Multidimensional nonhyperbolic attractors
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Abstract

We construct smooth transformations and diffeomorphisms exhibiting
nonuniformly hyperbolic attractors with multidimensional sensitiveness on
initial conditions: typical orbits in the basin of attraction have several ex-
panding directions. These systems also illustrate a new robust mechanism
of sensitive dynamics: despite the nonuniform character of the expansion,
the attractor persists in a full neighbourhood of the initial map.

1 Introduction

Let ¢: M — M be a smooth map on a manifold M, admitting some compact
invariant region U, that is, ¢(U) C int (U). Here we say that ¢ has ezpanding
behaviour on U if typical points z € U have tangent vectors v whose iterates grow
exponentially fast: log ||[D¢"(z)v||"/" has positive limit (or lim inf) as n — +oo.
In general, we call Lyapunov exponents of ¢ at x to all values of this limit, for all
nonzero tangent vectors v.

Clearly, Lyapunov exponents measure the asymptotic exponential rate at
which infinitesimally nearby points approach or move away from each other as
time increases to +o0o. Hence, presence of positive exponents indicates sensi-
tive dependence of trajectories starting near x with respect to the corresponding
initial point (“chaotic” dynamics).

A classical example are the uniformly hyperbolic (or Axiom A, see [Sm])
diffeomorphisms with nonperiodic attractors. In this case the number of positive
Lyapunov exponents is constant on the basin of attraction U, and the dynamics
of the attractor is (structurally) stable. In particular, any nearby map also has
a nonperiodic attractor, close to the initial one and with the same number of
positive exponents.

The mathematical study of nonuniform expanding behaviour is much more
incomplete, in fact it has been mostly restricted to systems with a unique positive
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Lyapunov exponent. A first important result was due to [Ja], who showed that
many quadratic maps of the interval admit an absolutely continuous invariant
probability measure p. Then such maps have positive Lyapunov exponent at all
p-generic points (a positive Lebesgue measure set). Other proofs of this result
were given e.g. by [CE], [BC1].

In higher dimensions, [BC2| showed that many Hénon diffeomorphisms of the
plane have strange attractors containing dense orbits on which the diffeomorphism
has a positive Lyapunov exponent. See [BY], [MV], [Vi] for further developments.
In all these cases, expanding behaviour exhibits a rather subtle form of persis-
tence: “many” means positive Lebesgue measure in parameter space. On the
other hand, [Yo] constructed open sets of nonuniform hyperbolicity in a space of
linear cocycles.

The purpose of this paper is to introduce the study of certain dynamical sys-
tems exhibiting nonuniform multidimensional expansion. We construct smooth
maps, both invertible and noninvertible, having nonuniformly hyperbolic attrac-
tors with a high dimensional character: the map has several expanding directions
at Lebesque almost every point x in the basin. More precisely, one may write
T.M = E* @& E~ with

liminflog || D¢"™(z)vT|| > ¢ > 0> —¢ > limsuplog || D" (z)v" ||
n—-+oo

n—+oo

for all v* € E*\{0} (c independent of z or v*) and the number dim E* of
expanding directions (or of positive Lyapunov exponents) is larger than 1.

The basic strategy is to couple nonuniform models, namely quadratic or Hénon
maps, with convenient “fast” systems such as expanding maps or solenoid dif-
feomorphisms. The expanding behaviour observed in these multidimensional ex-
amples originates from a different mechanism, of a statistical type, which makes
them much more robust than their low-dimensional counterparts: the expanding
attractor persists in a whole C®-neighbourhood of the initial map.

Although the main ingredients are quite general, we illustrate this strategy
through some concrete situations, in order to keep our presentation as transparent
as possible. Further extension of these methods is briefly discussed at the end of
this Introduction.

1.1 Statement of results

First we consider the, simpler, noninvertible case. Let ¢,: S' xR — S' xR be a
C? map given by ¢, (6, z) = (9(), a(f) — z?), where g: S* — S is an expanding
map of the circle S' = R/Z, and a(f) = ag + ad(h). Here ¢(0) is some Morse
function and ay € (1,2) is fixed such that x = 0 is a preperiodic point for the
map h(z) = ay — 2. For the sake of definiteness, we take ¢(f) = sin 270 and



we also suppose ¢ to be linear, §(f#) = df mod 1 for some d > 2. It is easy to
check that, since ag < 2, there exists a compact interval Iy C (—2,2) such that
©0a(S' x Iy) C int (S* x I) for any small a.

Theorem A Assume d to be large enough, d > 16 say. Then for every suffi-
ciently small o > 0 the map . has two positive Lyapunov exponents at Lebesgue
almost every point (0,x) € S* x Iy. Moreover, the same holds for every map ¢
sufficiently close to ¢, in C3(S' X R).

Here C3(S! x R) denotes the space of all C* maps from S' x R to itself: in
the second part of the theorem ¢ is not assumed to have a skew-product form. In
our construction, the cylinder S' x R may be replaced by other surfaces, e.g., the
torus S' x S!. Furthermore, examples of the same kind having any preassigned
number of positive Lyapunov exponents may be obtained replacing the factor
map g by other hyperbolic transformations, like expanding maps on the m-torus,
m > 2. All our arguments extend directly to these situations, cf. Section 2.5.

Now we describe a corresponding construction for diffeomorphisms. We take

Qooe,b:T?) x R? — T3 x R? given by (pa,b(G:X) = (g(e))afa,b(e)aX))a where

e T3 = S' x B? is the solid 3-torus, © = (§,T), and §: Ty —» T3 is a solenoid
embedding §(0,T) = (df mod 1,G(6,T)), see [Sm];

o fub(0,X) = (a() — 2% + by, —bx), with X = (x,y) and a(0) defined in the
same way as before.

Clearly, @qp is a diffeomorphism (onto its image) for every nonzero value of b. In
the same way as before, ag < 2 ensures the existence of some compact interval
Iy C (—2,2) such that ¢, (T3 x Ig) C int (T3 x I3) for every small « and b.

Theorem B Assume d to be large enough. Then there erists an open set of
(small positive) values of («,b) for which @ap has two positive Lyapunov ezpo-
nents at Lebesgue almost every point (©,X) € T3 x I2. Moreover, the same holds
for every ¢ close enough to @ap in C*(T3 x R?).

As in the previous case, all the arguments can be easily extended to yield
similar examples in compact manifolds without boundary and or with any given
number of positive Lyapunov exponents. For the proof of Theorem B we take b
to be larger than 100/\/8, cf. Section 3. It is an interesting problem to decide
whether such a lower bound is indeed necessary, or just a requirement of our
approach.



1.2 General comments

Let us briefly comment on main ideas in the proofs of the theorems we have
stated, as well as on relations between these and other results in the literature.

Classical examples of [Sh| and [Ma] show that certain topological features of
the dynamics, such as transitivity, may be persistent under perturbations even in
the absence of uniform hyperbolicity. Their systems are obtained by deformation
of Anosov diffeomorphisms and retain many uniform features of the initial map
(continuous invariant cone fields, invariant foliations), obstruction to Axiom A
coming from the existence of saddle points with different stable indices. Recently,
[BD] have given a new, more general construction of such partially hyperbolic,
persistently transitive systems.

The nonhyperbolicity of the maps in Theorems A and B results from a different
mechanism, which they inherit from the nonuniform models (quadratic maps,
Hénon diffeomorphisms) involved in their construction. Indeed, a main feature
here is coexistence of hyperbolic dynamics (uniform expansion, resp. invariant
stable and unstable cone fields) in large portions of phase space, together with
highly nonhyperbolic behaviour (infinite contraction, resp. breakdown of the
cone fields due to interchange of expanding and contracting directions) in certain
folding (or critical) regions of phase space. The presence of these critical regions
is a major drawback for expanding behaviour, so let us sketch how it is dealt with
in the proof of our theorems.

In the context of real quadratic maps, expanding behaviour relies on a delicate
control of the recurrence of the critical orbit, more precisely, on appropriate lower
bounds for the distance between the critical point and its n-th iterate, n > 1.
This translates into a sequence of conditions on the parameter, which must then
be proven to hold for a positive measure set of parameter values, [Ja]. A similar
approach, in a more sophisticated form, is also central in the study of Hénon
maps with small jacobian. Actually, a main guideline in [BC2] is to try and view
such maps as a kind of perturbation of 1-dimensional maps, and the accuracy of
this point of view itself depends on bounding the recurrence of the “critical set”.

It is not difficult to see that the nature of the critical regions renders such a
strategy of recurrence control hopeless for the present multidimensional systems.
For instance, in the setting of Theorem A, the critical region { det Dy = 0} is a
codimension-1 submanifold and, hence, it is likely to intersect its iterates. Such
intersections can not be destroyed by small parameter variations, regardless of the
number of parameters involved, which means that critical points can not be pre-
vented from hitting back the critical region in finite time, with the corresponding
accumulation of nonhyperbolic effects.

Instead, our arguments are based on a statistical (large deviations type) anal-
ysis of these returns to the vicinity of the critical region. Roughly, we prove that



for most trajectories the total nonhyperbolicity associated with returns is not
strong enough to annihilate the hyperbolicity acquired at iterates far from the
critical region. Also, these arguments must have an essentially high-dimensional
character in the case of Theorem B: necessity to allow for arbitrarily close returns
implies that we must deal with tangent vectors of unbounded slope right from
early iterates, and so the situation is far from being “nearly 1-dimensional”.

This analysis relies on the fact that the driving maps ¢ are strongly mixing.
On the other hand, other properties of expanding maps and solenoids are used in
apparently less important ways. In view of this, we expect an extension of these
arguments to apply when such hyperbolic maps are replaced in our construction
by more general systems with fast decay of correlations. A natural example we
have in mind is the coupling of nonuniformly hyperbolic maps of the interval, e.g.
0(0,7) = (9(),a(f) —z2), g a unimodal (or multimodal) map as in [Ja] or [BC1].

