain special configurations (codimension-2 bifur-
cations) and, using perturbation arguments, proved
that nearby flows have strange attractors like the ge-
ometric Lorenz models. This enabled them to exhibit
the first explicit examples (explicit equations) of sys-
tems with strange attractors of Lorenz type: those
special configurations occur in some families of poly-
nomial vector fields, with degree three, for appropri-
ate choices of the parameters. However, it has not
been possible to find parameter values o, b, and r,
for which (1) satisfy the assumptions of their theo-
rems.
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Figure 3: Suspended horseshoe

Another approach was through rigorous numerical
calculations. Here a major difficulty arises from the
presence of the equilibrium: solutions slow down as
they pass near it, which means that a large num-
ber of integration steps are required, resulting in an
increased accumulation of integration errors. This
could be avoided in [9, 10, 23, 24], where all the
relevant solutions remain far from the equilibrium
point (error control remains delicate, nevertheless).
In these works, the authors gave computer assisted
proofs that the Lorenz equations have rich dynam-
ical behavior, for certain parameters. More pre-
cisely, they used numerical integration with rigorous
bounds on the integration errors, to identify regions
V = V31 UV, inside some cross-section of the flow,
such that the image of V' under the first-return map
consists of two pieces that cross V' as in Figure 3.
By a classical result of Smale, see [38], this configu-
ration (“suspended horseshoe”) implies that there is
an infinite set of periodic trajectories.

Still, the original question remained: do equations
(1) really have a strange attractor ? These equa-
tions have no particular mathematical relevance, nor
do the parameter values (10, 28,8/3): their great sig-
nificance is to have pointed the possibility of a new
and surprising kind of dynamical behavior that we
now know to occur in many situations. Nevertheless,
many of us felt that answering this question, for pa-
rameters near the original ones, was a great challenge

and a matter of honor for mathematicians 7.

The Lorenz attractor exists! Remarkably, a
positive solution was announced about a year ago, by
W. Tucker, then a graduate student at the Univer-
sity of Uppsala, Sweden, working under L. Carleson’s
advice.

Theorem 1 (Tucker [41, 42]) For the classical
parameters, the Lorenz equations (1) support a ro-
bust strange attractor.

Tucker’s approach is a combination of two main
ingredients. On the one hand, he uses rigorous nu-
merics to find a cross-section ¥ and a region N in
¥ such that orbits starting in N always return to it
in the future. After choosing reasonable candidates,
Tucker covers N with small rectangles, as in Figure 4,
and estimates the forward trajectories of these rect-
angles numerically, until they return to ¥. His com-
puter program also provides rigorous bounds for the
integration errors, good enough so that he can safely
conclude that all of these rectangles return inside N.
This proves that the equations do have some sort of
attractor. A similar strategy is used to prove that the
attractor is singular hyperbolic in the sense of [26].

The other main ingredient, normal form theory
comes in to avoid the accumulation of integration er-
rors when trajectories are close to the equilibrium
sitting at the origin. Tucker finds coordinate systems
near the equilibrium such that the expression of the

7See Smale’s list of outstanding open problems for the next
century in issue 20 of Mathematical Intelligencer, and his con-
tribution to the book Mathematics: Frontiers and Perspec-
tives, to be published under the aegis of the International
Mathematical Union as part of the celebrations of the World
Mathematical Year 2000.
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Figure 4: Covering a possibly invariant region with
small rectangles

vector field in these coordinates is approximately lin-
ear. Thus, solutions of the linear flow (that are easily
written down in analytical form) can be taken as ap-
proximations of the true trajectories, with efficient
error estimates. Accordingly, Tucker instructs the
computer program to switch the integration strategy
when solutions hit some small neighborhood of the
equilibrium: instead of step by step integration, it
uses approximation by the linear flow to estimate the
point where the solution will exit that neighborhood.

Verifying that a computer-assisted proof is correct
involves both checking the algorithms for logical co-
herence, and making sure that the computer is indeed
doing what it is supposed to do. The second aspect is,
of course, less familiar to most mathematicians than
the first one. In fact, as computer-assisted proofs are
a rather new tool, there hasn’t been much time to es-
tablish verification standards for computer programs.
A basic procedure is to have the codes recompiled and
rerun on different machine architectures. Preferably,
beforehand the algorithm should be reprogrammed
by different people. As far as I know, such a de-
tailed independent verification of Tucker’s computer
programs has not yet been carried out. The first ver-
sion did contain a couple of “bugs”, which Tucker
has fixed in the meantime [42], and which I mention
briefly near the end. He has also made the text of his
thesis and the computer codes, as well as the initial
data used by his programs, available on his web page
[41].

An outline of Tucker’s arguments is given in the
last section of this work. Right now, let us go back
to where it all started, for a closer look.

1 From Thermal Convection to
the Equations of Lorenz

Most of the motion in the Earth’s atmosphere takes
the form of convection, caused by warming of the
planet by the Sun: heat absorbed by the surface of
the Earth is transmitted to the lower layers of the
atmosphere; warmer air being lighter, it rises, leaving
room for downwards currents of cold air.

A mathematical model for thermal convection was
proposed early in the twentieth century by the British
physicist R. J. Stutt, better known as Lord Rayleigh.
This model [31] describes thermal convection inside a
fluid layer contained between two infinite horizontal
plates that are kept at constant temperatures T,
and Tj,;. It is assumed that the bottom plate is hot-
ter than the top one, in other words, Thor > Tiop-
If the temperature difference AT = Tyor — Tiop is
small, there is no fluid motion: heat is transmitted
upwards by conduction only. In this case, the fluid
temperature Tsseqqy varies linearly with the vertical
coordinate 7. As AT increases, this steady-state so-
lution eventually becomes unstable, and the system
evolves into convective motion. Convection cells are
formed, where hot fluid is cooled down as it rises, and
then comes down to get heated again. See Figure 5.

Figure 5: Convection motion

B. Saltzmann [35] analyzed a simplified version of
Rayleigh’s model. Firstly, he assumed that the sys-
tem is invariant under translations along some fa-



vored direction, like the direction of convection rolls
in Figure 5, so that the corresponding dimension in
space may be disregarded. This brings the problem
down to two spatial dimensions, the evolution equa-
tions reduce to

V2T AT, V2T) A 90
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where £ and 7 are the spatial coordinates, ¢ is time,
and the dependent variables ¥ and © are interpreted
as follows:

o U(¢,n,t) is a stream function: the motion takes
place along the level curves of ¥, with velocity

field
28 o%)
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b 6(67 Tht) = T(£7 Tht) - TSteady(é‘:na t) is the tem-
perature departure from the steady-state solu-
tion mentioned above.

The other letters represent physical parameters: H
is the height of the fluid layer, g is the constant of
gravity, a is the coeflicient of thermal expansion, v is
the viscosity, and & is the thermal conductivity.

If the Rayleigh number

R, = gaH®*—
VK

is small, the system remains in the steady-state equi-
librium ¥ = 0, ® = 0. However, as observed by
Rayleigh, as R, crosses a threshold

4
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new solutions of (2)—(3) are created, of the form

T(&,n,t) = Xpsin <%a §) sin <%n) 4)
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where Xy and Yy are constants. They describe the
motion in cylindrical convection cells in Figure 5, the
parameter a being related to the eccentricity of the
cylinders. They are stationary solutions, as time t
does not appear explicitly on the right hand side of
(4) and (5).

Nonperiodic behavior. Aiming to understand
what happens when AT is further increased, Saltz-
man looked for more general solutions space-
periodical in both dimensions. For this, he expanded
¥ and O as formal Fourier series in the variables £ and
n, with time-dependent coefficients. Replacing this
formal expansion into (2), (3), one finds an infinite
system of ordinary differential equations, with the
Fourier coefficients as unknowns. Saltzmann trun-
cated the system, keeping only a finite number of
these equations.

He tested several possibilities, but one particular
case, involving seven equations, was specially inter-
esting. Numerical integration showed that, for con-
venient choices of the parameters, all but three of the
dependent variables are transient: they go to zero as
time increases to infinity. In other words, although
the phase-space has dimension seven, many solutions
seem to converge to some “attractor” contained in a
three-dimensional subset of the phase-space. On the
other hand, these three special non-transient modes
seemed to have a rather complicated (nonperiodic)
evolution with time.

Lorenz took the system of equations obtained in
this manner, by truncating the original infinite sys-
tem right from the start to only these three variables.
This corresponded to looking for solutions of (2), (3),
of the form

(€, n,1) = X (1) sin (%" g) sin (%n)
0(&,n,t) =Y (¢) cos (%a {) sin (%n)

27
Z(t)sin | —=n ).
+ Z(t) sin ( T n)
Replacing these expressions in (2), (3), one obtains
three ordinary differential equations on the coeffi-
cients X (t), Y (¢), Z(t) that are equivalent to equa-
tions (1). Actually, X, Y, Z are not exactly the same



as z, ¥, z in (1), but the two sets of variables are re-
lated to each other, simply, by rescaling:

X:A().'L‘ Y:Boy Z:C()Z,
where Ag, By, Cy, are constants depending only on
a and the physical quantities H, g, «, v, &, and AT.
To obtain (1) one also re-scales time, by another con-
stant Dy depending on a and H. The parameters o,
r, bin (1) are given by

r=— o="2 b=4(1+ a?).

K

Some simple facts about equations (1) are easy to
check. For instance (0,0,0) is an equilibrium point,
for every value of r. This equilibrium is stable (at-
tracting) when r < 1, corresponding to the stability
of the steady-state solution. As r crosses the value
1, the origin becomes unstable, and two new stable
equilibrium points P, and P, arise. They correspond
to the stationary solutions given by (4) and (5). If
one further increases r, these two solutions become
unstable. This suggests that, for large Rayleigh num-
ber, the convection motion described by (4) and (5),
is replaced by some different form of dynamics.