Similar methods to the ones we use here should also prove useful for under-
standing other classes of higher dimensional attractors, including the partially
hyperbolic systems in [Sh], [Ma], [BD], whose ergodic properties are mostly un-
known.
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cially, L. Carleson, for fruitful conversations. Most of this work was done during
visits to the University of Paris-Sud, the Mittag-Leffler Institute, the UCLA, and
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2 Proof of Theorem A

First we assume that ¢: S* x R — S! x R has the form

(1) o(0,z) = (g(0), f(0,x)), with 0,f(0,z) =0if and only if z =0

and we prove that the conclusion of the theorem holds as long as ¢ is C? and
(2) lp = @alls <@ on S x I,

Then, in Section 2.5, we explain how to remove assumption (1).
Our basic strategy goes as follows. We call X C S L' x Iy an admissible curve
if X = graph (X), for some X:S' — I satisfying

1. X is C? except, possibly, for being discontinuous on the left at § = f.
2. |X'(0)| < aand | X"(0)| < o at every 6 € S'.

Here , denotes the fixed point of g close to # = 0 and we assume that S '=R/Z
has the orientation induced by the usual order in R. Let X, = graph (X,) be



any admissible curve and denote X;(0) = (8, X((f)), for j > 0 and 0 € S".
Clearly, ||D¢™(X1(0))v]| > const |(¢")'(8)| grows exponentially fast, whenever v
is a non-vertical (meaning, non-colinear to 9/0x) tangent vector. On the other
hand, we prove that there are positive constants ¢, C, and ~ such that for every
sufficiently large n we have

®) et = T fouseton] =

Jj=1

except for a set E, of values of § with Lebesgue measure m(FE,) < Ce™"V™. We
take ' = Ny>1 Ug>n B and then

m (U Ek) < Z Ce "k < const e V" for all n,

k>n k>n

implying m(E) = 0. Moreover, by construction, ¢ has two positive Liapunov
exponents at X; () for every § € ST\ E. Since the admissible curve Xy € S* x I
is arbitrary, this proves the theorem.

Now we come to a detailed exposition of the arguments leading to (3). Ex-
cept where otherwise stated, all constants to appear below are independent of .
Moreover, our statements always assume « to be sufficiently small. For future
reference, we remark that these conditions on « never involve the value of d.

2.1 Admissible curves
We begin by introducing the Markov partitions P,, n > 1, of S! defined by

o P = {[éj,l, éj): 1 < j < d}, where 50,91, e 0, = 0, are the pre-images of
6y under g (ordered according to the orientation of S');

e P,;1 = {connected components of ¢7'(w):w € P,}, for each n > 1.

The following simple fact is to be used several times below. Given X = graph (X)
and w C S we denote X |w = graph (X|w).

Lemma 2.1 If X is an admissible curve and w € P, then ©"(X|w) is also an
admissible curve.

Proof: The first property in the definition is obvious. As for the second one, it
suffices to observe that it is preserved at each iteration. Define Y:S' — I by
Y(g(8)) = f(0,X(0)), 0 € w € Py. Note that (2) implies (take o small)

g >d—a>15  |¢"|<q;
0.f| < 22| +a < 4; [0pf| < ald|+ o < 8
1Opef| <24+a<3; |Opof| < g+ a<50a; [0pf|<a



Then a direct calculation gives
Y'| = ‘(i) (Oof + 0. fX")| < % (8cr + 4ar) < «v and, analogously,

2
Y| = ‘ (2) @oof +200f X' + 00 f (X)? + 0. f X" = V'g")| <

and the lemma follows. O

Lemma 2.2 Let XA: graph (X) be an admissible curve and denote X(0) =
(0,X(0)), Z = ¢(X) and Z(0) = ©(X(0)) = (9(0), Z(0)). Then, given any

interval I C Iy, we have

m<{9651:2(9)esl><1}) §%+2 %

Proof: Let A; = {# € S':|sin270| < 1/3} and A, = S'\A;. Note that each
of A; and A, has exactly two connected components. Suppose first that § € A;.
Then |cos 276| > 11/12, which implies

@) [0 (KO)] 2 aldO)] -0 % mdso 120> (%5 —4a) -
It follows that

m({0 e A:20) e 1Y) < 21| /(a)2) = 41| Jo.

On the other hand, if # € A, then 9o f(X(0))| > |¢"(8)| — a > 10a, implying
|Z"(0)| > 4. Hence,

m ({0 € Ay 2(0) € I}) < 4y/[T] [(4a) = 2/[T] .
which completes the proof. O

Corollary 2.3 There is Cy > 0 such that, given X, = graph (Xy) an admissible
curve and I C Iy an interval with |I| < o we have

m ({0 € Sh: X;(h) € S* x I}) < Ciy/ % for every j > 1.

Proof: Let w € P;_; (resp. w = S"in case j = 1), X, = ¢'~'(X;|w) and
Z, = ¢(X,). By the previous lemma, the measure of {# € S': Z,(9) € S* x I}
is bounded above by 4 |I| /o + 2y/]I[ Ja < 64/|1] Ja. Now, X;(8) = Z.(¢7~1(6))
for every € w and so m({f € w: X;(0) € S* x I'}) < 6C.+/(|I] Ja)m(w) where
C, is some uniform bound for the metric distortion of iterates of g. O



2.2 Building expansion

Given (0,z) € S* x Iy and j > 0 we let (6;,7;) = ¢’/(6,z). We also introduce
positive constants 0 < 7 < 1/3 and 0 < k < 1, whose value will be made precise
below (in terms of the map h(z) = ay — z* alone).

Lemma 2.4 There are 61 > 0 and o1 > 1 satisfying

a) For each small a > 0 there is N = N(«) > 1 such that H 0. f(8;,75)| >
|z| a1 whenever |z| < 2+/a.

b) For each (0,z) € S* x Iy with \/a < |z| < &; there is p(z) < N such that
[1550 " 10ef 0,5)] > o1

Proof: Throughout the proof we use C' to denote any large constant depending
only on the quadratic map h. Take [ > 1 minimum such that ¢ = h!(0) is a
periodic point of h, let k > 1 be its period, and denote p* = |(h¥)'(¢)|. Note that
it must be p > 1, by [Si]. We fix p; < p < py with p; > ,027"/2 and then take
dp > 0 small enough so that

pr < H |awf(€0j(7'a y))| < p¥ whenever |y —q| < &

(and « is sufficiently small). Given (0,z) € S* x Iy we denote d; = |xy4x; — ¢, for
i > 0. We suppose d; > 0 and « small so that |z| < 6; = dy < Cz? + Ca < d.
Now let (f,z) and i > 1 be such that |z| < §; and dy,...,d;—; < &. Then
d; < (pkd;_1 + Ca) and so, by induction,

(5) di < (14 pk+ -+ g NCa + phidy < pb(Ca+ C2?).

Suppose first || < 2\/a: then (5) becomes d; < pkiCa. We set N = N(a) > 1
to be the minimum integer such that pf¥Ca > § and then define N =1+ kN.
The previous argument implies that d; < do for every 0 <7 < N — 1 and using

N-1 -1 N-1
H \awf(Hj,xj)| = H \3 f (H\a f 9l+kz+]axl+kz+1)‘>

4=0 3=0 =0 \7=0
we get

N-1
v 1
IIWf%wﬂD~%MMN>5MMI”mNzaum*ﬂﬂzmm*”,



which proves the first part of the lemma. Suppose now that |z| > /a: then (5)
gives d; < pkiCz2. We let p(z) > 1 be minimum such that p?®C2? > §, and we
define p(x) =+ kp(z). Then, in the same way as before,

Pt 1 kiz) - 1 [ M o) (1/2-n/2k(2) < L p(a)/a
O f(0;, )| > —= P S = > —N/2)kPZ)  — op(z ’

where, for the last inequality, we use the fact that p(z) > 1 (uniformly) as long
as 0; < 0p. We conclude the proof by taking o; = p/4. O

j=

Lemma 2.5 There are oy > 1, Cy > 0 such that H;:é 0.1 (0;,2;)| > CorJaoh
for all (0,z) € S* x Iy with |xol,...,|zx_1| > a. If, in addition, |zx| < 6, then
we even have H?;é 051 (0;, ;)| > Caok.

Proof: We fix §; as above and keep the notations from the previous lemma.
Since h has negative schwarzian derivative, there are oy > 1 and m > 1 such that
|(h™)'(y)| > of* whenever |y|,..., |h™ (y)| > 61, see e.g. [MS, Theorem IIL.3.3].
Then, by continuity (suppose « small enough), a similar fact holds for 0, f:

-1
(6) |0z f(75,95)| > of* whenever (7,y) € St x Iy has |yol, ..., [Ym1| > d1.
J

3

Il
<)

As a consequence, there is A > 0 such that

n—1
(7) H 105 f(15,9;)| > Aog for all n > 1 and (7,y) with |yo|, ..., |[yn-1| > d1.
=0

Moreover, there is a constant 0 < k < 1 such that, reducing 6; > 0 and oo > 1 if
necessary, |(h')'(y)| > ko whenever |y|,...,|h'= (y)| > 61 > |h!(y)]: this follows
from [No], together with (6) and a continuity argument. Then we restrict to
[ < m and invoke continuity once more to conclude a similar statement for 0, f.
Combining this with (6) we get

n—1

(8) 11102 (7, 4j)| > rof whenever [yo|, ..., |yn-1| > 61 > |yl
=0

Now let (,z) be as in the statement and let j; < --- < js; be the values of
j € {0,...,k — 1} for which |z;| < §;. Clearly, we may suppose s > 0 for
otherwise the lemma follows immediately from (7), (8). When |z)| < 6; we also



set js+1 = k. On the other hand, we denote p; = p(xj,), ¢ = 1,...,s, and then

Lemma 2.4 gives
Jitpi—1

1 ..
(9) 11 18:7(65,2)] > o1,
J=Ji
for all © < s. Moreover, (9) holds also for i = s if j; + ps; < k; note that this is
necessarily the case if |x;| < 61, as our definition of p(z) implies j; + p; < j;41 for
all 7, see above. On the other hand, by (8),

il Jig1—1
(10)  J] 10:f(05,2)| > kod' and [ 10uf (05, 25)] > wog ™7,
7=0 J=Ji+p;

for all 7+ < s and, again, the second inequality remains valid for + = s when
|zg| < 61. At this point we take oo = min{oy, 01} and get

k s
[110:1(65,25)] > ot T (otict 7 7) > ko

whenever |zg| < d;. This proves the second part of the lemma. As for the first
one, it follows from a similar calculation and the remark that in general (that is,
even if (9), (10) are not valid for i = s)

k—1
H |a$f(0]a$])| Z (2 - Of) |,Z'js|Ao-gfjs*1 Z A\/ao_(])c_‘]sil,

J=Js

as a consequence of (7). O

2.3 A technical lemma

We are now in a position to explicit our choice of n: having in mind the proof of
Lemma 2.6 below we take n = logoy/(410og32). On the other hand, we introduce
M = M(a) to be the maximum integer such that 32 q < 1; note that M < N,
since p < sup |h'| < 4, recall also the proof of Lemma 2.4. Finally, for » > 0 we
denote J(r) = {z € R |z| < \Jae™"}.