Let me also comment on the particular choice of
parameter values in (1). Saltzmann took a = 1/+/2,
which is the value of a for which R, is smallest. This
gives b = 8/3. The Prandtl number ¢ = 10 is typical
of liquids (o = 4.8 for the water), for the air o = 1.
Finally, the relative Rayleigh number r = 28 is just
slightly larger than the transition value r ~ 24.7368
at which the two equilibria P;, P, become unstable.

2 Geometric Lorenz Models

Here is an outline of main facts about the geometric
Lorenz models in [1, 8, 44], that are also relevant for
the next two sections.

Equilibrium point. A first condition in the defi-
nition of the geometric models is that the flow should
have an equilibrium point O. If X denotes the vec-
tor field associated to the flow, the derivative DX (O)
should have one positive eigenvalue A; > 0 and two

¥

Figure 6: A geometric Lorenz flow

negative eigenvalues —XAs < —A3 < 0. As a conse-
quence, there are two trajectories 74 and y_ moving
away from O in opposite directions as time increases,
as shown in Figure 6. The union of y_ and v; with
the equilibrium point O is called the unstable man-
ifold of O, and denoted W*(0O). Moreover, there is
a two-dimensional surface containing the equilibrium
point and formed by solutions that converge to O as
time goes to +o0o. This is called the stable manifold
of O, and denoted W?(0O). Check also Figure 7.

Wiix)

Figure 7: Stable and unstable manifolds at an equi-
librium point

In addition, the expanding eigenvalue should dom-
inate the weakest contracting one. In other words,
one also asks that

A1 > Az, (6)

It is a simple exercise to check that the equilibrium
point O = (0,0,0) of (1) satisfies these eigenvalue



conditions for all values of the parameters r, o, b close
to the ones considered by Lorenz.

Cross-section. Next, one assumes that there ex-
ists some two-dimensional domain ¥ that is cut trans-
versely by the flow trajectories, and also intersects
the stable manifold W#(O) along some curve T'. In
addition, both trajectories y_ and 74 intersect X.
Actually, all the trajectories starting in any of the
two connected components of ¥\ I" should also inter-
sect X in some future time. This means that ¥ acts
as a trap: solutions that hit it can not escape from
returning to ¥ indefinitely (unless they happen to hit
T, in which case they simply converge to O and never
come back to ¥).

The behavior of these trajectories can be under-
stood by looking at the points where they successively
meet ¥. In other words, under this assumption the
evolution of the original flow can be reduced to that
of the first-return map z — P(z), that assigns to
each z in ¥\ T the point P(z) where the trajectory
of z first intersects . Figure 8 contains a schematic
representation of the image of ¥ \ I" under P.
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Figure 8: The image of the first-return map P

It is not difficult to find reasonable candidates for
such a cross-section in equations (1). For instance,
Sparrow [39] takes ¥ contained in the horizontal
plane {# = r — 1}. His computations of the first-
return map, e.g. Figure 3.4(a) in [39, page 34], do
suggest that P is well-defined, and its image has two
connected components. The shape of these compo-
nents is less clear from those pictures: they look more
like curve arcs, compare Figure 4. The reason is that

the return map is strongly area-dissipative, because
the divergence of the flow

div(—ox + oy,rx —y —x2,2y —b2) =—0—1—-10

is negative, for the parameter values we are interested
in. Consequently, the image of P has very small area,
which means that the cuspidal triangles represented
in Figure 8 must be very thin.

Invariant contracting foliation. I move on to a
more subtle condition in the definition of geometric
Lorenz models, and definitely harder to check in spe-
cific situations. One assumes that there exists a fo-
liation, that is, a decomposition of the cross-section
¥ into roughly parallel curve segments, the leaves of
the foliation, which is invariant under the first-return
map P: if two points 2z; and 25 are in a same leaf,
then so are P(z;1) and P(zz). Think of the leaves
as vertical lines in Figure 8. Moreover, the foliation
should be contracting: the distance from P"(z1) to
P™(z2) goes to zero exponentially fast as n goes to
400, for any pair of points z; and 2 in a same leaf.

The reason this property is very useful, is that it al-
lows us to reduce the dimension of the problem even
further 8. Roughly speaking, this goes as follows:
points in a same leaf of the foliation have roughly the
same behavior in the future, since their trajectories
get closer and closer; so, for understanding the dy-
namics of P it is enough to look at the trajectory of
only one point in each leaf, for instance, the point
where the leaf intersects a given horizontal segment.

Expanding map of the interval. Let me make
the idea a bit more precise, with the aid of Figure 9.
Let I be a horizontal segment in 3, e.g., the bottom
side of X. It is convenient to think of I as an interval
in the real line, for instance I = [0,1]. Given any
point z in I, let 71 be the leaf containing it. By
the invariance property, P(1) is contained in some
leaf 5. Let f(x) be the point where 2 crosses I.
This is how the map f is defined. The graph of f is
represented on the left hand side of Figure 10. Note

8Previously, existence of a cross-section permitted us to go
from the 3-dimensional flow to the 2-dimensional map P.
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Figure 9: Definition of the interval map f

that the map has a discontinuity at the point ¢ of I,
corresponding to the special leaf T'.

As afinal condition, the map f must be expanding;:
there exists some constant 7 > 1 such that

dist(f(2), f(y)) 2 7 dist(z, y) (7)

for any two points z,y located on the same side of
the discontinuity point c.

C C

Figure 10: Interval maps related to Lorenz flows

It is interesting to point out that Lorenz computed
such a map numerically for (1) in [17]. The cross-
section he was considering (implicitly) is not quite the
same as our X, so that he got a seemingly different
picture, shown on the right hand half of Figure 10.
Nevertheless, the information provided by either of
the two maps is equivalent.

A sensitive attractor. Under these assumptions,

attractor A, that contains the equilibrium point O.
The attractor is the closure of the set of trajecto-
ries that intersect the cross-section X infinitely many
times in the past (as well as in the future). Any for-
ward trajectory that cuts ¥ accumulates in A, and
these form a whole neighborhood of the attractor.

Moreover, these trajectories are sensitive with re-
spect to initial conditions. Indeed, suppose you are
given two nearby points z and w, whose forward flow
trajectories intersect X. Typically, the intersection
points will be in two different leaves «y, and +,, of the
invariant foliation (corresponding to nearby points
x # y in I). The next time the two flow trajectories
come back to X, the new intersection points will be
in leaves v/ and +,,, corresponding to the points f(z)
and f(y) in I. Now, because of the expansiveness
property (7), the distance dist(y.,,,) is larger than
dist(yz,vw). Thus, the distance between the two flow
trajectories at successive intersections with X keeps
increasing, one can check that it eventually exceeds
some uniform lower bound that does not depend on
how close the initial points z and w are °

Another important conclusion is that the attractor
contains dense orbits (dynamical indecomposability):
there exists some zy € A whose forward trajectory
visits any neighborhood of any point of A. (For this
one requires the constant 7 in (7) to be larger than
v/2.) In particular, the trajectory of zy accumulates
on the equilibrium point O.

Lorenz models without invariant foliations.
Numerical investigations of the Lorenz equations car-
ried out by M. Hénon and Y. Pomeau [12, 13], showed
that when the relative Rayleigh number increases be-
yond r = 30 the image of the first-return map devel-
ops a “hooked” shape, described in Figure 11. This
indicates that for such parameter values there is no
longer an invariant foliation, as assumed in the ge-
ometric Lorenz models. As a simple, easy-to-iterate
model of the behavior of the first-return map near
the “bends”, they introduced the family of maps of

90f course, the growth must stop at some point, these dis-
tances can not exceed the order of magnitude of the attractor’s

[1] and [8, 44] prove that the flow exhibits a strange diameter.

10



the plane
(.Z’,y) = (1 - a$2 + y,bl’),

that is now named after Hénon.

=
G

Figure 11: Hooked return maps in Lorenz equations

Based on their computations and, specially, on
Chapter 5 of Sparrow’s book [39], S. Luzzatto and
I proposed an extended geometric model for Lorenz
equations, including the creation of the hooks. The
main result [21, 20] is that the attractor survives the
destruction of the invariant foliation, ot the price of
loosing its robustness: after the hooks are formed, a
strange attractor exists for a positive Lebesgue prob-
ability set of parameter values. This set is nowhere
dense, which is related to the lack of robustness: near
the parameter values for which the strange attrac-
tor exists there are others corresponding only to at-
tracting periodic orbits. Moreover, the conclusions of
[21], which treats a version of the problem for interval
maps, have been further extended by Luzzatto and
Tucker in [19].

3 Robust Strange Attractors

In order to state the results of Morales, Pacifico, Pu-
jals mentioned before, I need to introduce the precise
definition of a robust attractor. It makes sense also
for discrete-time systems (diffeomorphisms, or just
smooth transformations), but here I restrict myself
to flows.

11

Robust invariant sets. Let ¢! : M — M, t € R,
be a flow on a manifold M, that is, a one-parameter
group of diffeomorphisms satisfying

1. ¢%(x) = for every z € M and
2. pto®(x) = !t (z) for all z € M and s,t € R.

Denote X the associated vector field on M, which is
defined by

dp?

— (@)= X (¢ (2))-

We say that a subset A of M is invariant if trajecto-
ries starting in A remain there for all times: if z € A
then ¢f(x) € A for all t € R. In what follows I al-
ways consider compact invariant sets. An invariant
set A is dynamically indecomposable if there exists
some point € A whose forward orbit

{¢'(x): t >0}

is dense in A. This property is often called transitivity
in the specialized literature.

An invariant set A is called robust if it admits a
neighborhood U such that the following two condi-
tions are satisfied. Firstly, A consists of the points
whose trajectories under ¢! never leave U:

A={z:¢"=) €U for all t € R}.