Lemma 2.6 There are Cs > 0 and 8 > 0 such that, given any admissible curve
Yy = graph (Yp) and any r > (5 — 2n)log ¢,

m({0€ 8" Viu(0) €8 x J(r = D}) < Cue™

10



Before proving this lemma let us state and prove the following auxiliary result.
We take X = graph (X) to be an admissible curve and for 1 < j < d we denote
Zj = ¢(X[[0;-1,05)) = graph (Z;).

Lemma 2.7 There are Hy, Hy C {1,...,d} with #H,,#H, > [d/16] such that
1Z;,(0) — Z;,(0)| > /100 for all 6 € S*, j, € Hy, and j, € Hy.

Proof: Let Z(0) = (g(0), Z(#)) = ¢(X () and x; < x2 be the two critical
points of Z, recall the proof of Lemma 2.2. We set | = [d/16] and define k; by
Xi € [Ok;—1,0k,), i = 1,2. If neither of x1, x2 belongs to [1/4,3/4] then we take
Hy ={ki+1,...,ki+ 1} and Hy = {ko — [,...,ky — 1}. Observe that §k1+z <
1+ HL <1 — Larcsini and, analogously, O, > 3+ s arcsin 5. Moreover,
Z is monotone decreasing on [fy,,0k,—1). Hence, using also |Z'|.4;| > 5, we
get inf Z|[0;,_1,0;,) — sup Z|[0;,_1,0;,) > < arcsin & > a/100 for every j; € Hj,
jo € Hjy. Clearly, this proves the lemma in this case. On the other hand, if
X1 > 1/4 (resp. x2 < 3/4), we take Hy = {ky —,..., ki — 1}, Hy = {1,...,1}
(resp. Hy = {d—I+1,...,d}, Hy = {ko+1,...,ky+1}) and then similar estimates
yield the same conclusion as in the previous case. 0O

Proof of Lemma 2.6: Let us begin by giving a brief sketch of the proof. By
Lemma 2.1, Y}, is the union of ¢ admissible curves. We fix a constant ~v1 > 0 and
organize the set of these admissible curves into subsets, each of which containing
d"" elements, in such a way that curves belonging to a same subset are spread
along the z-direction: at most (d — [d/16])"" of them are within |J(r —2)| ~
const e~ "y/a from each other. We obtain this by combining the previous result
with the expansion given by Lemma 2.5. Then at most that many curves intersect
each {0} x J(r —2), hence m({0: Yy (0) € J(r —2)}) < const ((d — [d/16])/d)™",
from which the lemma follows.

Now we come to the details. Let Y;(8) = ¢7(6, Yy(0)) = (¢7(6), Y;(0)). We also
use C to represent any large positive constant depending only on h. Note first that
osc (Yp) < avand osc (Y;) < 4osc (Y;_1)+2a, where osc (Y;) =sup Y;—infY]. As
a consequence, osc (Y;) < 204/ < 2 (32M47), osc (Yur) < 20%° < (/a. Clearly,
we may suppose that |Y3/(7)| < v/a at some 7 € S' (otherwise the conclusion of
the lemma is obvious) and then

(11) Vi (0)] < 2v/a (< 6;) for every § € S*.

Let us denote O = {h*(0):7 > 1} and §;(#) = dist (Y;(#), O). The same argument
as in (5) yields, forallf € S, 0<j< M —1,and 1 <i < M — j,

(12) 5;44(60) < C4 (a+ [Y;(6)%).

We claim that |Y;()| > /a for every §# € S* and 0 < j < M — 1. Indeed, if
it were not so then 6,,(0) < C4M 7o < C4Ma < Cy/a for some § € S'. Up to

11



assuming « sufficiently small, this would contradict (11) (recall that O is a finite
set not containing zero) and so our claim is justified. Note that this argument
proves somewhat more: (taking C > 1/dist (0, O))

. 1
(13) 4M=31Y,(0))? > o forallde Stand 0<j< M —1.
Now we derive a uniform bound for the distortion of 0, f on iterates of V. Note
that by (1), (2), we may write 0, f(0, ) = (0, x) with [¢) +2| < « at every
point. Then given 0 < j < M —1, (8;,,), (15,y;) € ¥j, and 1 <i < M — j,

aacfz(ijyj) dJ(Tmaym) .

jti—1

T

m=j

jti-1

11

m=j

m

(14) .

Our previous estimates imply, recall (13),

204™

/%4m—M

Hence, (14) is bounded by (1 + /@)% < e*V® < 2 (we use M =~ log 1 and also
assume « small enough). Altogether, this proves that, given any 0 < j < M — 1
and 1 <1< M — 3,

awfi(ej’xj)
awfz (Tja y])
We fix an arbitrary § € Y; and let \; = [9,f™~9(¢/(9))|. Lemma 2.5, together

with (11), gives \; > Cgaév[*j for 0 < j < M —1. On the other hand, the previous
inequality gives

1 A ; A .
— .]' < |61fl(0j,xj)| <2 .J' for all (Oj,iﬁj) € Y;
2)\14-] )‘H-J

We fix K = 400e? and consider ¢; <t < --+- < M given by ¢; = 1 and

x_m_l‘g
Ym

< CadM < \/a and ‘M—1‘g2—a<\/&
'(;[J(Tmaym) 2—0&

A

<2 for every (6;,z;), (15,y;) € Yj.

(15)

tivi =min{s:t; <s < M and N\, > 2K\,} (if it exists).

Moreover, given r > (3 — 2n)log = we set k = k(r) = max{i: \,, > 2Ke™"/\/a}
and then we claim that k(r) > ~;r for some constant y; > 0. Indeed, we have
A < 2K\, -1 < 8K\, for all i and so Ay, > Chop' '(8K) *. Also, by
definition, \;,,, < 2Ke "/ /a. Putting these two inequalities together we get
(recall also the definition of n and M)

klog(8K) >r+ Mlogos—ilogi +C>r— (3 —4n)logi +C

>r(1- ) w0
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which proves our claim.

For each | = (ls - lu) € {1, ,d}™ we denote by w(l) the only element
w € Py satistying g* 1( ) C 6, ,1,911), i=1,...,M. Given 1 < j < M we let
V(1) = graph (Y;(1)) = ¢’ (Yo|w(l)). We call [and m incompatible if

[Yar(l,0) — Yo (m, 0)| > 4e> "/ for all § € S* :

observe that this implies that Y,;(I) and Y3, (/) can not both intersect a same
vertical segment {6} x J(r — 2). By Lemma 2.7 there are H|, H{ C {1,...,d}
with #H|, #H{ > [d/16] such that given any I} € H| and I{ € H{

Dfl(llhl?""alM?e) _Yl(llllal%"':lM’ )‘ - 100

forall 0 € g(w(l},la,-..,lx)) = g(w(l,lo,...,l5)) and lo, ..., lps. Then, by (15),
Yarl los I 0) = Yar (U I g 0)] > 222 > 4627 /3 for 0 € S
2 100
(because 1 < k(r)), that is (I{,l,...,lp) and (I, 1o, ...,I5) are incompatible
for every ly,...,ln. In fact, we claim that all pairs (I, lo,...,li—1,0,, .-, 1),
(1,1, . .. ,lt2_1, lt’z, ..., 1%,) are incompatible. Observe that,
a
Vi, (U, 0oy -y Iag, 0) — Yo, (1 1oy - - o Lar, 0)] > 2At2ﬁ > 4é’a,

as a consequence of (15) and the definition of ¢5. On the other hand,

Yoo (1 lay - b1, By 1) (0) = Vi (1 Doy lipm Ly -+ Do) ()] <
< osc ((p(nz—l(lla 127 cee 7lt2—1))) < Ba

for all § € S*, and a similar fact holds for Yy, (I/,...). Therefore,

Yar(l, by b1, Uy oo U, 0) = Yar (U day oo by a1 1y, 0) >
> 1, (4€2 — 16)a > 4e* /o

(because 2 < k(r)), proving our claim. Now we just repeat this argument for
each of the successive ¢;: at the ith step and for each fixed L; = (l,...,l;;_1),
we find Hj, H with #H;,#H > [d/16] such that given any [} € H; and
If € H} then all pairs (L;, lj., Iy, 41, - - - Inr), (Lis 18, 141, - - -, [ar) are incompatible
and, in fact, the same is true for every pair (Ls,l;., Iy 41, - - -, Ly -1, 0, 1t S,
(Li, U L - NP F L1%) aslong as i+ 1 < k(r ) In thls way we con—
clude that each segment {#} x J(r —2) intersects at most d™*() . (d —[d/16])*
admissible curves Y (I). Using also |(¢™)'| > (d — @)™ > constdV (because
M < const log +), we conclude

~ M _ k(r) mr

and the lemma follows by taking 8 = L log (A2). O
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2.4 Large deviations

Now we use the previous lemmas to complete the proof of Theorem A. In all
that follows we let » > 1 be fixed, sufficiently large. We define m > 1 by
m? < n < (m+1)? and take also | = m — M, where M = M(«) is as above.
Note that | ~ m = y/n as long as n > log é Recall also that we are considering
an arbitrary admissible curve XO. Given 1 < v < n and w,yy € Py, We set
v = ¢”(Xo|wy4:). Then we say that v is

e a I,-situation for § € w,,; if YN (S x J(0)) # 0 but yN (S* x J(m)) = 0;
e a Il,-situation for 0 € w,; if YN (S! x J(m)) # 0.