Secondly, given any vector field Y close to the original
one X the set

Ay :={z: ¢} (z) € U for all t € R}

of ! -trajectories that never leave U is dynamically
indecomposable for the flow ¢!, associated to Y. Here
closeness means that the two vector fields X and Y,
and their first derivatives, are uniformly close over M.
Finally, A is a robust attractor if the neighborhood U
can be chosen to be trapping (or forward invariant):

(U)cU forallt>0.

Hyperbolicity. Now I define when an invariant set
A is hyperbolic. At each point z of A it should be
possible to decompose the tangent space into three
complementary directions (subspaces)

T.M =E:® E)®E!

depending continuously on z, such that



e Ej is the one-dimensional subspace given by the
direction of the vector field X at x;

e the linearized flow D! preserves the subbundles
E* and E* (this is clear for E°), moreover, it
contracts £* and expands E* exponentially fast.

This last condition means that
D(pt E; = E:;t (z) and DgOt Eg = Ezt (z)
and there are constants C' > 0 and A < 1 such that
D" | B3| < CX' and  |[(Dg' | EY)~'| < CX

for all t > 0 and all z € A.

I already mentioned the following important con-
sequence, described in Figure 2. If an invariant set A
is hyperbolic, in the sense of the previous paragraph,
then every point z in it is contained in a pair of local
sub-manifolds of M, the stable manifold W*(x) and
the unstable manifold W*¥(zx) such that

o if y is in W*(x) then d(¢!(z),pt(y)) < Ce™™,
for every t > 0,

e if z isin W¥(z) then d(p t(z), o (2)) < Ce ™,
for every t > 0.

The existence of these manifolds also determines the
local behavior of solutions close to the one passing
through z.

So far, I have implicitly assumed that z is a regular
point of the flow, that is, X (x) is not zero. When,
on the contrary, = is an equilibrium point then the
definition has to be reformulated: in this case, the
directions E] and E alone must span the tangent
space:

T,M = E* & E¥.

Figure 7 describes stable and unstable manifolds
through an equilibrium point.
Observe that if z is an equilibrium then

dim E + dim E} = dim M,
whereas in the regular case

dim E; 4+ dim B} = dim M — 1.
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This has a simple, yet important, consequence: an
invariant indecomposable set containing equilibria is
never hyperbolic (except in the trivial case when it
consists of a unique point). This is because the di-
mension of either £ or E would have to have a jump
at the equilibrium, contradicting the requirement of
continuity. In particular, the geometric Lorenz at-
tractors that I described above can not be hyperbolic.

Singular hyperbolicity. Morales, Pacifico, Pujals
propose a notion of singular hyperbolic set, which
plays a central role in their results. Let A be an
invariant set for a flow ¢t. We say that A is singu-
lar hyperbolic if at every point © € A there exists a
decomposition T,M = E, & F, of the tangent space
into two subspaces E, and F, such that the linear
flow contracts E, exponentially, and is exponentially
volume expanding restricted to F:

det (D~ (z) | F,) < Ce™™

for all ¢t > 0. The decomposition must depend con-
tinuously on the point z. Note that the linear flow
is allowed to either expand or contract Fj, or both.
However, we also require that whatever contraction
there is in this direction, it should be dominated by
the one in the E, direction:
¢
1D @)ell _ 1

1D () FIl —
for all norm 1 vectors e € E, and f € F, . Finally, if
there are equilibrium points in A they should all be
hyperbolic (no eigenvalues with zero real part).
The strange attractors in the geometric Lorenz
flows I mentioned before are singular hyperbolic. In
fact,

Theorem 2 (Morales, Pacifico, Pujals [25, 26])
Any robust attractor of a three-dimensional flow that
contains an equilibrium point (and is not reduced to
it) is singular hyperbolic.

Actually, they prove an even stronger statement.
Let A be any robust invariant set. If A contains
points of equilibrium then they must all have the
same stable and unstable dimensions. More precisely,
the derivative DX has



(1) either two negative eigenvalues and one positive
eigenvalue, at every equilibrium point;

(2) or two positive eigenvalues and one negative
eigenvalue, at every equilibrium point.

These cases can be interchanged: replacing the vec-
tor field X by its symmetric —X (in other words,
reversing the orientation of trajectories) transforms
Case 1 into Case 2, and vice-versa. So, from now on
T’ll speak only of Case 1. In this case, the eigenvalues
satisfy the relation (6), just as the geometric Lorenz
systems. Furthermore, the invariant set A must be an
attractor for the flow. And this attractor is singular
hyperbolic!

These results have several important implications.
For one thing, they give that every non-trivial ro-
bust attractor of a three-dimensional flow that con-
tains an equilibrium point is sensitive with respect
to initial conditions. Moreover, the flow admits a
contracting invariant foliation in a neighborhood of
the attractor. Finally, there exists a cross-section
¥, with a finite number of connected components,
and the first-return map induces an expanding one-
dimensional map in the space of leaves restricted to
Y. The statements in the last sentence are being
proved by a graduate student at the Federal Uni-
versity of Rio de Janeiro, as part of showing that
these attractors are stochastically stable: time aver-
ages don’t change much when small random noise
is added to the system !°. In fact, having reached
this point the main geometric and ergodic properties
of the classical Lorenz models extend to this whole
class of robust attractors.

Higher dimensions. Not much is known about
attractors of flows on manifolds of dimension larger
than 3, apart from the hyperbolic case. Robust non-
hyperbolic examples can be constructed in a sort of
trivial way: the attractor lies inside a 3-dimensional
submanifold that is invariant under the flow, and at-
tracts all nearby trajectories. On the other hand, un-

10The study of systems with small random noise goes back
to A. Andronov, L. Pontryagin, A. Kolmogorov and, specially,
Ya. Sinai [37]. It was much developed by Yu. Kifer who
showed, in particular, that hyperbolic attractors as well as the
geometric Lorenz attractors are stochastically stable [15].

til recently one didn’t know whether there are truly
high-dimensional attractors of Lorenz type, that is,
containing equilibria and yet robust. This was an-
swered, affirmatively, by C. Bonatti, A. Pumarifio,
and myself in [5]: for any k > 1 there exist smooth
flows exhibiting robust strange attractors that con-
tain equilibria with k expanding directions; in par-
ticular, the topological dimension of the attractor is
at least k. Needless to say, pictures of these multi-
dimensional attractors are not easy to make...

4 The Lorenz Attractor

In order to prove Theorem 1, Tucker begins by rewrit-
ing the equations in more convenient coordinates
(z1,%2,%3), related to the original ones (z,y,z) by
a linear transformation, such that the linear part of
the vector field at the origin now takes a diagonal
form:

A0 0
DX(0)=[ 0 —Xx 0
0 0 —X

For equations (1), with ¢ = 10, b = 8/3, r = 28, this
roughly gives

1 = 11.821 — 0.29(x; + x2)x3

T9 = —22.825 + 0.29(.’)&'1 + .’L'z).Z'3 (9)
&3 = —2.6723 + (21 + 22)(2.221 — 1.322).
The next step is to choose a cross-section X for

the flow: Tucker takes ¥ C {z3 = r —1 = 27},
although this is fairly arbitrary. Now Theorem 1 can
be restated in terms of the first-return map P of the
flow to this cross-section. There are three essential
facts to prove:

(A) There exists a region N C ¥ that is forward in-
variant under the first-return map, meaning that
P(N\T) is contained in the interior of N.

(B) The return map P admits a forward invariant
cone field. In other words, there exists a cone
C(z) inside the tangent space of ¥ at each point
z of N\ T, such that DP(z)C(z) is strictly con-
tained in C(P(z)), for every z in N \T.

13



(C) Vectors inside this invariant cone field are uni-
formly expanded by the derivative DP of the re-
turn map: there exist constants ¢ > 0 and 7 > 1
such that

IDP™(2)v]| = er[|vl|
for every v € C(z) and n > 1.

Indeed, statements (A), (B), (C), together with some
extra information on the value of the expansion con-
stant 7, imply that the flow has a strange attractor.
Since these three statements are robust, that is, if
they hold for a given flow then they hold also for any
nearby one (possibly with a slightly smaller 7), so is
the attractor.

Let me begin by explaining how property (A) is
obtained, I'll talk about the other two later on.

Existence of a forward invariant region. A
first non-rigorous computation of the return map is
used to guess what the region N could be. As I
mentioned before, trajectories returning to X cut it
along two “arcs”. Tucker covers the approximate lo-
cations of these “arcs” by small rectangles R;, of size
Omaz = 0.03. Then he takes N to be the union of
these R;. Recall Figure 4.

At this initial stage, Tucker has to deal with 700
rectangles, although he may take some advantage
from the fact that the system (9) is symmetric with
respect to the x3 axis, to cut the number down to a
half, that is, 350 rectangles. In any case, this number
is soon going to increase, as we’ll see. For simplicity,
he always works with rectangles with sides parallel to
coordinate axis. The ultimate goal is to prove that
the points in every one of the R; will return to the
cross-section X inside N.

For this, he estimates the future trajectories of
points in each of these rectangles in the way I now
describe. First, the trajectory of the central point c;
of R; is integrated (by the Euler method) from time
t = 0 up to the moment where it intersects an in-
termediate horizontal plane ¥’ placed at some small
distance h = 1073 underneath X. Let ¢} be the inter-
section point. See Figure 12.

The place where the trajectories of the other points
of R; intersect ¥’ is estimated from ¢} using Taylor
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Figure 12: Step by step integration (x5 direction not
represented, for clearness)

expansion: since R; is small, the distance from inter-
section points to ¢; can not exceed some small num-
ber €1, that depends on §,,,, and h. One also has
an upper bound e; for the error committed in the
integration of the trajectories of the central points
¢;- This means that the whole image of R; by the
Poincaré map from ¥ to X' must be contained in a
rectangle R} of size not larger than €; + €5 around c}.
See Figure 13.