Note that, by Lemma 2.1, «y is the graph of a function defined on ¢"(w,4;) € P,
and whose derivative is bounded above by a. Therefore, its diameter in the z-
direction is bounded by a(d — o)™ < /ae™™. This means that whenever v is
a II,-situation for w,,; then v C (S x J(m —1)). At this point we introduce
By(n) = {0 € S': some 1 < v < n is a II,-situation for #} and then Corollary 2.3
gives

[J(m —1)|

(16) m(Bz(n)) < nCy < const a”/*ne™™/? < const e” V™4,

From now on we consider only values of § € S'\By(n) that is, having no
I1,,-situations in [1,n]|. Let 1 <1y < --- < vy < n be the I,-situations of 6. Note
that our definition of N (recall the proof of Lemma 2.4) implies ;11 > v;+ N for
every i; in particular (s — 1)N < n. For each v = y; we fix r =r; € {1,...,m}
minimum such that v N (S* x J(r)) = 0. Then, by Lemma 2.4,

vi+N—1

11

Vi

0.f(X;(0))] > e t/24,

for each 1 <7 < s. On the other hand, Lemma 2.5 gives

v1—1 vip1—1
[T 1015500 2 oot and ] |07 (%500)| 2 Coo ™7,
1 vi+N

for every 1 <7 < s and also

n

11

Vs

8zf(Xj(9))‘ > (2 —a) |z,,|Cov/aoy™ > const ae "oy ",
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Altogether, this yields the following lower bound for log H?Zl

0. (X;(0)) :

~ (1 1 3.1
(n—(s— 1)N)10g02+; <(§ —n) loga —ri> — sconst — élog—.

«

We consider G = {i:r; > (5 — 2n) log =} (note that it depends on 6) and then
i 1 lo l—r- >—Zr-+ slo l>—Z7"--|— Ns

. 9 n g a N . % n g a = . Y Y2

=1 1€G 1€G

for some 7, > 0 independent of « or n (because N ~ log 1). Replacing above we
get

A 3 1
Gmf(Xj(G))‘ > 3cn — Zri — sconst — Elog& > 2cn — Zn-

1€G 1€G

log ﬁ
1

where ¢ = : min{y,,logos} and we use n > log 2 ~ N > 1. Now we introduce

Bi(n) ={0 € S":Y,.sri > cn} and set E, = Bi(n) U By(n). Then

log ﬁ
1

In view of (16), we are left to prove that m(B;(n)) < conste™ V™ for some
v > 0. We deduce this from Lemma 2.6 by means of a large deviations argument.
First we let 0 < ¢ < m — 1 be fixed and denote

axf(Xj(H))‘ > cn for every € S'\E,.

G, ={i € G:v; = ¢ mod m}.

We also take m, = max{j:mj + g < n} (note my; = m = /n) and for each
0<j<mywelet?; =r if mj+q= v, some: € Gy, and 7; = 0 otherwise.
Observe that Gy and the 7; are, in fact, functions of §. Then we introduce

Qq(pos - -, pmy) = {0 € S'\Ba(n): 7; = p; for 0 < j < my}

where for each j either p; = 0 or p; > (% — 277) log é; we also assume the p; not
to be simultaneously zero. Consider 0 < j < my and Wpjtg+1 € Pmjteri- Recall
that our construction is such that the value of 7; is constant on w14+ Now
Vo = gomj+q+l()2'0|wmj+q+l) is an admissible curve and we have defined ! in such
a way that mj +¢+1=m(j+ 1) + ¢ — M. Therefore, we are in a position to
apply Lemma 2.6 to this curve and obtain in this way

1 1
m ({0 € wmjiqrr: Fio1 = p}) < C.C3e™?  for all p > (5 - 277> log o
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Here, as before, C, is a uniform upper bound for the metric distortion of the
iterates of g. Repeating this reasoning for each 0 < j < m, we conclude that

m (o, - - -+ pm,)) < Cie 20,
where Cy = C,.C3 and 7 = #{j: p; # 0}. As a consequence,
[ermearig s 3 ceEe <3 Cid(n Rt
(PO;---,qu) TaR

where the integral is taken over the union of all the sets Q4(po, ..., pm,) for
all possible (pg, - - ., pm,), and ((7, R) is the number of integer solutions of the
equation x, + - - -+, = R satisfying z; > (% — 277) logé for all 5. Now, for some
absolute constant K > 0,
R
) < PR,

(R+’7')' (R+T)R+T T T R
C(r R) < R'7! — RETT +R +7’
For the last inequality we use the fact that R/T > const logé, which ensures
that all three factors can be made arbitrarily close to 1 by taking « sufficiently
small. For this same reason we may also suppose C] < e?%. Tt follows that

[#meara <y ey e,
7R R

since 7 < R and R > (3 — 2)log L > 1 (because 7 > 1). Therefore,

R

m f: Z T > @ < chﬂn/m/625Eiecq T do < e—QC,Bn/m'
m

Now, clearly, § € Bi(n) = ZieGq r; > < for some 0 < g <m — 1 and so

(17) m (Bi(n)) < me 28M™ < e™VR  for 4 = ¢

This concludes the proof of the theorem, under the simplifying assumption (1).

2.5 Conclusion of the proof and extensions

Now, we prove the theorem in full generality: we take ¢ to be any C? map of
the form ¢(6,z) = (9(0, ), f(0, x)) satisfying ||¢ — @.|| < &, where € > 0 is small
with respect to «, and we explain how the conclusion of theorem may be obtained
for ¢ by a variation of the previous argument.

16



The first step is to show that such a ¢ always admits an invariant foliation
F° by nearly vertical smooth curves. This is a direct consequence of the fact that
the vertical straight lines {# = const } constitute a normally ezpanding invariant
foliation for ¢,, see [HPS|, but we sketch the main points in the proof, since
results on persistence of normally hyperbolic objects are somewhat less standard
in this setting of non-invertible dynamics. Let X be the space of continuous maps
£: St x Iy — [—1, 1], endowed with the sup-norm, and define F: X — X by

_ 0 f(2)8(p(2) — Oug(2)
PO = 2o, 1)) + Buo(2)”
Note that F' is indeed well defined

z=(0,1) € S* x I,.

(d+e)+e¢

1
—(consta+¢) + (d —¢) <

[FE(2)] <

and, moreover, it is a contraction on X: |F§ — Fn| is bounded above by

|det Dol |€ — 7] cdte)d+e)+e)lf—n _1
(=09 + 0ag)(—0pf1 + Oag)| — (d — const a)? — 2

Let £&¢ € X be the fixed point of X'. Then we take F°¢ to be the integral foliation
of the vector field z — (£°(z),1). Note that we defined F' in such a way that, for
every z € S x Iy, Dyp(z) maps E¢(z) = span{(£°(z),1)} to E¢(¢(z)) and this
implies that F¢ is invariant. It also follows from the methods of [HPS] that the
leaves of F¢ are as smooth as the map ¢, i.e. they are C3-embedded intervals;
moreover, they approach vertical segments, uniformly in the C® topology, as
e — 0. Note that, in general, F* is not a smooth foliation (its holonomy maps
may not even be Lipschitz continuous).

Existence of such an invariant foliation replaces the skew-product assumption
of (1) in the general case of the theorem. More precisely, what we do now is
to show that almost every z = (#,z) € S' x I, has positive Liapunov exponent
along the direction of E°(z). In order to do this we introduce A(z) defined by
Dp(2)(£(2),1) = A(2)(€(¢(2)),1), i.e. A(z) = 0pf(2)€°(2) + Ouf(2). We also
need an analog of the second part of (1). Let the critical set C of ¢ be defined
by C = {z € S x Iy: A(z) = 0}. We claim that C = graph (n) for some C? map
n: S — I and, moreover, 1 is C-close to zero if ¢ > 0 is small. Indeed, it is clear
that z € C implies det Dp(z) = 0 and the converse is also easy to deduce: if z is
such that det Dy(z) = 0 then the image of Dp(z) is a one-dimensional subspace
with slope |9 f(2)/0pg(z)| < 1; on the other hand, Dy(z)(£%(z),1) is colinear
to (£%(¢(2)),1), a nearly vertical vector; hence, it must be Dy(z)(£¢(2),1) = 0.
Therefore, our claim follows directly from an implicit function argument applied
to det Dp(6, z) = 0. Now, this means that up to a C? change of coordinates C*-
close to the identity we may suppose n = 0 and, hence, write A(6,z) = z¢(0, )

& —n.
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with [¢) + 2| close to zero if € and « are small. We define admissible curve in just
the same way as before but a few words are required concerning the definition of
the partitions P, in the present setting. Indeed, since F° is usually not a smooth
foliation, there is no natural smooth structure (let alone smooth expanding action
of the dynamics) on the space of its leaves, as happened in the previous case.
Instead, we let O denote the leaf of F¢ close to {# = 0} which is fixed under
¢ and we define P, to be the set of all intervals [#',60") such that (¢,60") is
a connected component of X, 1((S* x I;)\Op). Note that this depends on the
admissible curve X, (in an unimportant way). On the other hand, it is easy
to check that (d + consta)™ < |w| < (d — consta)™™ for every w € P,. At
this point we may use the same argument as before, with 0, f (6, x) replaced by
A(6,z), to show that []}_; A(¢(x,0)) grows exponentially almost surely. The
proof of the theorem is complete.

Concluding this section, we mention two easy extensions of the arguments we
have presented. To start with, we note that the quadratic map h(z) = ay — z*
may be replaced by any unimodal or multimodal map with negative schwarzian
derivative and having all critical points nondegenerate (quadratic) and preperi-
odic. In particular, one may take such a map defined on the circle, for instance
h(z) = x4+ agsin 2rz mod 1, ag = 3/4. Then the same arguments as before yield
a C?® open set of maps of the torus 72 = S! x S! exhibiting multidimensional
expanding behaviour on the whole manifold U = T2

Next, we explain how these arguments can be easily adapted to give a higher-
dimensional version of our construction. We consider ¢,: 7™ X R — T™ x R,
0,z) — (9(9), fa(H,x)), where ¢ is an expanding map on the m-torus 7™ and
fa(ﬁ, T) = ag+ ag(f) — x2, ay as before. For simplicity, we take g to be linear and
to have a unique largest eigenvalue \,. Then we suppose the function ¢ to vary in
a Morse fashion along the corresponding eigendirection w,. In this setting we take
admissible curve to mean a curve of the form {(O(t) = 6y +tw,, X(t))} CT™ xR
with | X’[, | X" | small. Then, up to assuming A, sufficiently large (depending only
on the Morse function ¢), the same arguments as before prove that for small
enough « the map ¢, has m + 1 positive Liapunov exponents at ¢(O(t), X (t)),
for almost every t. Moreover, the same remains true for all small perturbations
of ¢, as long as every eigenvalue of § is larger than 4 (this is to assure that the
invariant foliation {# = const } is normally expanding, recall argument above).

3 Proof of Theorem B

In proving Theorem B we follow a similar global strategy as for Theorem A, but
we have to deal with several additional difficulties arising, fundamentally, from the
higher-dimensional nature of the X -—variable. We fully present the new ingredients
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required to bypass such difficulties and refer the reader to the previous section for
many details which are common to both proofs. First we derive the conclusion
of the theorem for p(0,X) = ©a4(0, X) = (§(O), fap(©, X). Extension to all
maps in a neighbourhood of ¢, ; follows precisely the same lines as before, as we
comment in Section 3.5.

For the sake of notational simplicity we write g = g and f = fa,b. In all that
follows we let o and b be small, more precisely 0 < b < o < ¢3 for some ¢y < 1.
The constant ¢y is determined by a number of conditions which we state along
the way. We point out that none of these conditions involves the value of d, cf.
also remark preceding Lemma 2.1. In addition, for fixed d we assume that b is
large enough with respect to 1/\/3, say bv/d > 100. Clearly, this last condition
is compatible with the previous one, provided d be large enough.

3.1 Admissible curves

Recall that © = (0,T) € T3 = S' x B> and X = (z,y) € I?. Here we call
X -vector to any tangent vector of T3 x I# which is a linear combination of 9/dx
and 9/0y. An X-vector £ 0/0x + ¢ 0/dy will also be denoted, simply, (z,9). By
admissible curve we now mean any subset X C T3 x I§ X S* which is the graph
of some X: St — B? x IZ x S*, X(0) = (T(0), X(0), ¥(0)), satisfying

1. T, X, ¥ are C? except, possibly, for being left-discontinuous at 6, = 0;

2. | X'| <a, | X" <a, |¥|<ba/dand |9 < ba/d?.

We think of T3 x IZ x S* as the bundle over T3 x I3 whose fibers are the unit
balls of X-vectors and we let ® denote the action induced by D¢ on this bundle,

loxf(0,X)¥| /)

In the same way as we did for Theorem A, we reduce the proof of The-
orem B to a main claim stated in terms of admissible curves. We let 220 =
graph (Xp), Xy = (1o, Xo, ¥p), be any admissible curve with ¥y(8) = 9/0y.
For every j > 0 we denote X;(8) = (¢7(8),T;(6), X;(0), ¥;(9)) = ¥/ (8, Xo(6))
and also W;(0) = 0x f1(X1(0))¥,(0). Note that Wy(0) = ¥,(d) = 9/dz and
W;(0) = ||W;(8)|] ¥;+1(0). Now, clearly, ||Dg0”(2\?1(0))%|| > d" for every 6 € S!
and n > 1. We claim that

(0, X, V) = (g(e),f(@,x>

(C) for convenient constants ¢, C,~y > 0 and all large n we have ||[W,,(0)]| > e,
except on a set E, of values of § with m(E,) < Ce™V™.

The proof of this statement occupies most of what follows. On the other hand, the
theorem is an easy consequence. Markov partitions P, for § — ¢(f) = df mod 1,
to be used in the sequel, are defined in just the same way as in Section 2.
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Lemma 3.1 If X is an admissible curve and w € P, then ®"(X|w) is also an
admissible curve.

Proof: Clearly, it is sufficient to consider the case n = 1. Observe that if X =
graph (T, X, ¥) then ®(X|w) = graph (T,, X, ¥,) where T,(df) = G(6,T(9)),
X.(d0) = (a(0) — z(0)® + by(#), —bx()) and ¥,(df) is the unit vector obtained

dividing
—2z(0) b
(705 ) v
by its norm. Property 1 is clear and so we proceed to check 2. Note first that

12«

1
|X!| = a(aqﬁ' — 2zz’ + by', —bx') — Sa

1
< ‘8(27ra + 4o+ ba, ba)| <
and a similar calculation gives |X”| < (48a/d?) < a. On the other hand, we
write ¥ = (cos ¢, sinv) and ¥, = (cos 1, sin1),) and then

bcos(h)
(0) cos(0) — bsinp(0)

tg Y. (df) = 2

which leads to
1 b2y — 2ba’ cos? 4

(18) wi = a (Z.T COSi/J _ bSiIl¢)2 + (bCOS w)g

Note that the denominator is bounded from below by [|0xf || ~> > (b2/5)? and,
clearly, also by b% cos? /. In this way we find

1 1 bo 12« ba
1 < —=@25 W +20]2|) < —5(25— +2b—) < —
(19) W< (5] 4 20Je') < (2500 + 26 < o
recall that b>d > 50. On the other hand, taking derivatives in (18) and performing
the same kind of estimations as before, we get

| < bz (const b? [4)"| + const b || + const b? 2’| [1'])+

+ e (const [1/] + const b |z/|)(const [a'| + constb~" 1)),

where const always replaces some numerical constant. (For the deduction of this
inequality note also that (2z cos ¥ —bsinv)?+ (bcosv))? > const b? |sin 2| |cos 1))
It follows that |1 < (const b® + const a)ba/d? < ba/d?. O

3.2 Expansion and contracting directions

Given (0,X) € T3 x I and j > 0 we denote (©;,X;) = ¢?(0,X) and also
0, = (0;,T;), X; = (z;,y;). In what follows n > 0, §; > 0, N = N(a) > 1, and
o9 > 1 have the same meaning as in Section 2. Given an X-vector V = (Z,7) we
denote slopeV = y/i.
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Lemma 3.2 There is Cs > 0 and, given (0,X) € Ty x I§ and k > 1 with
|zo| < 2v/@, |z;| > o for 1 < j <k and |zgi1| < 01, there exists S = Sp(Z) an
X-vector at Z = (01, X1) satisfying

a) For any X-vector U at Z with |slopeU| < ¢y and every 1 < j < k, we
have |slope dx f1(Z)U| < ¢y and ||Ox f(Z2)U|| > Cso3 ||U||; in addition,
|ox F(2)U|| > Csa~ 10k N U]

b) S = (5,1) with \é\ < b and dx f*(Z ) = (0,7) with |F| < b**/Cs; moreover
slope dx [1(2)$

Proof: For simplicity we denote L’ = dxf(Z), 1 < j < k. Observe first
that, given any point Y € {|z| > y/a} and any X-vector V = (&,9) at ¥ with
|slope V| < ¢, then ||0x f(Y)V]| > |-2z& + by| > (1 — ¢o) |—2z]| ||V]| and

(20) | slope dx f(Y)V| = 2 < G-

b b
<
x—bslopeV‘ ~ 2y/a—bey ~ \/_
In view of this, and up to assuming ¢y, small, the arguments in Lemma 2.4 give

|L7U|| > const p |U|| for 1 <j< N and |LNU|| > o |U]|.

An analog of Lemma 2.4b) also follows from those arguments. Moreover, we take
m >1,00>1, k>0 as in Lemma 2.5 and then, by continuity (take ¢y small),

L |ox ")V = og VI if 7 (Y) € {Jx| > 61} for 0<j <m —1

2. ||oxfFE YY)V > wkab||V|| if @?(Y) € {|z| > 6} for 0 < j < 1 —1 and
oY) € {|z| < 61}, with I < m.

Now the same reasoning as in Lemma 2.5 yields
(22) HL’“UH > Cooh Mo M ||U|| and |‘LjUH > C’gangoz_%“L” |U|

for all N < j < k. Recall (Lemmas 2.4, 2.5) that a=! ~ const p) > consto3”.
This, together with (20)—(22), completes the proof of a).

In order to prove b) we introduce §;,7; defined by L’(3;,1) = (0,7;), every
j > 1, and then we take § = §;, 7 = 7. Note first that

—2331 b §1 0 . ~ b i 2
( _b 0)(1) (f1>g1ves 51 le_zand p < b7,
since 1 ~ ag > 1. In general, we write L/ = gj gj ) and then §; = —B;/A;
J J

and ’Izj = Dj - BjOj/Aj = det L]/AJ Note that Aj+1 = —2£L'j+1Aj + bCJ and
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Bji1 = —2z;11B; + bD; and so 5,41 — §; = —bdet Lj/_(AjHAj). On the other
hand, the estimates in part a) imply |A4;| > (1 — ¢) ||L7(1,0)|| > const. In this
way we get |7;| < constb* and |§;11 — §;| < const b**! for every j > 1 and this
last inequality also gives |3;| < (b/2) + 37,5, const b *! < b. Finally, if it were
| slope LI S| < 1/¢o for some j < k then the same calculation as in (20) would
give | slope L’“Sk| < ¢p, contradicting our definition of Sp. O

Remark 1: If we drop the assumptions on zg, zx41 (keeping only |z;| > o
for 1 < j < k) then the same arguments yield the following slightly weaker conclu-
sions, which will be of use below. For any X-vector U with |slope U| < ¢y and any
1 < j < k, we have |slopedx f1(Z)U| < ¢y and ||0x f1(Z)U|| > const /ool |U||
(cf. Lemma 2.5). A vector Sy = (8, 1) is defined, satisfying |8x| < (b/\/a),
dx f¥(2)S, = (0,7) with |#x| < constb?*/\/a, and |slopedx f¥(Z)S| > 1/c,
for 1 < j < k. Moreover, if |z;| > /a for all j > 1 then the corresponding
sequence (5;,1) converges to some X-vector S = (800, 1) such that |54| < co,
| slope x f9(Z)Sao| > 1/co, and ||0x f7(Z)Soo|| < const b/ /a for all j > 1.

We also need to consider pairs of points (0%, X®) € Ty x I2, i = 1,2, and the
corresponding objects @;i) = (0() T(Z)) X() = (x gz),y] )s and Z (@5"’,){9).
Let [Z(V, Z()] be the straight line segment connecting Z, Z?) Given any
Z € [ZW, 23], we define ©; = (0;,T;) and X; = (z;,y;) by (0;,X;) = ¢’ 1(2),
every 7 > 1.