€1 + €3
R;, /—\w
o i
. !
SABAN
R;,CX D

R, C X'

Figure 13: Accommodating all possible errors, then
subdividing

The inductive step. Now the idea is to proceed
for R} in the same way as for R;. There are, how-
ever, several points one has to take into account. To
start with, R} may be much larger than R;. So, by
repeating this step in a naive way, one is likely to
end up with rectangles that are too big for the Tay-



lor expansion estimates to be of any help. To solve
this, Tucker subdivides each R} into sub-rectangles
R; j of size at most d,,42, and then treats each one of
them individually. That is, the program goes on to
integrate the trajectories of the central points of each
R} ; up to another intermediate horizontal plane ",
located at distance h from X', and so on.

Another problem is that, as one moves down, tra-
jectories tend to approach the horizontal distance.
See Figure 14. As a consequence, integration errors
involved in estimating these Poincaré maps between
horizontal planes increase dramatically. The way
to avoid this is by switching from horizontal cross-
sections to vertical ones, whenever trajectories are
far from the vertical direction. More precisely, at
each step the program checks whether the vertical
component 3 is larger than the horizontal one ;.
In the affirmative case, integration goes on as I was
describing.

Otherwise, a Poincaré map is computed, from the
horizontal cross-section that is currently under con-
sideration, to a nearby vertical plane 3. Bounds for
the errors involved in this step are also computed.
One ends up with another rectangle R; inside ¥, that
contains the image of the previous one under this
Poincaré map. Now, the algorithm proceeds just as
before (apart from the fact that we are now deal-
ing with vertical objects): R; is subdivided into sub-
rectangles with size less that d,,4,, the trajectories
through the centers of these sub-rectangles are inte-
grated up to intersecting another vertical plane ¥’
located at distance h to the side of ¥, and so on.

The question concerning the relative strength of
the horizontal and the vertical components of the vec-
tor field is asked at each step. If the vertical compo-
nent later becomes the stronger one once more, the
program goes back to considering horizontal cross-
sections. Switching back and forth from horizontal to
vertical cross-sections may happen several times be-
fore one goes back to the original plane ¥. The whole
process stops when the trajectories hit ¥ again.

It is clear that, due to subdivision, the program
has to deal with an increasing number of rectangles:
the total number reaches some tenths of thousands,
from the initial 350. The point is that, if for every
one of the rectangles that are created along the way,
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Figure 14: Switching from horizontal to vertical
cross-sections

the algorithm finishes in finite time, and the return
to ¥ occurs inside N, then one is certain that N is
indeed a forward invariant region for the flow.

Passing close to the equilibrium. So far, I de-
liberately avoided talking about trajectories that go
close to the origin. It is time to explain how this is
dealt with.

For the computer program, “close to the origin”
means “inside a cube C of size 1/5 around the origin”.
If in the course of the integration, the trajectories do
not hit the cube C, then the algorithm is precisely
as I described. For trajectories that enter C' at some
step, the computer program calculates the exit point
Pewit directly, as follows.

A key point is that the eigenvalues A1, —A2, —Az of
the vector field at the origin are sufficiently far from
being resonant. What I mean by this is that linear
combinations

nl)\l - n2)\2 - n3)\3 (10)

are not zero, nor too close to zero, for many positive
integer values of ni, na, ng. The precise set V of
values of ni,ns,n3 for which this must be verified
depends upon the goals one has in mind, and also
upon specific properties of the system. In the present
situation Tucker uses

V= {(n1,n2,n3) € N° :ny +ny +n3 > 2 and
either ny < 10 or ng + n3 < 10}.



This set is actually infinite, so it may seem hopeless
to check these conditions by means of actual com-
putations. However, it is clear that (10) is far away
from zero both when n; is much larger than ny + ns
(in which case it is positive) and when ns + ng is
much larger than ny (in which case it is negative).
This observation leaves only a finite number of triples
(n1,n2,n3) for which non-resonance must be checked
(almost 20,000 triples), which is readily carried out
by an auxiliary computer program. The eigenvalues
A1, A2, A3 can be computed with as much precision
as required, of course.

Having checked this, a classical theory developed
by H. Poincaré, S. Sternberg [40], and a number of
other mathematicians, can be applied to conclude
that there exist coordinates y = (y1,¥2,y3) in C such
that the expression of the vector field X in these co-
ordinates is very close to being linear:

X(y) =DX(0)y + R(y)

11

IR(y)| <const [y1['® (ly2] + ys)™. (v
Why is this useful ? The trajectories of points under
the linear flow L(y) = DX (0)y can be expressed in a
simple analytical form. Then, in view of (11), the tra-
jectories of points in C' for the actual flow X can be
estimated with a good degree of accuracy. Note that
we are talking of computations in the new y coordi-
nates. One still has to go back to the z coordinates.
This involves estimates for how far the transforma-
tion z = ¥(y) is from being the identity, that Tucker
derives from explicit lower bounds for the norms of
(10). According to his estimates, the errors involved
in this step are bounded by 1072. So, he replaces the
exit rectangle obtained for the linear flow L by an-
other with size increased by 10~2 on each side. The
latter rectangle is then treated in the same way as
described above: subdivision into smaller rectangles,
integration of small pieces of trajectories starting at
the corresponding central points, and so on.

As explained before, this program should stop in
finite time, with all the rectangles that were intro-
duced in the course of the algorithm returning inside
N. Tucker implemented this algorithm in C, with
double precision floating point arithmetics (relative
accuracy 1071%). The program ran for about 30 hours
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on a Sparc Server station using both UltraSparc II
296 Mhz processors. And it stopped!

Invariant expanding cones. The steps I de-
scribed so far show that equations (1) admit a trap-
ping region, namely, the union of all the trajectories
through the points of N. The set A of points that
never leave the closure of this region, neither in the
future nor in the past, is our candidate to being the
attractor. However, at this point we still don’t know
much about A. For instance, it could be just an at-
tracting periodic orbit. To rule out this possibility,
and conclude that A is indeed a strange attractor, we
still need properties (B) and (C). In fact, Tucker’s
program deals with all three statements simultane-

ously, as follows.
/!
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<1

v P
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Figure 15: Invariant cones

Initially, besides feeding the program with a cover-
ing of N by small rectangles R;, as explained before,
Tucker also assigns to each R; a cone Cj; inside the
tangent plane of R;, represented by the slopes a;
and a;’r of its sides with respect to the x;-direction.
All these initial cones are chosen with total angle 10
degrees, but their inclination varies from one rectan-
gle to another: their axis are more or less along the
tangent directions to the two “arcs” that form the at-
tractor, recall Figure 4, obtained from a preliminary
(non-rigorous) computation 1.

M Rirst, Tucker tried to use a constant cone field: axis every-
where horizontal, total angle 20 degrees. This turned out not
to be invariant under the first-return map but the computer
program failed to realize it, because cones were represented in
terms of slopes only, so that the program was unable to tell
a cone from its complement... Tucker modified the program
to include orientation in the internal representation of cones,
and he also added a safety device that would fire if cones were



Then, in parallel to finding a rigorous upper bound
R} for the image of the rectangle R; under the
Poincaré map m : ¥ — ¥’, the program also looks
for a corresponding upper bound for the image of C;
under the derivative of w. This derivative is com-
puted through the formulae

Xk
X3

aﬂ'k

o ogs
8$]‘

—%x
8.’Ej

(@) = @)

(n(2)) 5—=(=),

where 7y, %, X, are the components along the z-
axis of 7, the flow ¢, and the vector field X. For
this, it also needs to estimate the partial derivatives
of the flow, which is done by numerical integration of
the linearization

% (D¢') = (DX o ¢") - Dy}, with D¢’ =1d
(12)

of (1). Note that Dy® = (¢t /0z;) is a 3 x 3 matrix,
(12) corresponds to nine scalar differential equations.

These calculations, together with rigorous bounds
on the integration errors, and on the total variation
of Dm over the rectangle R;, yield a cone C] inside
the tangent plane of R} that contains D (z)C; for
every x € R;. See Figure 15. As before, this cone
Ci is described by the slopes 3; and ,8;* of its sides.
Finally, the program also computes a rigorous lower
bound for the expansion inside C;, that is, a positive
number e; such that

| Dm(z)oll > eillol|

for all x € R; and v € Cj.

Now R; is subdivided into rectangles R};, as ex-
plained before, and the program proceeds the integra-
tion for each (Rj;, 8; ,8f) in the place of the initial
(Ri,a; ,a}). There is no subdivision of cones. Every
integration step uses the same procedure as I just de-
scribed for the first one, except that (i) the roles of x;
and z3 are interchanged when dealing with vertical
cross-sections and (ii) linear approximations is used,
instead, when solutions pass close to the origin.

ever to get larger than 20 degrees in the course of the iteration.
This device remained silent when the program was run for the
new initial cone field.
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The program keeps track of successive expansion
lower bounds, so that property (C) can be readily
checked at the time of return to X: the product
should be larger than some constant 7 > 1. In fact
this is not quite so: somewhat surprisingly, vectors
in the invariant cone field may even be contracted by
the first-return map, if the starting point is close to
the tips of the attractor 2. However, this is compen-
sated by expansion in subsequent returns: according
to the computer output, the accumulated expansion
exceeds 2 before the trajectory can cross I'. This sort
of estimate is sufficient for most purposes, including
the proof that the attractor is indecomposable.

Moreover, the invariance property (B) translates
into the following statement:

[v; »7; ] is contained in [o; , ;]
for every one of the initial (R;,a;,a]) and every
returning (Sj,v; ,'y;r) such that S; intersects R;.

Successful verification of all these inequalities
shows that A is a robust strange attractor for (1).
Thus A is singular hyperbolic, and so it fits directly
into the theory I described in the previous section.
Its geometry and its ergodic properties can be well-
understood, and they do correspond to those of the
classical geometric Lorenz models. A happy conclu-
sion to a beautiful story!
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