Lemma 3.3 There exists Cs > 0 such that the following holds. Let 09) = 0?)
and k > 1 be such that |z;| > /a for any 1 < j < k and any Z € [ZV, Z?)].
Let ¢ = min{|z"], [z{?|}. Then

85 (Z2W) — §k(Z(2))‘ > ‘xgl) (2)

065

2V _x®)|.

5 (Z20) — §k(Z(2))| < 222

Proof: We keep the notations of the previous lemma. First, we observe

b L e I O
2 |t — L < my —ay .
8 22{V2?] T 27

Recall that §;11 — §; = —b¥*!/(A4;41A;). Using |41 > £ and |A;| > const /a
for all j (see Remark 1), |85 — ;| < const (b°/§v/a) + 3,5, const (07! /a) <
const (b3/€y/a). This proves a). Now, let D denote derivative with respect
to the X;-variable. A simple induction argument shows that ||Dz;l|, |4;] <
47 and ||DA;|| < 4%. Hence, |D(3;41 — 3;)|| < const b?*1427+2q73/2 and so
ID(3 — 51)|| < const Y, b*7714%+2073/2 < const b. Then b) follows from our
first estimate and the mean value theorem (note that the §; are independent of
T, and 6, is constant on [Z(V, Z?)]). O

_ 4

§1(Z2M) = 51(Z29)| =

<

22



3.3 Estimating expansion losses

Recall that X, = graph (Ty, Xo, ¥y) is an arbitrary admissible curve with ¥y =
0/0y. Let n be any large integer and M = M («), J(r), be as in Section 2. Let
0;(6) = (¢9(8), T5(6)), X;(6) = (;(8), y5(6)), and ¥;(8) = (cos (8), sin 5 (6)).
Given 1 < v <nand w,_p € P,_y we say that v is a return for (every) 6 € w,_
if ,(w,_pr) N (—v/@, /@) # 0. Note that this implies z, (w,_) C (-2, 2y/a),
since osc (2, |w,—n) < /@, recall (11). For completeness we set P; = {S'} for all
1 < 0; observe also that ¥ < M can only occur for, at most, one return.

Our goal at this point is to introduce a function A, (6), defined on 0 € w,_y,
bounding the amount of expansion lost by dx f at (0,(6), X,(f)). In what fol-
lows w;(#) denotes the element of the partition P; containing 6. First we take k£ =
k,(0) > 1 minimum such that p = v+k+1 satisfies z, (w,—n (0))N(—/, V) #
(in other words, u is the next return of ). Then we let S,(0) = (s,(6),1) =
Sk(©,41(0), X,+1(0)), given by Lemma 3.2 (use Remark 1 if k = o), and we de-
compose W, = ||[W,_1]| (h,(1,0) + v,(s,,1)) and W,_1 = ||[W,_1]| (cos 1, sin1),).
Now we define

(23) Ao = 40

(note that W,/ [|[W,_1|| = 0x f(©,, X,)¥, = (—2z, cos ), + bsin,, —bcos1,)).
A main property of these A, (+) is to be stated in Lemma 3.7, which is an analog
of Lemma 2.6 in this context. First we need a few auxiliary results.

For 1 < ¢ < k,(0) we define A, ,(0) = —2z,(0) + btg1,(0) + bs,4(0), with
Su,(0) = 34(0,41(0), X,41(0)) as in Lemmas 3.2, 3.3. We denote by A;, Bj,
Cj, D; the entries of dx f?(0,41(), X,+1(f)). Finally, as in Lemma 2.2, we let
Ay = {0: |sin 27| < 1/3} and A, = ST\ A;.

= —22,(0) + btg,(0) + bs,(0)

Lemma 3.4 Let § € w,_y be such that |btg,(0)| < 10\/a. Then for every
1<q<k(0),

a) |, 0)] > Flimd ™ if 0 € A and

b2 2(v+q—1 r udg—1
b) |AL(0)] > oAl (ta=1)  if qvta=1g € A,.
Proof: We detail the proof of a): statement b) is proved along precisely the same
lines and we omit the corresponding calculations. Note first that our assumption
on ¥, (6) implies (recall also Lemma 3.1)

24 100 b
(=22, + btgw,)| < (70‘ +b <1 + %20‘) Fa) & < 25ad" .
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Moreover, 25ad*~! < (a/I0)f41-29" 01 < (a/10)(1%] | Aydq 1Jd*0) for
every ¢ > 1, since b?d > 1000 and |A;| < 47. Therefore, it suffices to prove that

, a b2q71

V,q(0)| 2 gmdy+q_l whenever du—|—q—10 € .Al.
giq-1

|s

Recall, from the proof of Lemma 3.2, that s,; = b/(2z,41) = —b/A; and also

Sujt1 — Suj = —b¥T1/(Aj11A;) for all j. Hence,
b A p2t+t AL, Al
s, =-—-2 and s, .. ,=s .+ ( I+ +_9)
)1 A Ay J+1 ] Aj—l—lAj Aj+1 Aj

. . ;.
and so, by induction, s,  is equal to

-1 49541 ! ! 2—-1 A/ 91 q 2j+1 2j—1
b2 Al Al b24 A Al b2i b2i
Y () et o (e )
g A A \ A A Agdga A Aj \Aja 4y AjAj

j= j=1 "

(convention Ay = 1). In order to estimate the right-hand side we introduce
E; = Aj/A; 1 and note that E; = —2z; and E; = —2z,,; — b*/E; ;1. It follows,
by induction,

(i) Vo < |E;| < 4for all j > 1 ; moreover, no two consecutive values of |E;| can
be less than 1 (because no two consecutive |z;| are less than 3/5).

(i) | Ej| < 25ad”t77" for j > 1 (note that |2/, ;| < 120d”*~1, cf. Lemma 3.1).

Now, suppose [sin(2rd”T4 6)| < 1/3. Then (compare the proof of Lemma 2.2)
‘xfjﬂ‘ = |a'(dvret0)dvret — 2Ty q1Tyrg — by,’H_q_l‘ > (3a/2)d" ™41 and so
|E}| > 3ad’te ! — (b2 /a)25ad" "7 2 > (5a/2)d” 4 . As a consequence,

-1
> adu—l—q—l § _ 25 qzdi—q > gdu-l-q—l.
= N =2

E' !

4|5
2|5

E!
A_q _

E;

(24) \

=1

On the other hand,

‘ p2i-1 A;- pRa—1 A;

g—1 J EI/E ‘ db2 Jj—q
27 T4 < 29 E,E; @ < 20 ( > )
AjA; 1A ] A A, |~ 1] 15:E:]

(a/2)dr+o—1 =\ 2

i=j

In order to check this, use |E;| < 4 and (i), (ii) above if s < j, and

qg—1 qg—1
H |E:Eivi| | Ej/E;j| = |Ej1l H |E;Ei| | B} < 420971 25007t
i=j i=j+1
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otherwise. In a similar fashion,

‘b2j+1 A_; b2q—1 A_;
Aj+1Aj Aj Aqu—l Aq

de Jj—q
< (%)
42
Using b%d > 1000 once more, we get

q—J pa-1 g o
1-— 2 > vraT
Z (5a) )2 i

and our argument is complete. O

b2q 1

I
(25) |s'y,q|z‘AA A—"

Remark 2: The same type of estimates (cf. (25), (24), and (ii) above) also
gives the following upper bound which will be useful below:

pa-1 A’

! q
(26) s, <2 ‘Aqu_lA

100\/_|A Aq N

d"T 1 < const \/ab®® tdrteL

Lemma 3.5 Let 1 < v < n and w, p € P,y be as above and let w, be any
element of P, contained in w,_ .

a) If |btg ¢, (7)| > 10y/« for some T € w, then |A,(0)| > 2y/a for every 6§ € w,.
“1ja (L)
b)m{f€ew,:A,0)eJ(r)})<b (b—g) m(w,) for every r > 0.

Proof: Suppose first that the assumption of a) is satisfied. Since |w,| = d™" and
(by Lemma 3.1) |¢)| < (ba/d)d”, we must have |btg,(0)| > 8/« for all § € w,
and then a) follows immediately: |A,(0)] > —4v/a + 8y/a — b* > 2\/a. Now we
prove b). Note that, in view of a), it is no restriction to assume |btg,| < 10/«
and we do so in what follows. We start with a few simple remarks concerning
the A;, E; introduced above. Let 1 < j < ¢. It follows from the proof of Lemma
3.4, namely from (ii), that |E;(61) — E;(62)| < 25ad’~? whenever 60y, 6, belong to
a same Wyyq—1 € P,14—1. Hence, under this assumption we have

‘Aq(el)‘ : ‘Ej(01)| ! j—
— < ]—q < A
(27) A0 |. [ E )] |' [ (1+25vad~7) < V2
]:1 _7:1
We also observe that

k-l p2j+2

A 1A
j=q J+1435

2b2q+2 2b2 b2q

(28) |AI/, - Au| = S S T =71 a1
! |Aq+1Aq| \/a |Aqu71|
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since (recall (i) above)
b?i+2 / b% b? b? ( 1)

29 = <— (< <) forall j.

29) ‘AJ’-HAJ' AjAja| Bkl — Va \ 2 ’
We define k = £(r) to be the maximum integer satisfying \/ae™ < 16(b/4)*. In
what follows we assume x > 1, as the bound in b) is trivial when x = 0. Observe
also that we defined k, in such a way that k, () = k implies k,(7) = k for every
T € Wyrkr1-m(0), in particular for every 7 € wy 4y 1(f). For 1 <k <k —1 we let
Fi be the family of all intervals wy,1x—1 € Pyig_1, With w, 1,1 C w,, satisfying

e k,(0) =k for (every) 6 € w,yx 1 and A, (1) € J(r) for some 7 € w,x 1.
Then we also let F, be the set of all wy1x—1 € Pyig_1, Wyik—1 C wy, such that

e k,(0) > k for (every) 0 € w, 1 and A,(7) € J(r) for some T € W, 1, 1.
We claim that

1) Given 1 < ¢q < &, each w,,, 1 € P,, 1 contains at most (100b'/*d)*~4
elements of F,. In particular (taking ¢ = 1) #F, < (100b*/*d)".

We prove this statement by induction on x — g. Note that case ¢ = k is trivial.
Let ¢ < k and assume that 1) holds for ¢ + 1 (i.e. for all w,1, € P,44). Given
Wytq—1 an arbitrary element of P,;, 1, we count the intervals w,, € P,4, with
Wytq C Wytq—1 and containing some element of F,. Let w,, be any such interval:
then there exists 7 € w, 1, with |A,(7)| < \/ae™™ and hence, in view of (28), (29)
and the fact that ¢ + 1 < &,

2b%4+2 6b29+2 6b2 ( b2 )

A, (T)] < Vae " + < <—max | —F—
BTl A A, = Agn A, = va "™\ 4,4,

where the maximum is taken on w,;4—1. In other words, w,;, must intersect

z {9 Aa(0) < & (L% )}
= € Wyyg—1: |Ay < ——max .
+q¢—-1 | ,(1( )| \/a |Aqu,1|

Now, using Lemma 3.4, the same arguments as in Lemma 2.2, Corollary 2.3, give

(126%/ /@) max (8%0/ |AgA, ) )"
() <6 (0107w (] A )

Therefore, recall (27), m(Z) < 6 (24002 /(a/@))"/* d=4+! < 95p1/4d—v—4+1, On
the other hand, Lemma 3.4 implies that (A, |wy+q—1) is at most 3-to-1 and
so Z has no more than 3 connected components. Hence, there are at most
95b'/4d + 6 < 100b'/*d intervals w, ;4 as above. This, together with the induction
hypothesis, implies that 1) holds for w,,, 1 and so the proof of our claim is
complete. Now we observe that the same argument also proves
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2) Given 1 < ¢ < k < k, each w,, 1 € P,4, 1 contains at most (100b'/*d)k~9
elements of F;. In particular, #F; < (1006'/*d)*~.

Moreover, using Lemma 3.4 (with ¢ = k), along with the calculations of Lemma
2.2 and Corollary 2.3, we get (the minimum is over w, x_1)

A 2\/ae" 1/2
(0 € i 800) € J00) <8 (e g eET)
Now, Vae™ < 16(b*/4%%) < 40/ |AxAxa]) < 4(0?/v/a)* (0" |ArAg-1l),
recall (29). It follows that the Lebesgue measure of {# € w,.x_1: A, (0) € J(r)}
is bounded above by 6((80/c)(b?/y/a) k)12 d—v=a+1 < (60b1/4)<~kd—v—k+1 Al
together, this gives

m({0€w,:A,0) € J(r)}) <3 (100b4d)k=1(60b1/4)—kg—v—F+1
k=1
< 3(100614)* 1 < b~ H4(10064)% m(w,).

Finally, up to assuming ¢, small enough, the maximality condition in the defini-
tion of x implies (1006Y/4)% < (b/4)"/> < (Vo™ /b*)/10. O

3.4 A technical lemma

A

Let X = graph (X) be an admissible curve and Z(0) = ¢(X(0)). We write
Z = (¢,U,2,%), Z = (z,w) and & = (coso,sing). For 1 < i < d denote
ZAZ' = q)(.f‘[éz_l,gz)) = graph (ZZ), with Zz = (UzaZz;Ez)a Zz = (Zz';wi); and
% = (cos 0y, sin ;). Observe that z(0) = z(g(#)) for 6 € [6;_y,6;), and similarly
for w, w;, and o, 0;. Given j > 1 we let A;, Bj, C;, D;, be the entries of dx f”
and (recall Lemmas 3.2, 3.3), we write §; = —B;/A; and 7; = det Ox f/A,.

Lemma 3.6 Let |2(0)| > /a for all € S*. Then there are Hy, Hy C {1,...,d}
with #Hy,#Hy > [d/100], such that

a) |z, (0) — z,(0)] > /250 for all @ € S, iy € Hy and iy € Ho,
b) | cotgo;(0) — 3,(0,Us(0), Z;(9))| > b*\/a for all € S* and i € Hy U H,
for any k > 1 such that ©7(X(0)) € {|z| > /a} for all1 < j < k and all § € S*.

Proof: Let | = [d/100] and define H, = {2sl +1,...,2sl 4+ 1} for s = 0,1, 2.
Observe that [f;_1,6;) C [0,1/20] C A; for all 1 < i < 51 (recall that 6; = i/d).
Moreover, as in (4), |2/(8)| > «/2 for all € A;. Hence, given any 4, € H,, i, € H,
with 7 # s, we have infg1 |2;, — 2;,| > (/2)(I/d) > /250, which gives us a). Now
we claim that given any such i, iy, at least one of them satisfies b). Note that
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the lemma is a direct consequence: one obtains sets Hy, H» as in the statement
just by choosing appropriate elements from H,, H,, Hy. We prove the claim by
contradiction. Suppose there is 7 € S* such that |cotgo;(7) — s:(7)| < V*Va
for both i = i1, i = iy (we write s;(7) = §;(7, Us(7), Zi(7)) ). Since |8 < b/y/a
(recall Remark 1), it follows |cotgo;(7)| < (b/v/@) + (b*\/a) < 1 for i = iy, 1o (if
¢o is small). Using (19), 0; = o o (g|[fi_1,6;))", and the mean value theorem, we

get
b b
| cotg oy, (T) — cotg oy, (T)] < ﬁ50 g 5l < 20007
recall that bv/d > 100. It follows that |s;, (1) — si,(7)| < 2b%\/a + (ba/2000) <
(bar/1500), for small enough ¢q. But Lemma 3.3a) gives (note that our assump-
tions imply & > /a)
3

b b
|5 (T) = 56, (1) 2 3 |21, (1) — 23, (T)| — const — P > % — const ba®/* > —1030,

if ¢y is small. We have reached a contradiction, thus proving our claim. O

Now we are in a position to prove our last lemma. Given Yy = graph (J) an
admissible curve and j > 0, we write )79- = ®7()),) and )>j(0) = ®7(0,),(0)) =
(¢7(0), S;(0),Y;(0),T;(0)), with Y; = (&;,n;) and T'; = (cos~y;,siny;). We suppose
that |£M( )| < y/a for some 7 € S*. Then [£4;(0)| < 24/a for every § € S': this
is because osc (§;) < 2a4’ for all j > 0, in particular osc (§y) < a, cf. (11).
To the curve Yy we associate Ay (0) = —2E(0) + btgvar(0) + bsar(0) with
su(0) = 3(gM*(0), Sare1(0), Yari1(0)), as in (23).

Lemma 3.7 There are C7 > 0 and B > 0 such that, given any admissible curve
Vo = graph (Jo) as above and any r > (5 —n)log 1,

m ({0 € S*: Ay (0) € J(r —2)}) < Cre .

Proof: The argument has two parts, which can be sketched as follows. The
first step is parallel to the proof of Lemma 2.6. For each | = (I,...,ly) in
{1,...,d}™ we let Y;(I) = graph (V;(I)) = ®(Pp|w(l)) and also introduce the
objects Sj(l_’ 9)’ Y;(Z’ 0) = (gj(l_’ 0)’77(l_’ 0))’ Fj(l_’ 0) = (COS’YJ'(Z_’ 0)’Sin7j(l_’ 0))a
sm(l,0), and Ap(1,0) corresponding to it. We fix r > (1 — 2n)log 1 and say
that [ and m are incompatible if

(30) Ear(1,0) — Ear(m, 0)] > 4e* /o for every 0 € S*.

Using Lemma 3.6a) we prove that each [ is incompatible with all but, at most,
d™((d — [d/100])/d)°™'" elements m € {1,...,d}. Then, in a second step, we
prove that the incompatible pairs [, m obtained in this way also satisfy

(31) Ay (l,0) — Apr(, 0)| > 2e*"/a for every 6 € S*,
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thus ensuring that Ay (l,0) and A(m, 6) can not both belong in J(r — 2). This
is done by checking that the two last terms in A,; have a negligible effect, which
relies on the property in Lemma 3.6b). The lemma follows directly from the
combination of these conclusions.

First we note that |£;(0)| > /o for all § € S and 0 < j < M — 1. Indeed,
let 6;(0) = dist (£;(0), O) + [n;(0)], recall that O C R is the post-critical orbit
of h(z) = ag — 2. In the same way as in (12), &,.4(0) < C4'(a + |£;(0)]%)
for0 <j < M-—1and1l < i< M — j (throughout, C denotes any positive
constant depending only on k). Then, by the same argument as in (13), one gets
€(0))” > const41M > \/a.

Let Zj S JA;() be fixed and write ij = @J(QO) = (éj, S’j, f/j, f]‘), with % = (éj, ﬁ])
and I'; = (cos %j,sin 4;). Define also \; = Hf\ij_l
argument as in Lemmas 2.5 and 3.2, gives \; > const oéw_j forall0 <j < M-1.
We let K = 1000e? and define t; <ty <---< M by t; =1 and

|—2¢;|. Then the same continuity

tisi =min{s:t; <s <M —b5and N\, > 2K)\;} (if it exists).

Then we set k = k(r) = max{i: \, > 2Ke "/\/a}. In precisely the same way as
in the proof of Lemma 2.6, we deduce that k(r) > v where 7, = n/log8K.

We already remarked that |£;(0)] > a forall§ € ST and 0 < j < M — 1.
Hence, we are in a position to apply Lemma 3.6 to obtain Hi, H{ C {1,...,d}
with #H],#H{ > [d/100], such that

7 i/ «
& (11,0) = &1, 0)| > oo forall 0 € 57,

for all I' = (I, 1ly,...,ly) and I = (I¥)1y,...,ly) with I} € H!, I € H!, and
arbitrary lo,...,l5. Since osc (1) = bosc (&) < ba, we also have

im (11, 0) — m (17, 0)| < ba < \/5% for all 6.
By induction (using the same kind of calculations as in (20)),
(13, 0) — (11, 0)| < Valg;(13,0) — &(11,0)|
for every j > 1 and 6 in the corresponding domain. Combining this with

osc (&) < 2047

- VCYM

< Ca2™ < CodM™ < \a

~

&
(take ¢q small for the last inequality), we find

(€541 (11, 0) = &1, 0)] > i i i
(32) > | = 2§[(1 — V)& (11, 0) — & (I, ) — bln; (15, 6) — n; (11, 0)]
> | = 2&](1 = 2y/)[&;(11,0) — &(11,0)].
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Hence, using log(1 — 2\/a)™ =~ const \/aloga > —log?2 (if ¢y is small),

‘é-M(l_ll: 0) - fM(l_ll,a 0)‘ Z )‘1(1 - 2\/a)M_1‘£1(l_,15 0) - gl(l_llla 0)‘
> shi58s > 4e¥ /o

(because k(r) > 1), which means that any such I}, [ are incompatible. Moreover,

1)\1

> 4e’a,
2 /\132 250

€, (11, 0) — &, (I, 0)] >

by the definition of #,. Also, given any m} = (I{,lo, ..., ly—1,1;,,...,1;,) and
my = (I, lgy s 1, Uy e l") we have

|§t2(l_117 9) - &2 (mllv 0)| S 0SC (§t2 (llla l27 RN lt2—1)) S 8a

and analogously for I{, m!. Therefore, m}, m! are incompatible:

! — /! ]' —r
\Exr (), 0) — Epr(Y,0)| > EAt2(4eQ —16)a > 4> "o

(if £(r) > 2). Now, proceeding as in the proof of Lemma 2.6, we conclude that
each [ € {1,...,d}™ is compatible with not more than d™((d — [d/100])/d)""
elements m € {1,...,d}™, as claimed above.

Starting the second part of the proof, we note that it is sufficient to consider
the case e” < 4ab~®. Indeed, otherwise the lemma is an immediate consequence
of Lemma 3.5b) (take 8 < 1/20). Let I, m be a pair of incompatible sequences
as constructed above. More precisely, for some 1 < ¢ < k(r) we have [; = m;
for j < t; and I, € H], my, € H/. For notational simplicity, we shall write
t = t; and let 3;(1,0), 7(1,0), /L-(L 0), (Z-(Z 9) be the values of $yr—s, 7ar—s,
Anr_s, Cu_y, Tespectively, at the point (0, S;(1,0), Y;(1,0)) € Tz x I3. We write
T:(1,0) = (cosy(l,0),sinv(l,0)) = hi(1,0) + v;(5;(1,0),1) and then Ty (I,0) =
(cos var (1, 0), sin yar (1, 0)) = hi(A;(1,0), Ci(1,0)) + v;(0,7:(1,0)), which yields

9!

7 /UZ /rl
(33) btgya(l, 0) = bAT(z 0) + by (1,0,

Note that
(i) |(73/A:)(1,0)] < const b* M1 by Lemma 3.4;
(ii) |hi/vi| = |cotg%(l_, ) — §i(l_, 0)| > 62\/5, by Lemma, 3.6b).

Hence, the last term in (33) is bounded by

const B2XM =91 /(52 /a) < const b /v < 27"V
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(using M —t > 5 and e < 4ab™? and assuming ¢y small enough). Clearly,
the same arguments and estimates hold also for m. In order to control the first
term in (33) we introduce u; (1, 6) = slope dx f~4(8, S;(1, ), Yi(1,0))(1,0), and let
u;(m, §) be the analogous object for m. Note that u, = 0, uy = C;/A;, and
luj| < ¢o for allt < j < M (by Lemma 3.2a) and Remark 1). Note also that
uj+1 = b/(2&; — bu;) for all j. Hence, using |&;| > a > bey > |bu,

|ujs1(1,0) — ujga (m, )| < VbIE;(1,0) — £(m, 0)] + Vblu, (I, 0) — u;(m, 6)).

By recurrence, ‘uM (1,0) —un(l, 9)‘ <>, _1(\/5)3|§M_5(§, 0)—Enr—s(m, 0)|. More-
over (recall (32)) \fM s(L,O)—Enr (M, 0)| < (2/X)|Eas (1, 0) — Epr (M, 0)| and 2/ A,
is uniformly bounded from above. This gives

(1.6) = G0m,0) < S, const (VB)* €l 6) — Ea(m. 6)

E}xLS}z

Altogether, we conclude that
34 bt (0) = bigr(m. )] < glew(l0) = €u(m.0)] + 2 Ve

Now we estimate ‘bsM (1,0) — bsa(m, 0)|. First we recall that by definition
su(l,0) = 3,(9(0), Sprya (1, 0) Yari1(1,0)) where k = k(I,0) is the number of
iterates before the next return. Clearly, up to taking ¢y small enough, we may
suppose k(I,0) > 4 for all # € S*. Then the proof of Lemma 3.2 gives

|bsM(l_, 0) — b34(9(0), Sar1(1,0), Yarsa(l, 0))‘ < const b'? < "o

(we use €" < 4ab™® once more). Of course, the same holds for m. On the other
hand, Lemma 3.3b) gives (here we have £ > 1)

|bS4(9(92:SM+1(7, 0), Yars1(1,0)) — b34(9(8), Spria(m m, 0), Yars1(m, 9))‘
< €111, 0) — Enra(m, 0)| + const b |Yaria (L, 0) — Yarga(m, 0))|
< 5 [€m(l,0) = En(m, )],

using the iyequalities |§M_|_1(Z, 9) - §M+1(m, 9)| S ‘YM_H(Z, 9) - YM_|_1 (m, 9)‘ S
const |&ar(1,0) — Enr(m, B)|. We conclude that

(35) ‘bsM(l_’ 0) N bsM(m’ 0)‘ < % |§M(l_7 0) - gM(ma 0)| + 2627T\/a.

Altogether, (30), (34), (35) imply (31) and so our argument is complete. O
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3.5 Conclusion of the proof

Finally, we derive Theorem B from the previous lemmas. In the rest of the
paper X, = graph (Ty, Xo, ¥y) is any admissible curve with ¥q = 9/0y and the
notations are as introduced at the beginning of Section 3. We take I, m =~ /n,
I = m — M, as before. For any return 1 < v < n (recall the definition above)
and 0§ € w,_p we define r = r(v,0) > 0 to be the smallest integer such that
Ay (wyy(0)) N J(r) = 0. Recall that w;(6) denotes the element of P; containing
f. Then we say that v is a 0-situation, resp. a I,-situation, resp. a Il,-situation,
for 0 if r = 0, resp. 1 < r < m, resp. 7 > m. Clearly, Lemma 3.5a) asserts that
|btg,| > 104/ can only occur in a O-situation. On the other hand, if v is a
II,,-situation then A,(w,4,(#)) C J(m — 1), because

(i) osc (z,|w,(0)) < ad™ < Vae™;
(ii) osc (btg vy |wy11(0)) < b(1 + (100a/b?))(ba/d)d ™" < /ae™™;
(iii) osc (bs,|w,1(0)) < /ab' < Jae™™.

Indeed, (i) and (ii) are direct consequences of the definition of admissible curve
and Lemma 3.1, and (iii) can be justified as follows. If £, (7) < {/2(< m) for some
T € wy,4(0) then, by definition, k, is constant on w,;(f) and then (26) gives
osc (bs,|w,41(0)) < const y/ab*dF~'=! < const Jad 27" < \Jabt. If k(1) >
1/2 for all T € w,4(0), we take ¢ = [I/2] and, using also |s, — s, 4] < const b7,
we get osc (bs,|w,41(0)) < const/ab?'d? 1t + const b*12 < \/abt. Claim (iii)
is proved. Now we let By(n) = {# € S': some 1 < v < n is a II,,-situation for §}
and then Lemma 3.5b) gives

m(Bz(n)) < nb~1/? (\/ae—mﬂ)l/lo < const e~V

for all n sufficiently large (with respect to « and b).
From now on we may restrict ourselves to those values of # € S! having no
IT,-situations in [1,n]. Let 1 < vy < --- < y; < n be the returns of 6§ and

denote r; = r(v;,0). We write W,(0) = ||[W,_1(8)|| (h.(1,0) + v,(s,(6),1)), for
each v = 1;. Then Lemma 3.2 and the definition of A, in (23) give

Wosi (DI = (1 = o) [IWor ()] || 10x f (Z011(0)) (1, 0]
> (1= co) [[Wy—1(6) ] cos 1, (0)| [Ay(6)| const o3,

for all 0 < j < v — v, where Z,,1(0) = ¢ (0, To(0), Xo()). Moreover, taking
J =Viy1 —v; — 1 and writing p = v,

Wt (O)]] > ||[Wu=1(0)]| |cos 1, (8)]
> (1= o) W, 1(0)]] cos 4, (8)| | A, (8)| const o=+l ™.
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By recurrence (recall that Wy = 2),

[Wa(0)]] > o5~ a?271 T] (const |A,, (6)|a~"*7)

=1

and so log [|[W,(0)|| is bounded from below by

~((1 1 3.1
(n—(s— 1)N)log<72—i-i_z1 ((5 —77) loga —ri) — sconst — iloga

From here on the argument is completely analogous to the one in Section 2, with
Lemma 3.7 replacing Lemma 2.6. We get log ||W,(0)|| > 2cn — >, i, where
¢>0and G = {i:r; > (5 —2n)log =}, and we prove that the Lebesgue measure
of Bi(n) = {0 € S*: Y ,.o i > cn} is bounded by const e®™tV® (if 1, < M then
Lemma 3.7 can not be used at time v; but this is irrelevant for the conclusion;
recall that v; > M for all i > 1). Then E,, = B;(n)U Bsy(n) satisfies the claim (C)
stated at the beginning of Section 3. This completes the proof of the theorem in
the case ¢ = @q4.

Moreover, it is not difficult to see that all these arguments remain valid for
arbitrary diffeomorphisms in a sufficiently small neighbourhood of ¢, ; (depend-
ing on « and b), if one uses the same approach as for Theorem A. Indeed, since
Fo = {© = const } is a normally hyperbolic invariant foliation for ¢, ;, we have
that any nearby diffeomorphism ¢ also admits such a foliation F (). Moreover,
the leaves of F(yp) converge to those of Fy as ¢ approaches ¢, ;. Hence, we
may reproduce the previous calculations for ¢, just taking X-vector to mean any
vector tangent to a leaf of F(¢) and making straightforward adjustments in the
notations. As our argument is based on analysing pieces of orbits whose length
is bounded independent of n (this remark is particularly clear e.g. in the context
of Lemma 3.2), all our estimates remain valid, by continuity, if ¢ is close enough
to Yqup. Therefore, the proof of Theorem B is complete.
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